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1. Introduction

Since the middle of the last century, the continously increasing computational power has
been adopted to molecular modeling and the simulation of molecular dynamics as well. In
this field of research, one is interested in the dynamical behaviour of molecular systems.
In contrast to the beginnings when only single or very few atoms could be simulated,
the systems under consideration have grown to the size of macromolecules like proteins,
DNA, or membrane structures nowadays resulting in high-dimensional conformational
spaces. This development is triggered by permanently increasing computational power, the
utilization of massively parallel hardware as well as improved algorithms and enhanced
molecular force fields, covering chemical and especially biological molecular systems at
a progressive rate. Applications basing on molecular modeling help to understand and
predict molecular phenomena in various fields of applications providing information on e. g.
molecular conformations and recognition, protein folding, drug-design, or binding affinities.
Typical fields benefiting from their usage are pharmacy, medicine, chemistry and materials
research.
Unfortunately, often the atomistic structure is so complex that a satisfactory mapping of the
processes can hardly be realized, due to the large number of atoms and in particular, the
difference in time scales. More precisely, for the molecular function of a protein for example,
its folding is a key issue. In contrast to this folding event that may last up to several seconds
or even minutes, the time step of an ordinary trajectory based molecular simulation is linked
to the fastest molecular oscillation which occurs in case of the chemical H − C bond with a
time period around few 10−15 seconds. Even today, exorbitant computational effort and time
need to be invested in order to capture such interesting processes.

2. Atomistic simulations

The molecular simulation methods can be divided into two classes: the deterministic and
the stochastic approaches. The first one is also known as the classical molecular dynamcis
(MD), which relies on classical mechanics as described by Newton’s Equations of motion
(e.g. Frenkel & Smit (1996); Griebel et al. (2007)). The latter class is known as Monte Carlo
Methods (e.g. Binder & Landau (2000)). Both methods have celebrated a great success in
various applications. For an overview, we refer to Leach (2001) and Schlick (2002).
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In the forthcoming we will briefly introdcue the molecular dynamics and then give a more
detailed introdcution into the Monte Carlo method within its framework. Later on, we will
eploit the commonalities between both simulation methods in order to explain the hybrid
Monte Carlo method.

2.1 Deterministic molecular simulations

The basic idea of molecular dynamics is to calculate trajectories containing spatial coordinates
of atoms evolved in time. Let us assume, a state x = (q, p) ∈ R

6n of a molecular system with
n atoms is given in a 6n-dimensional phase space. Here, q ∈ Ω ⊂ R

3n and p ∈ Γ ⊂ R
3n

denote the position coordinates in the position space Ω and the momentum cooridnates in
the momentum space Γ, respectively. For a classical description of molecular motion with
conservative forces, Newton’s second law is given by the equation

Mq̈ = f (q),

where M ∈ R
3n×3n is a diagonal matrix of atomic masses, f (q) ∈ R

3n is a vector of internal
and external forces acting on the atoms at position q, and q̈ stands for the acceleration as
the second time derivative of q. The total energy of the system under consideration, i.e. the
Hamiltonian H is given by

H(p, q) = V(q) + K(p), (1)

where K(p) = 1
2 p

TM−1p and V(q) represent the kinetic and the poteintial part, respectively.
Since the kinetic part only depends on the momenta and the potential part on the positions
only, the Hamiltonian is separable, leading to the following equations of motion:

q̇ =
∂H (p, q)

∂p
=

∂K (p)

∂p
= M−1p (2a)

ṗ =
∂H (p, q)

∂q
=

∂V (q)

∂q
= −∇qV(q) . (2b)

Inserting these two time derivatives q̇ and ṗ into the time derivative of the Hamiltonian

dH (p, q)

dt
=

(
∇qH

)
︸ ︷︷ ︸

=− ṗ

q̇ +
(
∇pH

)
︸ ︷︷ ︸

=q̇

ṗ = − ṗq̇ + ṗq̇ = 0 (3)

shows that the total energy according to Hamilton is constant over time, i. e. H(q(t), q(t)) =
H(q(0), q(0)) for t ∈ (−∞, ∞). Time discretization during simulation is achieved by applying
a constant step size integrator like the Sörmer-Verlet (Verlet (1967)) or leap-frog (Hockney
(1970)) integrator for which the time step size ∆t is determined by the shortest oscillation
period of bonds in a molecule, namely some femtoseconds. In addition, a time integration
for a sampling scheme as represented by Equation (2) has to fulfil certain properties like
reversibility and symplecticity. Besides the fact that the time step is confined to a small size,
the total time span τ, i.e. the time of the simulation, has to be chosen carefully as well. More
precisely, for a given initial state x(0) and a slightly perturbated state x∗(0) it can be shown:

‖x(t) − x∗(t)‖ ∼ ‖x(0) − x∗(0)‖ exp(λmaxt)

which means that the error ‖x(t) − x∗(t)‖ depends exponentially on the time, where λmax

is the maximal Lyapunov characteristic exponent. It has been shown by Deuflhard et al.
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(1999), that for molecular dynamics λmax may be very large such that only trajectories of some
10−13 seconds are correlated with the initial state. Due to the large λmax value, molecular
dynamics is chaotic. However, if one is interested in the probability of rare events during this
chaotic process, e. g. protein folding, the deterministic trajectory based approach seems not
favourable. Here, we do not focus on these aspects and refer to Leimkuhler & Reich (2004) for
details.
Having briefly scetched the idea of the classical molecular dynamics, we now change our
point of view to the concept of statistical dynamics and investigate ensembles of molecular
systems.

2.2 Statistical molecular simulations

In statistical molecular dynamcis, we are not interested in the movement or speed of each
particle but in averaged macroscopic properties of the atoms. The advantage of this approach
lies in the fact that many physical properties in which we are interested, like energies,
enthalpies and entropies do not depend strongly on a detailed dynamical movement of each
particle but on a collection of particles. In other words, we are no longer interested in each
particle but in a system of particles and its probability to be in a certain state. In order to
describe this state, we need the term “ensemble” which is an imaginary collection of systems
described by the same Hamiltonian where each system is in a unique mircoscopic state at any
given instant time.
In an (n,V, T)-ensemble, each subsystem, in our example of section 4 it is a single molecule
in vacuum, has the same macroscopic properties volume V and temperature T. Furthermore,
neither chemical reactions take place nor do particles escape which means that the number
n of atoms is also kept constant. The subsystems can only exchange energy with their
surroundings and therefore, have different states x = (q, p) to which Boltzmann statistics
can be applied. For a detailed derivation of the Boltzmann distribution which is defined as
the most probable distribution of states in an (n,V, T)-ensemble and is also called canonical
ensemble μcan, see Schäfer (1960), pp. 5–11. Via the Hamiltonian H(·), the probability that a
molecule attains the state x is

μcan(x) =
1

Z
exp(−β H(x)),

where Z is a corresponding normalization. β is the inverse temperature

β =
1

kBT
,

where T is measured in Kelvin and kB ≈ 1.38066 · 10−23 J K−1 is the Boltzmann constant.

2.2.1 Partition functions

For separable Hamiltonian functions, the Boltzmann distribution of molecular states x =
(q, p) in the canonical ensemble μcan(x) = π(q)η(p) has the following splitting into a
distribution of momenta and position states:

η(p) =
1

Zp
exp(−βK(p)), π(q) =

1

Zq
exp(−βV(q)).

η(·) represents a Gaussian distribution for each of the 3n momenta coordinates, because K is
a quadratic function with the diagonal matrix M.
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Therefore, creating a sequence of momenta numerically (sampling) according to their
Boltzmann distribution η(p) is simple, see e.g. Allen & Tildesley (1987). The spacial factor π(·)
is a more complex distribution function. Whereas the exponential function exp(−βV(q)) can
be computed pointwise, the normalization constant (also denoted as spatial partition function1)

Zq =
∫

Ω
exp(−βV(q)) dq (4)

is unknown. For a sampling of points q ∈ Ω according to a distribution which is known except
for a normalization constant, the Metropolis-Hastings algorithm can be applied, see section 3.

2.2.2 Bracket notation

A macroscopic measurement is always carried out for a snapshot of a molecular ensemble,
where molecular states are distributed according to the Boltzmann distribution. A spatial
observable 〈A〉π of a function A : Ω → R in configuration space, e. g. potential energies
or torsion angles, is therefore measured as an ensemble mean, i. e. an expectation value

〈A〉π =
∫

Ω
A(q) π(q) dq, (5)

where A is μ-Lebesgue integrable w. r. t. the measure μ(dq) := π(q) dq. In the following, these
bracket notations for observable and inner products will be often used abbreviations.

2.2.3 Importance sampling

In Equation 5 the dimension of the space Ω is proportional to the number of degrees of
freedom. The evaluation of this integral leads to a high-dimensional numerical integration
problem. Thus, a regular or equidistant grid in the phase space combined with a standard
deterministic integration scheme, such as Simpsons rule cannot be used (see Table 1).

Method Convergene

Trapeziodal N−2/d

Simpson N−4/d

Monte Carlo N−1/2

Table 1. The convergence behaviour of the determinstic quadrature rules (Simpson and
Trapezoidal) depend on the dimension: With increasing number of dimension, the
convergence rate growth. In contrast, the convergence behavior of the Monte Carlo method
does not depend on the dimension

In a Monte Carlo method one solves numerically

∫

Ω
g(x)dx ≈

1

N

N

∑
i=1

g(xi).

The key issue in a Monte Carlo method, is that the evaluation points x1, ..., xN are statistically
selected. There are many ways how to distribute the points. If they are distributed uniformly,
it is called a simple sampling.

1 Zq is a function of temperature, volume and number of particles of an ensemble. For the canonical
ensemble Zq is a constant. The total partition function Z = ZqZp is the key to calculating all macroscopic
properties of the system.
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However, for complex functions like π (q), a simple sampling is inappropriate since the
uniform distribution of particles might lead to an insufficient reproduction of the function
(see center distribution of Fig. 1). Fig. 1 illustrates well that it is not easy to generate a good
distribution of particles in a reasonable amount of computer time. In the importance sampling,
the integrand is modified in order to yield an expectation of a quantity that varies less than the
original integrand over the region of integration. In order to solve Equation (5), one applies
Monte Carlo integration methods with an importance sampling routine, i.e.

〈A〉π ≈
1

N

N

∑
i=1

A(qi), qi ∝ π, (6)

where N position states qi ∈ Ω are sampled according to their Boltzmann distribution π.
Hence, the expectation value of an observable can be simply approximated by its arithmetic
mean. For introductory literature of Monte Carlo integration methods see Hammersley &
Handscomb (1964) and Robert & Casella (1999).
Since the major part of the conformational space Ω is physically irrelevant due to high
potential energies V (q), only few conformations have a probability substantially larger than
zero. Instead of creating independent points qi, in practice, one starts with a physically
relevant position state q1 ∈ Ω and generates further states via a Markov chain

q1 → q2 → . . . → qN . (7)

Summing up, both approaches have advantages and disadvantages. In classical
molecular dynamics simulations the motion of each individual particle can be described
deterministically. However, long simulations are hardly feasible. On the other hand, the
statistical molecular simulation is capable of handling large molecular systems but lacks of a
trajectory.

Fig. 1. Left: A simple sampling with a uniformly distributed set of particles fitting a nearly
constant function. Center: A simple sampling inappropriate for unconstant distribution
functions. Right: A suitable distribution of points well fitting the desired function
(importance sampling).

3. Hybrid Monte Carlo method (HMC)

The conclusion of the forgoing section is a motivation to construct a method which profits
from either of the two approaches. This has been done in the hybrid Monte Carlo method.
Roughly speaking, this method can be seen as a combination of deterministic molecular
dynamics combined with stochastic impulses. So far we have elucidated the basic framework
of statistical simulations but not their numerical realization in detail. This will be done in the
next prargraphs.
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3.1 Detailed balance criterion

A sufficient condition for a correct sampling via Monte Carlo Simulation in the situation of
Equation 7 is the detailed balance condition with the desired Boltzmann distribution π. This
condition holds, if the conditional probability density function P(q → q̃) for a transition q → q̃
in Equation 7 meets

π(q) P(q → q̃) = π(q̃) P(q̃ → q) (8)

where the occurrence of a certain position state q in 7 is proportional to te probability π(q).
Equation 8 describes the thermodynamic equilibrium of a molecular system with two (or
more) possible states/conformations q and q̃. The probability of being in state q and switching
over to state q̃ is equal to the probability for the reverse way. For the sufficient and necessary
“balance condition” which is less rigorous than Equation 8, see Manousiouthakis & Deem
(1999).

3.2 Metropolis-Hastings algorithm

In the following, we use a Metropolis-Hastings type algorithm (Metropolis et al. (1953)) where
the transition probability density function P in Equation 8 is split into two factors

P(q → q̃) = Ppr(q → q̃) Pac(q → q̃). (9)

Here is the corresponding sampling scheme:

• In Equation 9, Ppr is a proposal probability density function, i.e. the probability that after
q ∈ Ω a position state q̃ ∈ Ω is proposed as candidate for the next step in the Markov chain
(see Equation 7).

• With an acceptance probability of Pac, the next step in the chain is q̃, with a probability of
1 − Pac the step q is repeated in Equation 7. For a numerical realization of the acceptance
probability, one computes a uniformly distributed random number r ∈ [0, 1] and accepts q̃
if r ≤ Pac(q → q̃).

With Equation 8 a sufficient condition for a correct sampling according to this scheme is:

π(q) Ppr(q → q̃) Pac(q → q̃) = π(q̃) Ppr(q̃ → q) Pac(q̃ → q).

For a given (ergodic) proposal probability density function Ppr, a possible choice for Pac

satisfying the latter equation is for example the Metropolis dynamics:

Pac(q → q̃) = min
{

1,
π(q̃) Ppr(q̃ → q)

π(q) Ppr(q → q̃)

}
. (10)

Metropolis dynamics provides a chain of the form of Equation 9 with minimal asymptotic
variance and is therefore the most popular one (see Peskun’s theorem in Peskun (1973)).

3.3 Combination of MCMC and MD.

The transition probabilities P(q → q̃) doesn’t need to have any physical meaning in order to
meet Equation 8, but for a good acceptance ratio Pac, a combination of the Metropolis-Hastings
algorithm for Markov chain Monte Carlo integration (MCMC) with molecular dynamics
simulations (MD) is useful.
Starting in 1980, a variety of hybrid methods have been developed, which take the advantages
of both MD and MCMC (Andersen (1980); Duane et al. (1987)). These so-called HMC
algorithms where originally developed for quantum chromo-dynamics, but they have been

404 Applications of Monte Carlo Methods in Biology, Medicine and Other Fields of Science

www.intechopen.com



used successfully for condensed-matter systems (Clamp et al. (1994); Forrest & Suter (1994);
Gromov & de Pablo (1995); Irbäck (1994); Mehlig et al. (1992)) and also for biomolecular
simulations (Fischer et al. (1998); Hansmann et al. (1996); Zhang (1999)). HMC combines
the large steps of MD in phase space with the property of MCMC to ensure ergodicity by
altering orbits in phase space and to eliminate inaccuracies in the numerical computation
of the Hamiltonian dynamics. In the following the HMC method is explained according to
Fischer (1997).

3.4 Proposal step

HMC is a Metropolis algorithm, in which the proposal step q → q̃ is based on a molecular
dynamics simulation with simulation length τ. To compute q̃ out of a given q, we first
determine a start momentum vector p ∈ R

3n, where n is the number of atoms. The start
momentum vector is taken from the Boltzmann distribution η(p) according to the simulation
temperature (see Allen & Tildesley (1987), Section 5.7.2 for algorithmic details). Then, with
some numerical integrator a trajectory of total length τ is computed. The starting point is
given by (q, p), let the end point be denoted as (q̃, p̃) = Φτ

h(q, p).
Due to determinism in the integration scheme, the probability for a proposition Ppr(q → q̃)
only depends on the choice of the initial momenta p, which is Ppr(q → q̃) ∝ exp(−βK(p)).

Generate new impulses

Calculate total Energy H

Run m classical MD interations

Calculate total Energy H’ with new trial step

Calculate d = exp(− β[H − H])
and generate r (randomized).
If d < r, accept trial step other-
wise repeat with the previous
state as next step of the chain.

Yes

No
stopping criteria reached?

Fig. 2. The HMC Algorithm.
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If the numerical integrator is momentum-reversible, then for the reverse step q̃ → q, we have
to choose the start momentum vector − p̃, which transfers the starting point (q̃,− p̃) to (q,−p)
in time span τ. This means, Ppr(q̃ → q) ∝ exp(−βK(− p̃)). In Equation 8, the two terms are
integrated over the Lebesgue measure dq ∧ dq̃. After transformation into the momenta space,
the left hand side depends on dq ∧ dp and the right had side on dq̃ ∧ dp̃. But this does not
change anything in Equation 10 because the mapping (q̃, p̃) = Φτ

h(q, p) is area preserving.
Both measures are equivalent. Inserting these results into 10 yields

Pac(q → q̃) = min
{

1,
π(q̃) exp(−βK(− p̃))

π(q) exp(−βK(p))

}

= min
{

1,
exp(−βV(q̃)) exp(−βK( p̃))

exp(−βV(q)) exp(−βK(p))

}

= min
{

1, exp(−β (H(q̃, p̃) − H(q, p)))
}

, (11)

i.e. the acceptance probability of the HMC proposal step is based on the change of the total
energy during a numerical integration of the Hamiltonian. A reversible and area-preserving
numerical integrator is necessary and sufficient for a correct sampling. For a rigorous proof,
see also Mehlig et al. (1992), Section III.

3.5 Choice of the numerical integrator

Table 2 shows some algorithmic details of HMC and related methods. It shows, which
Hamiltonian the methods are based upon, the acceptance probabilities and eventually a
necessary pointwise re-weighting of the sampling trajectory in order to be mathematically
rigorous.

3.5.1 “Exact” flow

As we have seen in the derivation of the acceptance probability, a reversible and
area-preserving numerical integrator is necessary and sufficient for a correct sampling,
no matter how bad its state space solution is. However, if we could apply an “exact”
integrator the total energy would be constant during simulation, and therefore, the acceptance
probability according to Metropolis dynamics would be 1. Adaptive integrators can be used
with a pre-defined deviation from the exact flow. An example for an adaptive integrator for
Hamiltonian dynamics is DIFEX2, an extrapolation method based on Störmer discretization,
see Deuflhard (1983) and Deuflhard (1985). For DIFEX2, area-preservation and reversibility
cannot be shown directly, but as the extrapolation method approximates the real flow, it
inherits these properties from Φτ. Other adaptive integration methods and Fortran codes can
be found in the book of Hairer et al. (1993). See also the first row of Table 2.

Hamiltonian accept re-weight

“exact” flow H 1 no

orig. HMC H e−β ∆H
< 1 no

SHMC (idea) H̃ 1 H̃ → H

SHMC H̃app e−β ∆H̃app ≈ 1 H̃app → H

Table 2. Possible approaches for a correct sampling according to the HMC method.
Algorithmic consequences.
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3.5.2 Original HMC

Instead of solving the real dynamics, one can apply an arbitrary area-preserving and reversible
integrator. In this case, the mean acceptance ratio decreases exponentially with system size n
and the time step discretization h in the numerical integration Φτ

h . See Gupta et al. (1990)
and Kennedy & Pendleton (1991) for an analytic study of the computational cost of HMC. It
is a general opinion that HMC methods are only suitable for small molecular systems (see
e.g. Section 14.2 in Frenkel & Smit (2002)). The reason is that in order to keep the mean
acceptance probability constant for increasing system size, the time step h of the symplectic
integrator has to decrease accordingly. Instead of time step refinements, one can also increase
the order of the integration method. Using Hamilton’s principle of a stationary action integral,
Wendlandt & Marsden (1997) derived a systematical scheme for creating so-called variational
integrators. With these higher-order numerical integrators the acceptance ratio of HMC can
be improved due to better approximation properties. By omitting the constant step size h
in variational integrators, one can even get symplectic and energy preserving integration
schemes for the price of lower numerical efficiency. For an excellent overview of these
methods, see Lew et al. (2004). See also the second row of Table 2.

3.5.3 Shadow HMC (SHMC)

Another approach uses the fact that some symplectic numerical integrator solves the

dynamics of a modified Hamiltonian H̃ exactly (see Hairer et al. (2004) or Skeel & Hardy
(2002)). If one accepts each proposal step of the numerical dynamics simulation, this is like
computing the density of the modified Hamiltonian (see third row of Table 2). In order to get
the right distribution in configuration space, one has to re-weight the resulting position states

accordingly. This is only possible, if the modified Hamiltonian is known. Fortunately, H̃ can
be approximated up to arbitrary accuracy. For algorithmic details, see Izaguirre & Hampton
(2004).

3.5.4 Approximated SHMC

Approximating the modified Hamiltonian as exactly as possible, is numerically expensive.

Therefore, one would like to truncate the Taylor expansion of H̃ after a finite number of

terms in order to yield H̃app. This method is part of the TSHMC method of Akhmatskaya &
Reich (2004). Again, an acceptance rule is introduced which zeroes out the numerical error
of truncation (see the last row of Table 2). This method seems to be very promising for
larger molecules, because the acceptance probability is almost 1, the method is mathematically

rigorous and numerically efficient (extra cost for computation of H̃app is negligible).

4. Example: Brominated flame retardant hexabromocyclododecane

1,2,5,6,9,10-Hexabromocyclododecane (HBCD) is a widely used additive brominated flame
retardant (BFR) to plastic materials as upholstery textiles, styrene-acrylonitrile resins or
polystyrene foams (EPS, XPS) for the building sector with fractional percentages varying
between 0.8 and 4% (Barda et al. (1985); de Witt (2002); Janak et al. (2005)). In the face of
a world market demand of about 22000 metric tons in the year 2003 (Köppen et al. (2008)),
HBCD is among a the most popular BFRs, especially in Europe (Janak et al. (2005)).
However, it is regarded as a persistent organic pollutant (POP) and has been detected
increasingly in the environment during the last decades, e. g. in sewage sludges and sediments
(see de Wit et al. (2006); Hale et al. (2006); Vos et al. (2003)) as well as in diverse tissues of both
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terrestric and aquatic organisms (Janak et al. (2005); Tomy et al. (2004)). Even in the lipid phase
of human breast milk of women from diverse european countries and the USA traces of HBCD
and other BFR have been detected (Covaci et al. (2006); Johnson-Restrepo et al. (2008)).

Fig. 3. 3-dimensional chemical structure of (−)-α-HBCD with six dark colored bromine
atoms.

4.1 Technical and structural properties of HBCD

Technical HBCD is produced by bromination of the precursor 1,5,9-cyclododecatriene (CDT)
unavoidably resulting in the formation of six stereocenters (Becher (2005); Heeb et al. (2004)).
Theoretically, this yields 16 different HBCD diastereomers, six pairs of enantiomers and four
mesoforms (Heeb et al. (2008)). But starting especially with the precursor (1Z,5E,9E)-CDT,
the technical production results in a racemic mixture of three enantiomeric pairs (±)-α-, -β-,
-γ-HBCD) and two mesoforms (δ-, ǫ-HBCD). The latter two will be neglected in the present
work due to their negligible amounts in both the technical and the environmental mixture.
The technical composition containing (+)-γ-HBCD mainly (Janak et al. (2005)) is presented
in Table 3. See Fig. 5 for a graphical overview of the six main HBCD isomers. They are all
characterized by a (R,R) or (S,S) configuration on their C1Br–C2Br-moiety and an (S,R) or
(R,S) configuration on the C5Br–C6Br- and C9Br–C10Br-moieties. On the former moiety, α-
and γ-HBCD feature C2-symmetry, implying identical energetical properties for the latter two
moieties, whereas the β-diastereomer does not possess any rotational symmetries.
In contrast to the technical mix, a completely different composition was found in the
abiotic and biotic environment, which are always by far predominated by α-HBCD (Becher
(2005); Heeb et al. (2008); Tomy et al. (2004)) with slightly differing concentrations and even
enantioselective accumulation (Tomy et al. (2004)). Certainly, these observations raise the
question of their cause. On the one hand, this might arise from variability in physicochemical
properties such as dipole moment or solubility in water. The latter with respect to α-, β-

Diastereomer CIP nomenclature of both enantiomers
Molar fraction

Technical Equilibrium

(±)-α-HBCD 1S,2S,5R,6S,9S,10R-HBCD, 1R,2R,5S,6R,9R,10S-HBCD 10 − 13 % 78 %
(±)-β-HBCD 1S,2S,5R,6S,9R,10S-HBCD, 1R,2R,5S,6R,9S,10R-HBCD 1 − 12 % 14 %
(±)-γ-HBCD 1R,2R,5R,6S,9S,10R-HBCD, 1S,2S,5S,6R,9R,10S-HBCD 75 − 89 % 8 %

Table 3. CIP names of HBCD isomers and their fraction in the technical mix and at
equilibrium.
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Fig. 4. Cyclic-concerted interconversion mechanism. A necessary condition for the
quantum-chemically induced process is the anti positioning of two vicinal bromine atoms
which leads to double-bonded bromines and five-bonded carbons during transition (center
structure) caused by a nucleophilic attack of bromine. The interconversion results in a change
of the involved chiralities.

and γ-HBCD is relatively low and was measured to be 48.8, 14.7, and 2.1 μg/L, respectively
(Hunziker et al. (2004)).
On the other hand, differing diastereomeric ratios might be triggered by stereoselective
uptake and metabolism. Indeed, there seems to be strong evidence for a biologically induced
interconversion of HBCD stereoisomers (Hamers et al. (2006); Law et al. (2006a)). According to
Vos et al. (2003), Hamers et al. (2006), and Meerts et al. (2000), some BFRs such as HBCD or its
metabolite pentabromocyclododecaene (PBCD) are suspected to cause endocrine disruption

Fig. 5. Graphical overview of all possible interconversions between any connected two of the
six main HBCD diastereomers taken from Köppen et al. (2008). The bromine anti
conformation of any CiBr–Ci+1Br-moiety of the starting diastereomers triggers the inversion
to another diastereomer depending on the couple of concerned bromine atoms, i. e.
depending on the value of index i with i ∈ {1, 5, 9}. This transition process with rate kx→y is
denoted as cyclic-concerted interconversion.
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due to competition with thyroxine (T4) for binding to the human transthyretin receptor
(hTTR). Recently, Schriks et al. (2006) observed effects on the cell proliferation of Xenopus
laevis induced by HBCD and another BFR denoted as BDE206 (brominated diphenyl ether).
Temperatures above 160◦ C (433 K), which is close to the melting point of crystalline HBCD
at 188 − 191◦ C, induce a isomerization process denoted as cyclic-concerted interconversion
(Köppen et al. (2008)) described in detail below. As shown in Table 3, the equilibrium
distribution of the HBCD diastereomers after thermal rearrangement is dominated by
α-HBCD with a fraction of 78 % followed by β- and γ-HBCD with percentages of 13 % and 9 %,
respectively (Peled et al. (1995)). Temperatures exceeding 200◦ C lead to HBCD decomposition
(Barontini et al. (2003)).

4.2 Interconversion kinetics of HBCD

Any pair of vicinal bromine atoms each bonded with a chiral carbon (CiBr–Ci+1Br-moiety)
is able to undergo a stereo-isomerization process denoted as cyclic-concerted interconversion
resulting in complementary chirality (Fig. 4) of both involved carbons (Köppen et al. (2008)).
The transition state which is quantum-chemically motivated requires both bromine atoms to
be anti-positioned and to form a second bond whith the respective vicinal chiral carbon atoms
which switch from sp3 to sp2 hybridization and to a five-bonded state during transition (Fig.
4, center graphic).
Fig. 5 shows all possible interconverions between the six main diastereomers depending on
the concerned CiBr–Ci+1Br-moiety with i ∈ {1, 5, 9}. For example, if the C1Br–C2Br-moiety
of (+)-γ-HBCD forms a anti-conformation of the bromines, which will happen with a certain
probability in terms of statistical thermodynamics, the chirality of C1Br–C2Br will change from
(1R,2R) to (1S,2S) resulting in (+)-α-HBCD.
As already mentioned above, the system of diastereomers moves towards a thermodynamical
equilibrium dominated by (+)-α-HBCD. Recently, rate constants kx→y have been determined
by Köppen et al. (2008) at 160◦ C via high performance liquid chromatography (HPLC) using
a chiral column. The results are presented in Table 4 and graphically in Fig. 6. It is worth
mentioning that the rates are supposed to be the same for the enantiomeric counterparts
in this thermally induced process. The fastest interconversion after these results is the one
from γ-HBCD to α-HBCD, closely followed by the interconversion from β-HBCD to its
enantiomeric counterpart. Both reactions occur on the C1 – C2-moiety. By far, the lowest rate
was measured in case of the interconversion from α- to β-HBCD.

Fig. 6. Experimental determination on the isomerization of HBCD at 160◦ C starting with
100 % (+)-γ-HBCD. The tests were carried out by Köppen et al. (2008).
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Interconversion CiBr–Ci+1Br-moiety Rate constant k
[

mol(%)
s

]

kα→β C5 – C6/C9 – C10 1.88 ± 0.01 × 10−5

kα→γ C1 – C2 1.42 ± 0.01 × 10−4

kβ→α C9 – C10 1.20 ± 0.01 × 10−4

kβ→β C1 – C2 1.10 ± 0.03 × 10−3

kβ→γ C5 – C6 1.70 ± 0.01 × 10−4

kγ→α C1 – C2 1.50 ± 0.01 × 10−3

kγ→β C5 – C6/C9 – C10 1.46 ± 0.01 × 10−4

Table 4. Rate constants ky→z with y, z ∈ {α, β, γ} for the cyclic-concerted interconversion
process of HBCD at 160◦ C.

5. Simulation of HBCD interconversion rates

As already mentioned in section 4, the six main HBCD diastereomers underly a isomerization
process at temperatures between 433 and 473 K denoted as cyclic-concerted interconversion
(see Fig. 5) which is quantum-chemically motivated and results in complementary chirality
of both concerned vicinal brominated carbon atoms. Nevertheless, this section presents an
approach for estimating transition rates of such processes in terms of classical mechanics.
It is due to the matter of time scale and the complexity of electronic densities, that the
interconversion can hardly be investigated by quantum-chemical methods without enormous
computational costs.
Due to high rotational barriers, high-temperature simulations are inevitable in order
to avoid trapping effects. Hence, the adoption of these results to lower temperatures
requires a reweighting strategy which has been developed within the framework of these
investigations. Afterwards, the interconversion rates are approximated on the basis of free
energy calculations in combination with the Arrhenius equation and by applying the transition
state theory (TST). Fortunately, experimental data of the interconversion kinetics is available
and will be compared to the theoretical results obtained here.

5.1 Classical model for the interconversion

A necessary condition for the transition state of interconversion processes is the
anti-positioning of two vicinal bromine atoms in liquid phase, that we will call an “active
state”. It is assumed to occur more likely with lower rotational barriers between anti and
gauche conformations and vice versa. The rate of the transition is considered to depend on
both, the probability of such an activated state, which can be described in terms of classical
thermodynamics and the velocity of the quantum-chemically motivated transition itself. The
latter may simply be neglected due to the assumption of its identity in case of all HBCD
diastereomers. Therefore, a qualitative definition of interconversion rates in terms of free
energy differences only between two subsets Ωanti and Ωgauche ∈ R

3n of the conformational

space Ω ∈ R
3n turns out to be a suitable approach.

Initially, a sampling of the conformational space had to be performed with the HMC method
at an artificially high temperature T=1500 K (i. e. with the Boltzmann factor β0 =0.0802 mol/kJ
and in vacuum, neglecting mutual interactions with other HBCD molecules or with a
solvent such as water and therefore, reducing computational costs. We decided to utilize
the Merck molecular force �eld (mmff) designed by Halgren (1996) for our simulations. For
each diastereomer, five trajectories were constructed each consisting of 100.000 MC steps
with 60 MD steps per MC step. The MD integration step was set to 1.3 fs. Convergence was
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checked in accordance with Gelman & Rubin (1992) on the basis of the five Markov chains. The
conjugate gradient (CG) minimization method (Hestenes & Stiefel (1952)) was used for energy
optimization of the sampled geometries in order to identify all local and thus, global minima.
The free energy A(β) is defined in terms of the partition function

A(β) = −
1

β
ln

(∫

Ω
exp (−βV (q)) dq

)
. (12)

Note, that the kinetic part K(p) of the total energy H(q, p) is missing due to the assumption
of its idendity for both conformational subsets at identical temperature. In this section, we
will only consider the potential energy fraction V(q) of the separable Hamiltonian. It is
not possible to approximate the integral in Equation 12; however, free energy differences
∆gaA(β) (a = anti, g = gauche) of two conformational subsets Ωanti and Ωgauche may
be approximated. Due to importance sampling (compare Equation 5 with 6), the number

of geometries containing anti- (Nanti) and gauche-conformation
(
Ngauche

)
, respectively,

according to the CiBr–Ci+1Br-moiety under consideration is sufficiant in order to approximate

∆gaA(β) ≈ −
1

β
ln

(
Ngauche

Nanti

)
. (13)

A dihedral angle θ between two vicinal bromine atoms was defined as anti if |θ| > 120◦ , i. e. if
the lower bromine atom remained in the grey-coloured segment as depicted in Fig. 7, whereas
an angle 120 ≥ θ ≥ −120 ◦ was defined as gauche.

Fig. 7. For the interconversion anlysis, the bromine’s conformation was defined as anti if the
dihedral θ was greater than 120 ◦ and less than −120 ◦ (lower bromine within the grey
segment).

These free energy differences were calculated for each CiBr–Ci+1Br-moiety of all (+)-HBCD
enantiomers. The lower the free energy difference, the more the state indicated by the first
index (g = gauche) is preferred.
In the followings, we will additionally need another thermodynamic quantity derived
from the simulated data, namely the mean potential energy 〈V〉 defined as a function of
temperature β

〈V〉 (β) =
∫

Ω
V (q)

exp (−βV (q))∫
Ω

exp (−βV (q)) dq
dq (14)

which can be approximated by the arithmetic mean of all potential energy values
from the HMC sampling. Again, the energy difference ∆ga 〈V〉 was determined for
each CiBr–Ci+1Br-moiety of all (+)-HBCD enantiomers, after having partitioned the
conformational space Ω into gauche and anti subsets and having calculated their respective
mean potential energies.
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5.2 Thermodynamical energy reweighting

The HMC sampling had been performed at temperature T = 1500 K (β0 = 0.0802 mol/kJ)
due to convergence reasons. However, we are interested in the energy distribution at T =
433 K (β1 = 0.2778 mol/kJ) which marks the melting point of HBCD. Usually, reweighting is
understood in a point-wise way, reweighting the complete distribution to the temperature of
interest and, therefore, statistically weighting up a relatively small number of points in the
overlap region of both the high- and the low-temperature distribution (see grey coloured area
in Fig. 8).

Fig. 8. Overlap region between high and low potential energy distributions relevant for
point-wise reweighting.

Here, we apply a thermodynamical approach instead of a point-wise one, making use of
the temperature-dependency of the distribution’s mean value, i. e. its dependency on β. In
analogy to the mean kinetic energy 〈K〉, we assume a linear dependency of the mean potential
energy 〈V〉 on the temperature T (i. e. on β−1)

∆ga 〈V〉 (β) =

[
∆ga 〈V〉 (β0) − ∆ga 〈V〉 (∞)

]
β0

β
+ ∆ga 〈V〉 (∞). (15)

∆gaV (∞) denotes the difference of the global minimal energies of both subspaces at absolute
zero T = 0 K ⇔ β = ∞. Since the system moves towards the global optimum with decreasing
temperature, a conjugate gradient minimization was applied to the complete canonical
high-temperature ensembles of HBCD geometries. Again, each CiBr–Ci+1Br-moiety of all
(+)-HBCD enantiomers underwent this procedure after having been separated according to
their anti/gauche-isomerization. In addition and via Equation 15, mean potential energies and
their differences for each CiBr–Ci+1Br-moiety can now be interpolated to the temperature of
interest which is the melting point of HBCD at 433 K. See Fig. 9 for a graphical representation
of the linear model.
However, in order to determine interconversion rates as described in the next section, free
energy differences for each CiBr–Ci+1Br-moiety at the desired temperature needed to be
estimated as well. This was achieved by first differentiating Equation 12 and inserting
Equation 14

d

dβ
∆gaA (β) = −

1

β
∆gaA (β) +

1

β
∆ga 〈V〉 (β). (16)

Inserting the linear model (Equation 15) instead of the last term of Equation 16 leads to the
ordinary differential equation

d

dβ
∆gaA (β) = −

1

β
∆gaA (β) +

[
∆ga 〈V〉 (β0)− ∆gaV(∞)

]
β0

β2
+

∆gaV(∞)

β
. (17)
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Fig. 9. A linear model for the thermodynamical reweighting of mean potential energies to
temperatures between the one used for high-temperature simulations and absolute zero.

which can be solved analytically, such that

∆gaA (β) =
β − β0

β
∆ga 〈V〉 (∞)

+
β0

β
ln

(
β

β0

) [
∆ga 〈V〉 (β0) − ∆ga 〈V〉 (∞)

]
+

β0

β
∆gaA (β0) .

(18)

Equation 18 allows to interpolate free energy differences for temperatures such as the desired
one at T = 433 K.

5.3 Rate matrix and interconversion kinetics

Basically, the estimation of interconversion rates rested upon the combination of the Arrhenius
equation (Göpel & Wiemdörfer (2000)) with the transition state theory (TST) (Weber (2007)).
According to Arrhenius, the reaction rate k depends on the temperature T (respectively β) and
on the activation energy EA as follows

k = A · exp (−βEA) (19)

with a prefactor A. In this work, the activation energy for the interconversion process at a
certain CiBr–Ci+1Br-moiety requiring anti conformation was approximated by the free energy
difference between the respective subspaces of the conformational space, due to an obvious
dependency of the interconversion rate k from the free energy difference ∆agA = −∆gaA.
In other words, the higher the free energy difference between the gauche and anti subspace
is, the more likely the system is to form anti conformations and, therefore, the larger the
interconversion rate will be. Hence, we propose this correlation such that

k ∝ exp
(
−β∆agA

)
(20)

neglecting the prefactor from Equation 19 which needs to be determined experimentally and
marks an upper bound for the maximal reaction rate. As we do not expect to gain quantitative,
but qualitative interconversion rates, the prefactor does not play any role for our purposes.
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These rates were used now to fill up non-zero entries of the squared matrix K ∈ R
6×6 with

one dimension per HBCD diastereomer in the order (+) -α, (+) -β, (+) -γ, (−) -α, (−) -β,
(−) -γ. For example, the element of the third row ((+) -γ = educt) and the first column
((+) -α = product) of K is determined by

k3,1 = k(+)γ→(+)α = exp
(
−β∆agA

)
(21)

where ∆agA is the free energy difference for anti and gauche conformations of the according
C1Br–C2Br-moiety, derivable from Fig. 5. Note, that the interconversion from α- or γ- to
β-HBCD is associated with two CiBr–Ci+1Br-moieties (C5Br–C6Br and C9Br–C10Br). Here,
both respective free energy differences must be summed up before being inserted into
Equation 21.
K is a stochastic matrix with the row sums needing to be scaled to 1. It is also denoted as
embedded Markov chain playing a central role in the TST, particularly for the computation of the
rate matrix Q ∈ R

6×6 we are interested in

Q = R (K− id) (22)

where id denotes the six-dimensional unit matrix and R ∈ R
6×6 the diagonal matrix of rate

facors (Kijima (1997); Weber (2007)). Q is well-known from the first order rate equation

dx (t)

dt
= Q⊤x (t) (23)

describing changes of the concentration vector x ∈ R
6 over time t using the (transposed)

rate matrix Q. In case of equilibrium concentrations x (t) = π (t) at the systems steady-state,
Equation 23 becomes

dπ (t)

dt
= Q⊤π (t) = 0 ⇐⇒ π⊤Q = 0. (24)

This information is necessary for the computation of the matrix R of rate factors which is the
last unknown quantity in Equation 22. For this purpose, the right-hand side of equation 22
was inserted into Q of the second part of Equation 24 resulting in

π⊤R (K− id) = 0. (25)

Little manipulations of Equation 25 lead us to the eigenproblem

r⊤Π (K− id) = 0 · r⊤ (26)

where the diagonal elements of the diagonal matrix R have been transferred into an ordinary
vector r and vice versa in case of the steady-state distribution vector π which was transformed
into a diagonal matrix Π. This is a sophisticated way to solve rate factors r (and hence, R and
Q), handling them as an eigenvector of the eigenvalue zero. A simulation of these theoretical
interconversion kinetics can be performed by solving the differential Equation 23 such that

x (τ) = x (0) exp (τQ) (27)

starting at an initial distribution x (0) and iterating over a time span t = τ. All calculations
have been performed with the software Matlab.
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6. Results and discussion

6.1 HMC-sampling of HBCD diastereomers

Global minima of the six major HBCD diastereomers’ potential energies are listed in Table
5. Expectedly, the optimal energies are identical for each pair of enantiomers, affirming
a sufficient convergence as indicated by the Gelman and Rubin criterion. In contrast to
100.000 HMC steps, a first run with 10.000 steps had turned out to be insufficient to achieve
convergence in spite of the high simulation temperature of 1500◦ C.
Already the simple results from energy minimized samplings considerably support
observations of a predominating α-HBCD diastereomer in the environment Becher (2005);
Janak et al. (2005); Tomy et al. (2004), in spite of the technical mix mainly being composed of
(+)-γ-HBCD Peled et al. (1995). A comparison of experimentally determined diastereomeric
fractions after a thermal rearrangement (78% α, 14% β, 8% γ) from Table 3 with global
potential energy minima (α: 238.7 kJ/mol, β: 249.5 kJ/mol, γ: 256.7 kJ/mol) from Table 6
shows a clear correlation and justifies the predominance of α-HBCD at the thermodynamic
equilibrium.

Diastereomer Global minimum
[

kJ
mol

]
Diastereomer Global minimum

[
kJ

mol

]

(+)-α-HBCD 238.7 (−)-α-HBCD 238.7

(+)-β-HBCD 249.5 (−)-β-HBCD 249.5

(+)-γ-HBCD 256.7 (−)-γ-HBCD 256.7

Table 5. Global minima of the six main HBCD diateromers’ potential energies at 1500 K.

In addition, global potential energy minima have been determined for both conformational
subsets (anti and gauche) of each CBr–CBr-moiety (Table 6). As expected, symmetries were
found in the global minima of enantiomeric counterparts of HBCD (same optimum values
for (+)- and (−)-enantiomer) as well as in identical optima for potential energy differences(
V0

)
associated with C5Br–C6Br- and C9Br–C10Br-moieties of α- and γ-HBCD as a result

of their configurational C2-symmetry. Additionally, all energy differences concerning these
two moieties are pretty different from those of the C1Br–C2Br-moiety which is by reason the
fact that an anti conformation of bromine atoms is energetically much more favorable on an
(R,R) or (S,S) configurated moiety such as the latter mentioned one than on an (S,R) or (R,S)
configuration given in case of the two other moieties.
The results in Table 6 allow a qualitative estimation of the disposition to undergo
the interconversion mechanism. The higher the Boltzmann prpbability ratio between the
minimum of the anti conformation and the corresponding gauche conformation’s minimum is,
the more likely this molecule will interconvert at the respective CBr–CBr-moiety. After these
results, for example the interconversion from (+)-γ-HBCD to (+)-α-HBCD (and analogously
for their enantiomeric counterparts) with a Boltzmann ratio of 1 is by far the fastest reaction
or rather the most probable one. In contrast, the probability of the opposite reaction, i. e.
from (+)-α-HBCD to (+)-γ-HBCD, is much lower with 2.6 · 10−3. Again, these results clearly
confirm experimental observations concerning the increase of α-HBCD and the decrease of
γ-HBCD Peled et al. (1995). The reverse interconversion seems to be quite rare due to the
unlikeliness of an anti conformation at the C1Br–C2Br-moiety of α-HBCD, presenting this
stereoisomer as a thermodynamical sink of HBCD.
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HBCD diastereomer Dihedral
Global minimum

[
kJ

mol

]
Boltzmann ratio Target HBCD

anti gauche

(+)-α
C1C2 253.7 238.7 2.6 · 10−3 (+)-γ
C5C6 272.6 238.7 1.3 · 10−6 (+)-β
C9C10 272.6 238.7 1.3 · 10−6 (+)-β

(+)-β
C1C2 263.6 249.5 3.6 · 10−3 (−)-β
C5C6 285.3 249.5 6.1 · 10−7 (−)-γ
C9C10 278.4 249.5 9.5 · 10−6 (+)-α

(+)-γ
C1C2 256.7 256.7 1 (+)-α
C5C6 275.1 256.7 6.2 · 10−4 (−)-β
C9C10 289.5 256.7 2.0 · 10−6 (−)-β

(−)-α
C1C2 253.7 238.7 2.6 · 10−3 (−)-γ
C5C6 272.6 238.7 1.3 · 10−6 (−)-β
C9C10 272.6 238.7 1.3 · 10−6 (−)-β

(−)-β
C1C2 263.6 249.5 3.6 · 10−3 (+)-β
C5C6 285.3 249.5 6.1 · 10−7 (+)-γ
C9C10 278.4 249.5 9.5 · 10−6 (−)-α

(−)-γ
C1C2 256.7 256.7 1 (−)-α
C5C6 275.1 256.7 6.2 · 10−4 (+)-β
C9C10 289.5 256.7 2.0 · 10−6 (+)-β

Table 6. Global potential energy minima of both conformational subspaces, anti and gauche of
each CiBr–Ci+1Br-moiety of each HBCD diastereomer and respective Boltzmann ratios. The
higher this value, the more likely the anti conformation and thus, the more likely the
diastereomer to interconvert at the concerning moiety to the target diastereomer shown in
the last column.

6.2 Thermodynamical energy reweighting

An estimation of interconversion rates of the main six HBCD diastereomers for the
desired temperature 433 K, i. e. with β1 = 0.2778 mol/kJ, required the computation of
several thermodynamical quantities at the initial simulation temperature 1500 K (β0 =
0.0802 mol/kJ). These were mean potential energies 〈V〉 (β0) of each HBCD stereoisomer
and differences of the mean potential energy ∆ga 〈V〉 (β0), of the globally minimal potential

energies ∆gaV
0 and of free energies ∆gaA (β0) associated with the dihedral angle of each

CiBr–Ci+1Br-moiety. Afterwards, all of these energies but the global minima at absolute zero
were reweighted to the desired temperature.
Mean potential energies 〈V〉 (β) of the complete conformational space were easily derived
from the high-temperature simulation data for each HBCD diastereomer in the order (+) -α,
(+) -β, (+) -γ, (−) -α, (−) -β and (−) -γ: 920.6, 930.9, 926.3, 922.0, 931.2 and 925.9 kJ/mol,
respectively. The correponding mean potential energies associated with 433 K were obtained
by applying the linear model of the reweighting formula (Equation 15) to the original mean
potential energies resulting in 435.6, 446.2, 450.0, 436.0, 446.3 and 449.9 kJ/mol, respectively.
Free

(
∆gaA

)
and mean potential

(
∆ga 〈V〉

)
energy differences associated with anti and gauche

subspaces of each CiBr–Ci+1Br-moiety and for both temperatures are presented in Table
7. Potential energy differences at absolute zero

(
∆gaV

0
)

in the table were obtained by the
difference of global potential energy minima of anti and gauche conformations at simulation
temperature, since these are the conformations, towards which the molecular system moves
with decreasing temperature.
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Diastereomer Dihedral
Energies at T = 1500 K

[
kJ

mol

]
At T = 433 K

[
kJ

mol

]
Target

∆ga 〈V〉 ∆gaV
0 ∆gaA ∆ga 〈V〉 ∆gaA

(+)-α
C1C2 −7.8 −14.9 −16.7 −10.4 −12.9 (+)-γ
C5C6 −26.0 −33.9 −40.4 −30.2 −32.9 (+)-β
C9C10 −25.6 −33.9 −39.7 −29.7 −32.6 (+)-β

(+)-β
C1C2 −0.3 −14.0 −14.3 −4.3 −9.2 (−)-β
C5C6 −19.9 −35.8 −35.5 −24.4 −30.0 (−)-γ
C9C10 −17.5 −26.7 −34.0 −22.2 −25.5 (+)-α

(+)-γ
C1C2 4.8 0.0 −9.7 0.6 −1.1 (+)-α
C5C6 −28.3 −18.5 −41.3 −32.0 −28.6 (−)-β
C9C10 −27.1 −18.5 −41.0 −31.1 −28.1 (−)-β

(−)-α
C1C2 −6.9 −14.9 −16.7 −9.8 −12.6 (−)-γ
C5C6 −24.4 −33.9 −38.0 −28.3 −31.7 (−)-β
C9C10 −21.9 −33.9 −38.1 −26.6 −30.8 (−)-β

(−)-β
C1C2 −1.7 −14.0 −13.5 −5.1 −9.5 (+)-β
C5C6 −19.1 −35.8 −35.3 −23.7 −29.6 (+)-γ
C9C10 −15.0 −26.7 −35.9 −21.1 −25.2 (−)-α

(−)-γ
C1C2 3.1 0.0 −11.0 −1.0 −2.1 (−)-α
C5C6 −31.3 −18.5 −42.5 −34.5 −30.0 (+)-β
C9C10 −30.9 −18.5 −42.2 −34.1 −29.8 (+)-β

Table 7. Mean potential
(
∆ga 〈V〉

)
and free

(
∆gaA

)
energies of both conformational

subspaces (anti and gauche) of each CiBr–Ci+1Br-moiety of each HBCD diastereomer at the
simulation temperature T = 1500 K and reweighted to the desired temperature at T = 433 K,
respectively as well as potential energy differences at T= 0 K, i. e. potential energy
differences of the concerning global minima

(
∆gaV

0
)

gained by sampling at T = 1500 K and
minimizing.

The estimated equilibrium distribution for 433 K presented in section 6.3 is similar to the
experimentally determined distribution after thermal rearrangement Peled et al. (1995). Both
methods provide a by far highest fraction of (+)-α-HBCD and decreasing fractions in the
order (+)-β-HBCD and (+)-γ-HBCD. If the mean potential energies had been chosen to be
interpolated to 630 K instead, the estimated equilibrium distribution would have resulted in
equal values with a relative error of only 10 %, which is not presented among these results.

6.3 HBCD interconversion rates and kinetics

By inserting the negated free energy differences from the last but one column of Table 7 into
the modified Arrhenius Equation 21, the embedded Markov chain was calculated first:

K =

⎛
⎜⎜⎜⎜⎝

0 0.0080 0.9920 0 0 0
0.0107 0 0 0 0.9863 0.0031
0.9990 0 0 0 0.0010 0

0 0 0 0 0.0112 0.9888
0 0.9838 0.0037 0.0126 0 0
0 0.0009 0 0.9991 0 0

⎞
⎟⎟⎟⎟

.

This matrix contains a 0 whenever a interconversion is not possible. Only the 14
interconversions as depicted in Fig. 5 lead to values greater than 0 in matrix K. Row sums
were scaled to 1.
The steady-state distribution π of HBCD at 433 K was determined by inserting the
corresponding mean potential energy values, interpolated to this temperature as shown
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above, into the potential energy part of the Boltzmann expression, neglecting the partion
function but scaling the sum to 1:

π⊤ = (0.4912 0.0258 0.0090 0.4396 0.0251 0.0092)

This vector gives evidence about a theoretical distribution of HBCD diastereomers. Summing
up the first and forth value of π, i. e. the molar fractions of (+)- and (−)-α-HBCD yields 93.1 %
for α-HBCD and analogously, in case of β- and γ-HBCD 5.1 % and 1.8 %, respectively.
After having solved the eigenproblem of Equation 26, the theoretical rate matrix Q was
determined

Q = μ ·

⎛
⎜⎜⎜⎜⎝

−0.0184 0.0001 0.0183 0 0 0
0.0023 −0.2200 0 0 0.2170 0.0007
0.9990 0 −1.0000 0 0.0010 0

0 0 0 −0.0167 0.0002 0.0166
0 0.2231 0.0008 0.0028 −0.2267 0
0 0.0007 0 0.7879 0 −0.7886

⎞
⎟⎟⎟⎟

up to an unknown scaling factor μ which is due to the unknown velocity of the interconversion
process. Consequently, simulation of the interconversion kinetics was performed now by
applying Equation 27 to an initial distribution x(0)

x⊤(0) =
(
0 0 1 0 0 0

)

with a discretized time step ∆τ = 1 over a time span of τ = 4000 “seconds” and an
arbitrary scaling factor μ = 0.007 resulting in interconversion kinetics as shown in Fig. 10. The
initial distribution with 100 % (+)-γ-HBCD was chosen in accordance with the experimental
setup which had led to the experimental kinetics depicted in Fig. 6. After these completely
theoretical results of HBCD interconversion kinetics starting at 100 % (+)-γ-HBCD (Fig.
10) as also done in the laboratory, the concentration of this stereoisomer rapidly decreases
with the highest rate reaching its equilibrium value already after 1000 “seconds”, while
the concentration of (+)-α-HBCD increases with nearly the same velocity far above its
equilibrium value. A longer simulation that is not presented here shows an subsequent
decrease towards its equilibrium. The β diastereomers are the next ones to increase towards
their steady-state concentration with (−)-β-HBCD starting slightly faster due to its creation
from (+)-γ-HBCD. But with increasing (+)-α-HBCD, (+)-β-HBCD, which evolves from
(+)-α-HBCD, accumulates faster and overtakes (−)-β-HBCD. The by far slowest growth is
in the case of (−)-γ-HBCD.
From a qualitative point of view, all these observations on the kinetics correspond exactly
with experimental results (Köppen et al. (2008)) as presented in Fig. 6 and Table 4. The highest
and second highest rate was confirmed to be kγ→α and kβ→β, respectively, whereas kα→β

(Q (1, 2) and Q (4, 5)) yielded the lowest value with both approaches. Many assumptions
were necessary in order to estimate interconversion rates for the six main HBCD isomers,
started off with the vacuum approximation, neglecting any intermolecular interactions in the
liquid phase and by the way, reducing the computational effort. Due to sterical reasons and
the fact of poor solubility in a polar medium such as water (Janak et al. (2005)), we claim a
negligible affect of intermolecular interactions on the interconversion process.
Describing the quantum-chemically motivated inversion process in terms of classical
mechanics was a second bold approximation. However, if we consider its rate as a
combination of the probability of being activated (anti conformation) and the transition itself
and under the assumption of an identical velocity of the latter part for all diastereomers, we
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Fig. 10. theoretical determinantion of the HBCD isomerization at 160 C starting at 100 %
(+)-γ-HBCD and with a scale factor μ = 0.007. Free and potential energy values had been
reweighted after a high-temperature HMC simulation at 1500 K.

are able to reduce the interconversion to a classical manner with its rate characterized by
differences of energies/probabilities between anti and gauche subspaces, i. e. the difference
in free energies expressing the likeliness of a molecular system to adopt the one or the
other conformation. What we lose by this simplification is the knowledge about the absolute
velocities of the interconversion and thus, the opportunity to describe rates quantitatively. But
what we gain is the ability to calculate this quantum-chemical process (in reasonable time).
Also the application of the Arrhenius equation to these free energy differences might seem a
little far-fetched, but again, there is an obvious correlation between the free energy difference
and the ordinary activation energy. Both describe the delay of energies from an arbitrarily
fixed value, differing in accordance with the direction of the reaction. In other words, if
the activation energy is low for the forward direction, then the free energy difference is
low as well. From the reverse perspective, the free energy difference increases, too, if the
activation energy increases. Similar to the free energy difference, the activation energy may
be considered in this context as the energy necessary to lead the molecules to the active anti
conformation. Still, we are able to gain qualitative or even semi-quantitative results.
As we were interested in the kinetics of the HBCD system at 433 K, a reweighting of energy
values became unavoidable. Instead of a point-wise scheme that weights up a probably small
number of values from the overlap region of high- and low-temperature distributions, we
decided to apply a thermodynamical approach assuming a linear temperature-dependency of
the mean potential energy (Equation 15). If the potential energy V was a quadratic function
in the onformational space Ω, this assumption would be true. However, the potential energy
function is not an exact quadratic one but is locally approximable by parabolic functions due
to its Gaussian-like distributions in a accordingly decomposed conformational space.
In spite of all these approximations, the results well reflect the HBCD interconversion process
as determined by experimental methods, and in particular, no experimental data was used for
the estimation at all.
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