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1. Introduction

Over the past two decades, there has been rapidly growing interest in application of fuzzy
logic to control problem. Researches have been focused on its application to industrial
processes and a number of successful results have been reported in the literature. In spite
of these successes, there are many basic issues remain to be addressed. One of them is
how to achieve a systematic design that guarantees closed-loop stability and performance.
Recently, a great amount of effort has been devoted to describing a nonlinear system using
a Takagi-Sugeno fuzzy model (see [1-28]). The Takagi-sugeno fuzzy model represents a
nonlinear system by a family of local linear models which smoothly blended together through
fuzzy membership functions. Unlike conventional modelling techniques which uses a single
model to describe the global behavior of a nonlinear system, fuzzy modelling is essentially
a multi-model approach in which simple sub-models (typically linear models) are fuzzily
combined to described the global behavior of a nonlinear system. Based on this fuzzy model, a
number of systematic model-based fuzzy control designmethodologies have been developed.
The aim of this paper is to study the problem of designing robust H∞ fuzzy controller for
a class of uncertain fuzzy systems. First, we approximate this class of uncertain nonlinear
systems by a Takagi-Sugeno fuzzy model. Then based on an LMI approach, we develop a
technique for designing robustH∞ fuzzy state-feedback and output feedback controllers such
that the L2-gain of the mapping from the exogenous input noise to the regulated output is less
than a prescribed value.
This paper is organized as follows. In Section 2, system descriptions and definition are
presented. In Section 3 and Section 4, based on an LMI approach, we respectively develop a
technique for designing robustH∞ fuzzy state-feedback and output-feedback controllers such
that the L2-gain of the mapping from the exogenous input noise to the regulated output is less
than a prescribed value for the system described in Section 2. The validity of this approach is
demonstrated by an example from a literature in Section 5. Finally, conclusions are given in
Section 6.

2. System descriptions and definitions

In this chapter, we generalize the TS fuzzy system to represent a TS fuzzy system with
parametric uncertainties as follows:
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2 Fuzzy Controllers, Theory and Applications

ẋ(t) = ∑
r
i=1 µi(ν(t))

[

[Ai + ∆Ai]x(t) + [B1i + ∆B1i ]w(t)

+[B2i + ∆B2i ]u(t)
]

, x(0) = 0

z(t) = ∑
r
i=1 µi(ν(t))

[

[C1i + ∆C1i ]x(t) + [D12i + ∆D12i ]u(t)
]

y(t) = ∑
r
i=1 µi(ν(t))

[

[C2i + ∆C2i ]x(t) + [D21i + ∆D21i ]w(t)
]

(1)

where ν(t) = [ν1(t) · · · νϑ(t)] is the premise variable vector that may depend on states in many
cases, µi(ν(t)) denotes the normalized time-varying fuzzy weighting functions for each rule
(i.e., µi(ν(t)) ≥ 0 and ∑

r
i=1 µi(ν(t)) = 1), ϑ is the number of fuzzy sets, x(t) ∈ ℜn is the state

vector, u(t)∈ℜm is the input, w(t)∈ℜp is the disturbancewhich belongs toL2[0,∞), y(t)∈ℜℓ

is the measurement, z(t) ∈ ℜs is the controlled output, the matrices Ai,B1i ,B2i ,C1i ,C2i ,D12i
and D21i are of appropriate dimensions, and r is the number of IF-THEN rules. The matrices
∆Ai,∆B1i ,∆B2i ,∆C1i ,∆C2i ,∆D12i and ∆D21i represent the uncertainties in the system and
satisfy the following assumption.

Assumption 1
∆Ai = F(x(t), t)H1i ,

∆B1i = F(x(t), t)H2i , ∆B2i = F(x(t), t)H3i ,

∆C1i = F(x(t), t)H4i , ∆C2i = F(x(t), t)H5i ,

∆D12i = F(x(t), t)H6i and ∆D21i = F(x(t), t)H7i

where Hji , j = 1,2, · · · ,7 are known matrix functions which characterize the structure of the
uncertainties. Furthermore, the following inequality holds:

‖F(x(t), t)‖ ≤ ρ (2)

for any known positive constant ρ.

Next, let us recall the following definition.

Definition 1 Suppose γ is a given positive number. A system (1) is said to have an L2-gain less than
or equal to γ if

∫ Tf

0
zT(t)z(t)dt≤ γ2

[

∫ Tf

0
wT(t)w(t)dt

]

, x(0) = 0 (3)

for all Tf ≥ 0 and w(t) ∈ L2[0,Tf ].

Note that for the symmetric blockmatrices, we use (∗) as an ellipsis for terms that are induced
by symmetry.

3. Robust H∞ state-feedback control design

The aim of this section is to design a robustH∞ fuzzy state-feedback controller of the form

u(t) =
r

∑
j=1

µjKjx(t) (4)

112 Fuzzy Controllers, Theory and Applications
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Synthesis of a Robust H∞ Fuzzy Controller for Uncertain Nonlinear Dynamical Systems 3

where Kj is the controller gain, such that the inequality (3) holds. The state space form of the
fuzzy system model (1) with the controller (4) is given by

ẋ(t) = ∑
r
i=1 ∑

r
j=1 µiµj

[

[(Ai + B2iKj)

+(∆Ai + ∆B2iKj)]x(t) + [B1i + ∆B1i ]w(t)
]

, x(0) = 0.
(5)

The following theorem provides sufficient conditions for the existence of a robust H∞

fuzzy state-feedback controller. These sufficient conditions can be derived by the Lyapunov
approach.

Theorem 1 Consider the system (1). Given a prescribed H∞ performance γ > 0 and a positive
constant δ, if there exist a matrix P = PT and matrices Yj, j = 1,2, · · · ,r, satisfying the following
linear matrix inequalities:

P > 0 (6)

Ωii < 0, i = 1,2, · · · ,r (7)

Ωij + Ωji < 0, i < j ≤ r (8)

where

Ωij =

⎛

⎜

⎜

⎜

⎝

(

AiP+ PAT
i

+B2iYj + YT
j B

T
2i

)

(∗)T (∗)T

B̃T
1i

−γI (∗)T
C̃1iP+ D̃12iYj 0 −γI

⎞

⎟

⎟

⎟

⎠

(9)

with
B̃1i =

[

δI I δI B1i
]

,

C̃1i =
[

γρ
δ HT

1i
0

√
2λρHT

4i

√
2λCT

1i

]T
,

D̃12i =
[

0
γρ
δ HT

3i

√
2λρHT

6i

√
2λDT

12i

]T
,

λ =

⎛

⎝1+ ρ2
r

∑
i=1

r

∑
j=1

[

‖HT
2i
H2j‖

]

⎞

⎠

1
2

,

then the inequality (3) holds. Furthermore, a suitable choice of the fuzzy controller is

u(t) =
r

∑
j=1

µjKjx(t) (10)

where

Kj = YjP
−1. (11)

Proof: Using Assumption 1, the closed-loop fuzzy system (5) can be expressed as follows:

ẋ(t) = ∑
r
i=1 ∑

r
j=1 µiµj

(

[Ai + B2iKj]x(t) + B̃1i w̃(t)
)

(12)
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4 Fuzzy Controllers, Theory and Applications

where
B̃1i =

[

δI I δI B1i
]

,

and the disturbance w̃(t) is

w̃(t) =

⎡

⎢

⎢

⎣

1
δ F(x(t), t)H1ix(t)
F(x(t), t)H2iw(t)

1
δ F(x(t), t)H3iKjx(t)

w(t)

⎤

⎥

⎥

⎦

. (13)

Let consider a Lyapunov function

V(x(t)) = γxT(t)Qx(t)

where Q= P−1. Differentiate V(x(t)) along the closed-loop system (12) yields

V̇(x(t)) = γẋT(t)Qx(t) + γxT(t)Qẋ(t)

=
r

∑
i=1

r

∑
j=1

µiµj

(

γxT(t)(Ai + B2iKj)
TQx(t)

+γxT(t)Q(Ai + B2iKj)x(t)

+γw̃T(t)B̃T
1i
Qx(t) + γxT(t)QB̃1i w̃(t)

)

. (14)

Adding and subtracting −z̃T(t)z̃(t) + γ2 ∑
r
i=1 ∑

r
j=1 ∑

r
m=1 ∑

r
n=1 µiµjµmµn[w̃T(t)w̃(t)] to and

from (14), we get

V̇(x(t)) = γ
r

∑
i=1

r

∑
j=1

r

∑
m=1

r

∑
n=1

µiµjµmµn

(

[

xT(t) w̃T(t)
]

×

⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎝

(Ai + B2iKj)
TQ

+Q(Ai + B2iKj)

+
(C̃1i

+D̃12i
Kj)

T(C̃1m+D̃12mKn)
γ

⎞

⎟

⎠
(∗)T

B̃T
1i
Q −γI

⎞

⎟

⎟

⎟

⎠

[

x(t)
w̃(t)

]

)

−z̃T(t)z̃(t) + γ2
r

∑
i=1

r

∑
j=1

r

∑
m=1

r

∑
n=1

µiµjµmµn[w̃
T(t)w̃(t)] (15)

where

z̃(t) =
r

∑
i=1

r

∑
j=1

µiµj[C̃1i + D̃12iKj]x(t) (16)

with

C̃1i =
[

γρ
δ HT

1i
0

√
2λρHT

4i

√
2λCT

1i

]T

and D̃12i =
[

0
γρ
δ HT

3i

√
2λρHT

6i

√
2λDT

12i

]T
.
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Synthesis of a Robust H∞ Fuzzy Controller for Uncertain Nonlinear Dynamical Systems 5

Pre and post multiply (7)-(8) by

⎛

⎝

Q 0 0
0 I 0
0 0 I

⎞

⎠ yields

⎛

⎜

⎜

⎝

(

(Ai + B2iKi)
TQ

+Q(Ai + B2iKi)

)

(∗)T (∗)T

B̃T
1i
Q −γI (∗)T

C̃1i + D̃12iKi 0 −γI

⎞

⎟

⎟

⎠

< 0, (17)

i = 1,2, · · · ,r, and
⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎛

⎜

⎜

⎝

(

(Ai + B2iKj)
TQ

+Q(Ai + B2iKj)

)

(∗)T (∗)T

B̃T
1i
Q −γI (∗)T

C̃1i + D̃12iKj 0 −γI

⎞

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎝

(

(Aj + B2jKi)
TQ

+Q(Aj + B2jKi)

)

(∗)T (∗)T

B̃T
1j
Q −γI (∗)T

C̃1j + D̃12jKi 0 −γI

⎞

⎟

⎟

⎟

⎠

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

< 0, (18)

i < j ≤ r, respectively. Applying the Schur complement on (17)-(18) and rearranging them,
then we have

⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎝

(Ai + B2iKi)
TQ

+Q(Ai + B2iKi)

+
(C̃1i

+D̃12i
Ki)

T(C̃1i
+D̃12i

Ki)
γ

⎞

⎟

⎠
(∗)T

B̃T
1i
Q −γI

⎞

⎟

⎟

⎟

⎠

< 0, (19)

i = 1,2, · · · ,r, and
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎝

(Ai + B2iKj)
TQ

+Q(Ai + B2iKj)

+
(C̃1i

+D̃12i
Kj)

T(C̃1i
+D̃12i

Kj)
γ

⎞

⎟

⎠
(∗)T

B̃T
1i
Q −γI

⎞

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎝

(Aj + B2jKi)
TQ

+Q(Aj + B2jKi)

+
(C̃1j

+D̃12j
Ki)

T(C̃1j
+D̃12j

Ki)

γ

⎞

⎟

⎟

⎠

(∗)T

B̃T
1j
Q −γI

⎞

⎟

⎟

⎟

⎟

⎠

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

< 0, (20)

i < j ≤ r, respectively. Using (19)-(20) and the fact that

r

∑
i=1

r

∑
j=1

r

∑
m=1

r

∑
n=1

µiµjµmµnM
T
ijNmn ≤

1

2

r

∑
i=1

r

∑
j=1

µiµj[M
T
ijMij + NijN

T
ij ], (21)
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6 Fuzzy Controllers, Theory and Applications

it is obvious that we have

⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎝

(Ai + B2iKj)
TQ

+Q(Ai + B2iKj)

+
(C̃1i

+D̃12i
Kj)

T(C̃1i
+D̃12i

Kj)
γ

⎞

⎟

⎠
(∗)T

B̃T
1i
Q −γI

⎞

⎟

⎟

⎟

⎠

< 0 (22)

where i, j= 1,2, · · · ,r. Since (22) is less than zero and the fact that µi ≥ 0 and ∑
r
i=1 µi = 1, then

(15) becomes

V̇(x(t)) ≤ −z̃T(t)z̃(t) + γ2
r

∑
i=1

r

∑
j=1

r

∑
m=1

r

∑
n=1

µiµjµmµn[w̃
T(t)w̃(t)]. (23)

Integrate both sides of (23) yields

∫ Tf

0
V̇(x(t))dt ≤

∫ Tf

0

[

− z̃T(t)z̃(t) + γ2
r

∑
i=1

r

∑
j=1

r

∑
m=1

r

∑
n=1

µiµjµmµn[w̃
T(t)w̃(t)]

]

dt

V(x(Tf ))−V(x(0)) ≤
∫ Tf

0

[

− z̃T(t)z̃(t) + γ2
r

∑
i=1

r

∑
j=1

r

∑
m=1

r

∑
n=1

µiµjµmµn[w̃
T(t)w̃(t)]

]

dt.

Using the fact that x(0) = 0 and V(x(Tf )) ≥ 0 for all Tf 	= 0, we get

∫ Tf

0
z̃T(t)z̃(t)dt≤ γ2

⎡

⎣

∫ Tf

0

r

∑
i=1

r

∑
j=1

r

∑
m=1

r

∑
n=1

µiµjµmµn[w̃
T(t)w̃(t)]dt

⎤

⎦ . (24)

Putting z̃(t) and w̃(t) respectively given in (16) and (13) into (24) and using the fact that

‖F(x(t), t)‖ ≤ ρ, λ2 =
(

1+ ρ2 ∑
r
i=1 ∑

r
j=1[‖HT

2i
H2j‖]

)

and (21), we have

∫ Tf

0

r

∑
i=1

r

∑
j=1

µiµj

(

2λ2xT(t)[C1i + D12iKj]
T[C1i + D12iKj]x(t)

+2λ2ρ2xT(t)[H4i + H6iKj]
T[H4i + H6iKj]x(t)

)

dt

≤ γ2λ2

[

∫ Tf

0
wT(t)w(t) dt

]

. (25)

Adding and subtracting

λ2zT(t)z(t) = λ2
r

∑
i=1

r

∑
j=1

µiµj

(

xT(t)
[

C1i + F(x(t), t)H4i + D12iKj + F(x(t), t)H6iKj

]T

[

C1i + F(x(t), t)H4i +D12iKj + F(x(t), t)H6iKj

]

x(t)
)

116 Fuzzy Controllers, Theory and Applications
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to and from (25), one obtains

∫ Tf

0

{

λ2zT(t)z(t) +
r

∑
i=1

r

∑
j=1

µiµj ×
(

2λ2xT(t)[C1i + D12iKj]
T[C1i + D12iKj]x(t)

+2λ2ρ2xT(t)[H4i + H6iKj]
T [H4i + H6iKj]x(t)

−λ2xT(t)[C1i + F(x(t), t)H4i + D12iKj + F(x(t), t)H6iKj]
T

[C1i + F(x(t), t)H4i + D12iKj + F(x(t), t)H6iKj]x(t)
)}

dt

≤ γ2λ2

[

∫ Tf

0
wT(t)w(t) dt

]

. (26)

Using the triangular inequality and the fact that ‖F(x(t), t)‖ ≤ ρ, we have

λ2
r

∑
i=1

r

∑
j=1

µiµj

(

xT(t)
[

C1i + F(x(t), t)H4i + D12iKj + F(x(t), t)H6iKj

]T

[

C1i + F(x(t), t)H4i + D12iKj + F(x(t), t)H6iKj

]

x(t)
)

≤
r

∑
i=1

r

∑
j=1

µiµj

({

2λ2xT(t)
[

C1i + D12iKj

]T [

C1i +D12iKj

]

x(t)
}

+2λ2ρ2xT(t)
[

H4i + H6iKj

]T [

H4i + H6iKj

]

x(t)
)

. (27)

Using (27) on (26), we obtain

∫ Tf

0
zT(t)z(t)≤ γ2

∫ Tf

0
wT(t)w(t) dt. (28)

Hence, the inequality (3) holds.

4. Robust H∞ output feedback control design

The nature of the information of the state available to the controller has a major effect on
the complexity of the designing problem and of the resulting controller. The state-feedback
control design problem is an easier problem in which all information are available. However,
in most real physical systems, the state is not perfectly known, and so we must estimate it.
The process of estimating the system state from the measurement output that are available is
called the estimator design. By utilizing the state estimator, the output feedback problem is
converted to the state-feedback problem for a new problem. This new problem employs the
estimated state as its own state variable and the solution of the new state-feedback problem
leads to the solution of the dynamic output feedback control problem. Basically, the dynamic
output feedback is a coupling of control and estimation.
This section aims at designing a full order dynamic H∞ fuzzy output feedback controller of
the form

˙̂x(t) = ∑
r
i=1 ∑

r
j=1 µ̂iµ̂j

[

Âijx̂(t) + B̂iy(t)
]

u(t) = ∑
r
i=1 µ̂iĈi x̂(t)

(29)
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8 Fuzzy Controllers, Theory and Applications

where x̂(t) ∈ ℜn is the controller’s state vector, Âij, B̂i and Ĉi are parameters of the controller
which are to be determined, and µ̂i denotes the normalized time-varying fuzzy weighting
functions for each rule (i.e., µ̂i ≥ 0 and ∑

r
i=1 µ̂i = 1), such that the inequality (3) holds.

In this section, we consider the designing of the robust H∞ output feedback control into two
cases as follows. In Subsection A, we consider the case where the premise variable of the fuzzy
model µi is measurable, while in Subsection B, the premise variable which is assumed to be
unmeasurable is considered.

4.1 Case I–ν(t) is available for feedback
The premise variable of the fuzzy model ν(t) is available for feedback which implies that µi is
available for feedback. Thus, we can select our controller that depends on µi as follows:

˙̂x(t) = ∑
r
i=1 ∑

r
j=1 µiµj

[

Âijx̂(t) + B̂iy(t)
]

u(t) = ∑
r
i=1 µiĈi x̂(t).

(30)

Before presenting our next results, the following lemma is recalled.

Lemma 1 Consider the system (1). Given a prescribed H∞ performance γ and a positive constant δ,
if there exists a matrix P = PT satisfying the following linear matrix inequalities:

P > 0 (31)
⎛

⎜

⎜

⎜

⎜

⎝

(

A
ij
clP

+P(A
ij
cl)

T

)

(∗)T (∗)T

(B
ij
cl)

T −γ2 I (∗)T
C
ij
clP 0 −I

⎞

⎟

⎟

⎟

⎟

⎠

< 0, (32)

where i, j = 1,2, · · · ,r

A
ij
cl =

[

Ai B2i Ĉj

B̂iC2j Âij

]

, B
ij
cl =

[

B̃1i
B̂iD̃21j

]

and C
ij
cl = [C̃1i D̃12i Ĉj]

with
B̃1i =

[

δI I δI 0 B1i 0
]

,

C̃1i =
[

γρ
δ HT

1i
0

γρ
δ HT

5i

√
2λρHT

4i

√
2λCT

1i

]T
,

D̃12i =
[

0
γρ
δ HT

3i
0

√
2λρHT

6i

√
2λDT

12i

]T
,

D̃21i =
[

0 0 0 δI D21i I
]

and λ =

⎛

⎝1+ ρ2
r

∑
i=1

r

∑
j=1

[

‖HT
2i
H2j‖+ ‖HT

7i
H7j‖

]

⎞

⎠

1
2

,

then the inequality (3) is guaranteed.
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Proof: The state space form of the fuzzy system model (1) with the controller (30) is given by

˙̌x(t) = ∑
r
i=1 ∑

r
j=1 µiµj

(

A
ij
cl x̌(t) + B

ij
clw̃(t)

)

ž(t) = ∑
r
i=1 ∑

r
j=1 µiµjC

ij
cl x̌(t)

(33)

where x̌(t) =
[

xT(t) x̂T(t)
]T

and the matrix functions A
ij
cl, B

ij
cl and C

ij
cl are defined in Lemma

1 and the disturbance is

w̃(t) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
δ F(x(t), t)H1ix(t)
F(x(t), t)H2iw(t)

1
δ F(x(t), t)H3i Ĉj x̂(t)
1
δ F(x(t), t)H5ix(t)

w(t)
F(x(t), t)H7iw(t)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (34)

Let choose a Lyapunov function

V(x̌(t)) = x̌T(t)Qx̌(t), (35)

where Q= P−1. Differentiate V(x̌(t)) along the closed-loop system (33) yields

V̇(x̌(t)) = ˙̌xT(t)Qx̌(t) + x̌T(t)Q ˙̌x(t)
r

∑
i=1

r

∑
j=1

µiµj

(

x̌T(t)(A
ij
cl)

TQx̌(t) + x̌T(t)QA
ij
cl x̌(t)

+w̃T(t)(B
ij
cl)

TQx̌(t) + x̌T(t)QB
ij
clw̃(t)

)

. (36)

Add and subtract−žT(t)ž(t)+γ2 ∑
r
i=1 ∑

r
j=1 ∑

r
m=1 ∑

r
n=1 µiµjµmµn[w̃(t)Tw̃(t)] to and from (36)

yields

V̇(x̌(t)) =
r

∑
i=1

r

∑
j=1

r

∑
m=1

r

∑
n=1

µiµjµmµn
[

x̌T(t) w̃T(t)
]

⎛

⎜

⎝

(

(A
ij
cl)

TQ+ QA
ij
cl

+(C
ij
cl)

TCmn
cl

)

(∗)T

QB
ij
cl −γ2 I

⎞

⎟

⎠

[

x̌(t)
w̃(t)

]

−žT(t)ž(t) + γ2
r

∑
i=1

r

∑
j=1

r

∑
m=1

r

∑
n=1

µiµjµmµn[w̃
T(t)w̃(t)]. (37)

Now suppose there exits a matrix P > 0 such that (32) holds, i.e.,

⎛

⎜

⎝

A
ij
clP+ P(A

ij
cl)

T (∗)T (∗)T
(B

ij
cl)

T −γ2 I (∗)T
C
ij
clP 0 −I

⎞

⎟

⎠
< 0. (38)
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Pre and post multiply (38) by

⎛

⎝

Q 0 0
0 I 0
0 0 I

⎞

⎠ yields

⎛

⎜

⎝

(A
ij
cl)

TQ+ QA
ij
cl (∗)T (∗)T

(B
ij
cl)

TQ −γ2 I (∗)T
C
ij
cl 0 −I

⎞

⎟

⎠
< 0. (39)

The Schur complement of (39) is
(

(A
ij
cl)

TQ+ QA
ij
cl + (C

ij
cl)

TC
ij
cl (∗)T

(B
ij
cl)

T −γ2 I

)

< 0. (40)

Using (40) and the fact in (21) together with the fact that µi ≥ 0 and ∑
r
i=1 µi = 1, then (37)

becomes

V̇(x̌(t)) ≤ −žT(t)ž(t) + γ2
r

∑
i=1

r

∑
j=1

r

∑
m=1

r

∑
n=1

µiµjµmµn[w̃
T(t)w̃(t)]. (41)

Integrate both sides of (41) yields

∫ Tf

0
V̇(x̌(t))dt ≤

∫ Tf

0

(

− žT(t)ž(t) + γ2
r

∑
i=1

r

∑
j=1

r

∑
m=1

r

∑
n=1

µiµjµmµn[w̃
T(t)w̃(t)]

)

dt

V(x̌(Tf ))−V(x̌(0)) ≤
∫ Tf

0

(

− žT(t)ž(t) + γ2
r

∑
i=1

r

∑
j=1

r

∑
m=1

r

∑
n=1

µiµjµmµn[w̃
T(t)w̃(t)]

)

dt.

Using the fact that x̌(0) = 0 and V(x̌(Tf )) > 0 for all Tf 	= 0, we have

∫ Tf

0
žT(t)ž(t)dt≤ γ2

⎡

⎣

∫ Tf

0

r

∑
i=1

r

∑
j=1

r

∑
m=1

r

∑
n=1

µiµjµmµn[w̃
T(t)w̃(t)]

⎤

⎦dt.

(42)

Putting ž(t) and w̃(t) respectively given in (33) and (34) into (42) and using the fact that

‖F(x(t), t)‖ ≤ ρ, λ2 =
(

1+ ρ2 ∑
r
i=1 ∑

r
j=1

[

‖HT
2i
H2j‖+ ‖HT

7i
H7j‖

])

and (21), we have

∫ Tf

0

r

∑
i=1

r

∑
j=1

µiµj

(

2λ2 x̌T(t)[C1i D12i Ĉj]
T[C1i D12i Ĉj]x̌(t)

+2λ2ρ2 x̌T(t)[H4i H6i Ĉj]
T[H4i H6i Ĉj]x̌(t)

)

dt

≤ γ2λ2

[

∫ Tf

0
wT(t)w(t) dt

]

. (43)

Adding and subtracting

λ2zT(t)z(t) = λ2
r

∑
i=1

r

∑
j=1

µiµj

(

x̌T(t)
[

C1i + F(x(t), t)H4i D12i Ĉj + F(x(t), t)H6i Ĉj

]T

[

C1i + F(x(t), t)H4i D12i Ĉj + F(x(t), t)H6i Ĉj

]

x̌(t)
)
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to and from (43), one obtains

∫ Tf

0

{

λ2zT(t)z(t) +
r

∑
i=1

r

∑
j=1

µiµj ×
(

2λ2 x̌T(t)[C1i D12i Ĉj]
T[C1i D12i Ĉj]x̌(t) + 2λ2ρ2 x̌T(t)×

[H4i H6i Ĉj]
T [H4i H6i Ĉj]x̌(t)

−λ2 x̌T(t)[C1i + F(x(t), t)H4i D12i Ĉj + F(x(t), t)H6iĈj]
T

[C1i + F(x(t), t)H4i D12i Ĉj + F(x(t), t)H6iĈj]x̌(t)
)}

dt

≤ γ2λ2

[

∫ Tf

0
wT(t)w(t) dt

]

. (44)

Using the triangular inequality and the fact that ‖F(x(t), t)‖ ≤ ρ, we have

λ2
r

∑
i=1

r

∑
j=1

µiµj

(

x̌T(t)
[

C1i + F(x(t), t)H4i D12i Ĉj + F(x(t), t)H6i Ĉj

]T

[

C1i + F(x(t), t)H4i D12i Ĉj + F(x(t), t)H6i Ĉj

]

x̌(t)
)

≤
r

∑
i=1

r

∑
j=1

µiµj

(

2λ2 x̌T(t)
[

C1i D12i Ĉj

]T [

C1i D12i Ĉj

]

x̌(t)

+2λ2ρ2 x̌T(t)
[

H4i H6i Ĉj

]T [

H4i H6i Ĉj

]

x̌(t)
)

. (45)

Using (45) on (44), we obtain

∫ Tf

0
zT(t)z(t)≤ γ2

∫ Tf

0
wT(t)w(t) dt. (46)

Hence, the inequality (3) is guaranteed.
Knowing that the controller’s premise variable is the same as the plant’s premise variable, the
left hand of (32) can be re-expressed as follows:

A
ij
clP+ P(A

ij
cl)

T + γ−2B
ij
cl(B

ij
cl)

T + P(C
ij
cl)

TC
ij
clP. (47)

Before providing LMI-based sufficient conditions for the system (1) to have an H∞

performance, let us partition the matrix P as follows:

P =

[

X Y−1 − X

Y−1 − X X− Y−1

]

(48)

where X ∈ ℜn×n and Y ∈ ℜn×n. Utilizing the partition above, we define the new controller’s
input and output matrices as

Bi
∆
=

[

Y−1 − X
]

B̂i

Ci
∆
= ĈiY.

(49)

Using these changes of variable, we have the following theorem.
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Theorem 2 Consider the system (1). Given a prescribed H∞ performance γ > 0 and a positive
constant δ, if there exist matrices X = XT , Y = YT, Bi and Ci, i = 1,2, · · · ,r, satisfying the following
linear matrix inequalities:

[

X I
I Y

]

> 0 (50)

X > 0 (51)

Y > 0 (52)

Ψ11ii < 0, i = 1,2, · · · ,r (53)

Ψ22ii < 0, i = 1,2, · · · ,r (54)

Ψ11ij + Ψ11ji < 0, i < j≤ r (55)

Ψ22ij + Ψ22ji < 0, i < j≤ r (56)

where

Ψ11ij =

⎛

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎝

AiY+ YAT
i

+B2iCj + CT
i B

T
2j

+γ−2B̃1i B̃
T
1j

⎞

⎟

⎠
(∗)T

[

YC̃T
1i
+ CT

i D̃
T
12j

]T −I

⎞

⎟

⎟

⎟

⎟

⎠

(57)

Ψ22ij =

⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎝

AT
i X+ XAi

+BiC2j + CT
2i
BT
j

+C̃T
1i
C̃1j

⎞

⎟

⎠
(∗)T

[

XB̃1i + BiD̃21j

]T −γ2 I

⎞

⎟

⎟

⎟

⎠

(58)

with
B̃1i =

[

δI I δI 0 B1i 0
]

,

C̃1i =
[

γρ
δ HT

1i
0

γρ
δ HT

5i

√
2λρHT

4i

√
2λCT

1i

]T
,

D̃12i =
[

0
γρ
δ HT

3i
0

√
2λρHT

6i

√
2λDT

12i

]T
,

D̃21i =
[

0 0 0 δI D21i I
]

and λ =

⎛

⎝1+ ρ2
r

∑
i=1

r

∑
j=1

[

‖HT
2i
H2j‖+ ‖HT

7i
H7j‖

]

⎞

⎠

1
2

,

then the prescribed H∞ performance γ > 0 is guaranteed. Furthermore, a suitable controller is of the
form (30) with

Âij =
[

Y−1 − X
]−1MijY

−1

B̂i =
[

Y−1 − X
]−1Bi

Ĉi = CiY−1

(59)

where

Mij = −AT
i − XAiY− XB2i ĈjY

−
[

Y−1 − X
]

B̂iC2jY− C̃T
1i

[

C̃1jY + D̃12j ĈjY
]

−γ−2
{

XB̃1i +
[

Y−1 − X
]

B̂iD̃21i

}

B̃T
1j
. (60)
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Proof: Suppose there exist X and Y such that the inequalities (50) and (51)-(52) hold. The
inequality (50) implies that the matrix P defined in (47) is a positive definite matrix. Using the

partition (48), the controller (49) and multiplying (47) to the left by

[

Y I
Y 0

]

and to the right

by

[

Y Y
I 0

]

, we have

[

Φ11ij 0

0 Φ22ij

]

(61)

where

Φ11ij = AiY+ YAT
i + B2iCj + CT

i B
T
2j
+ γ−2B̃1i B̃

T
1j

+
[

YC̃T
1i
+ CT

i D̃
T
12j

][

YC̃T
1i
+ CT

i D̃
T
12j

]T
(62)

Φ22ij = AT
i X+ XAi + BiC2j + CT

2i
BT
j + C̃T

1i
C̃1j

+γ−2
[

XB̃1i + BiD̃21j

][

XB̃1i + BiD̃21j

]T
. (63)

Note that Φ11ij and Φ22ij are the Schur complements of Ψ11ij and Ψ22ij , Using (53)-(56), we
have (61) less than zero. Hence, by Theorem 2, we learn that the inequality (3) holds.

4.2 Case II–ν(t) is unavailable for feedback
The output feedback fuzzy controller is assumed to be the same as the premise variables of the
fuzzy system model. This actually means that the premise variables of fuzzy system model
are assumed to be measurable. However, in general, it is extremely difficult to derive an
accurate fuzzy system model by imposing that all premise variables are measurable. In this
subsection, we do not impose that condition, we choose the premise variables of the controller
to be different from the premise variables of fuzzy system model of the plant. In here, the
premise variables of the controller are selected to be the estimated premise variables of the
plant. In the other words, the premise variable of the fuzzy model ν(t) is unavailable for
feedback which implies µi is unavailable for feedback. Hence, we cannot select our controller
which depends on µi. Thus, we select our controller as follows:

˙̂x(t) = ∑
r
i=1 ∑

r
j=1 µ̂iµ̂j

[

Âijx̂(t) + B̂iy(t)
]

u(t) = ∑
r
i=1 µ̂iĈi x̂(t).

(64)

where µ̂i depends on the premise variable of the controller which is different from µi.
Let us re-express the system (1) in terms of µ̂i, thus the plant’s premise variable becomes the
same as the controller’s premise variable. By doing so, the result given in the previous case
can then be applied here. First, let us rewrite (1) as follows:

ẋ(t) = ∑
r
i=1 µi

[

[Ai + ∆Ai]x(t) + [B1i + ∆B1i ]w(t) + [B2i + ∆B2i ]u(t)
]

+∑
r
i=1 µ̂i

[

[Ai + ∆Ai]x(t) + [B1i + ∆B1i ]w(t) + [B2i + ∆B2i ]u(t)
]

−∑
r
i=1 µ̂i

[

[Ai + ∆Ai]x(t) + [B1i + ∆B1i ]w(t) + [B2i + ∆B2i ]u(t)
]
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z(t) = ∑
r
i=1 µi

[

[C1i + ∆C1i ]x(t) + [D12i + ∆D12i ]u(t)
]

+∑
r
i=1 µ̂i

[

[C1i + ∆C1i ]x(t) + [D12i + ∆D12i ]u(t)
]

−∑
r
i=1 µ̂i

[

[C1i + ∆C1i ]x(t) + [D12i + ∆D12i ]u(t)
]

y(t) = ∑
r
i=1µi

[

[C2i + ∆C2i ]x(t) + [D21i + ∆D21i ]w(t)
]

+∑
r
i=1 µ̂i

[

[C2i + ∆C2i ]x(t) + [D21i + ∆D21i ]w(t)
]

−∑
r
i=1 µ̂i

[

[C2i + ∆C2i ]x(t) + [D21i + ∆D21i ]w(t)
]

.

(65)

Rearranging (65) together with employing Assumption 1, we obtain

ẋ(t) = ∑
r
i=1 µ̂i

(

[Ai + F(x(t), t)H1i + (µ1 − µ̂1)A1 + · · ·+ (µr − µ̂r)Ar

+F(x(t), t)(µ1− µ̂1)H11 + · · ·+ F(x(t), t)(µr − µ̂r)H1r ]x(t)
+[B1i + F(x(t), t)H2i + (µ1 − µ̂1)B11 + · · ·+ (µr − µ̂r)B1r
+F(x(t), t)(µ1− µ̂1)H21 + · · ·+ F(x(t), t)(µr − µ̂r)H2r ]w(t)
+[B2i + F(x(t), t)H3i + (µ1 − µ̂1)B21 + · · ·+ (µr − µ̂r)B2r
+F(x(t), t)(µ1− µ̂1)H31 + · · ·+ F(x(t), t)(µr − µ̂r)H3r ]u(t)

)

z(t) = ∑
r
i=1 µ̂i ×

(

[C1i + F(x(t), t)H4i + (µ1 − µ̂1)C11 + · · ·+ (µr − µ̂r)C1r

+F(x(t), t)(µ1− µ̂1)H41 + · · ·+ F(x(t), t)(µr − µ̂r)H4r ]x(t)
+[D12i + F(x(t), t)H5i + (µ1 − µ̂1)D121 + · · ·+ (µr − µ̂r)D12r

+F(x(t), t)(µ1− µ̂1)H51 + · · ·+ F(x(t), t)(µr − µ̂r)H5r ]u(t)
)

y(t) = ∑
r
i=1 µ̂i

(

[C2i + F(x(t), t)H6i + (µ1 − µ̂1)C21 + · · ·+ (µr − µ̂r)C2r

+F(x(t), t)(µ1− µ̂1)H61 + · · ·+ F(x(t), t)(µr − µ̂r)H6r ]x(t)
+[D21i + F(x(t), t)H7i + (µ1 − µ̂1)D211 + · · ·+ (µr − µ̂r)D21r

+F(x(t), t)(µ1− µ̂1)H71 + · · ·+ F(x(t), t)(µr − µ̂r)H7r ]w(t)
)

(66)

Then, from (66), we get

ẋ(t) = ∑
r
i=1 µ̂i

[

[Ai + ∆Āi]x(t) + [B1i + ∆B̄1i ]w(t)

+[B2i + ∆B̄2i ]u(t)
]

, x(0) = 0

z(t) = ∑
r
i=1 µ̂i

[

[C1i + ∆C̄1i ]x(t)

+[D12i + ∆D̄12i ]u(t)
]

y(t) = ∑
r
i=1 µ̂i

[

[C2i + ∆C̄2i ]x(t)

+[D21i + ∆D̄21i ]w(t)
]

(67)

where
∆Āi = F̄(x(t), x̂(t), t)H̄1i ,

∆B̄1i = F̄(x(t), x̂(t), t)H̄2i , ∆B̄2i = F̄(x(t), x̂(t), t)H̄3i ,

∆C̄1i = F̄(x(t), x̂(t), t)H̄4i , ∆C̄2i = F̄(x(t), x̂(t), t)H̄5i ,

∆D̄12i = F̄(x(t), x̂(t), t)H̄6i

and ∆D̄21i = F̄(x(t), x̂(t), t)H̄7i
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with

H̄1i =
[

HT
1i
AT
1 · · ·AT

r HT
11
· · ·HT

1r

]T
,

H̄2i =
[

HT
2i
BT
11
· · ·BT

1r
HT
21
· · ·HT

2r

]T
,

H̄3i =
[

HT
3i
BT
21
· · ·BT

2r
HT
31
· · ·HT

3r

]T
,

H̄4i =
[

HT
4i
CT
11
· · ·CT

1r
HT
41
· · ·HT

4r

]T
,

H̄5i =
[

HT
5i
CT
21
· · ·CT

2r
HT
51
· · ·HT

5r

]T
,

H̄6i =
[

HT
6i
DT
121

· · ·DT
12r

HT
61
· · ·HT

6r

]T

H̄7i =
[

HT
7i
DT
211

· · · DT
21r

HT
71
· · ·HT

7r

]T

and F̄(x(t), x̂(t), t) =
[

F(x(t), t) (µ1− µ̂1) · · · (µr − µ̂r) F(x(t), t)(µ1− µ̂1) · · · F(x(t), t)(µr −

µ̂r)
]

. Note that ‖F̄(x(t), x̂(t), t)‖ ≤ ρ̄ where ρ̄ = {3ρ2 + 2} 1
2 . ρ̄ is derived by utilizing the

concept of vector norm in basic system control theory and the fact that µi ≥ 0, µ̂i ≥ 0, ∑
r
i=1 µi =

1 and ∑
r
i=1 µ̂i = 1.

Note that the above technique is basically employed in order to obtain the plant’s premise
variable to be the same as the controller’s premise variable; e.g. (22). Now, the premise
variable of the system is the same as the premise variable of the controller, thus we can apply
the result given in Case I.

Theorem 3 Consider the system (1). Given a prescribed H∞ performance γ > 0 and a positive
constant δ, if there exist matrices X, Y, Bi and Ci, i = 1,2, · · · ,r, satisfying the following linear matrix
inequalities:

[

X I
I Y

]

> 0 (68)

X > 0 (69)

Y > 0 (70)

Ψ11ii < 0, i = 1,2, · · · ,r (71)

Ψ22ii < 0, i = 1,2, · · · ,r (72)

Ψ11ij + Ψ11ji < 0, i < j≤ r (73)

Ψ22ij + Ψ22ji < 0, i < j≤ r (74)

where

Ψ11ij =

⎛

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎝

AiY +YAT
i

+B2iCj + CT
i B

T
2j

+γ−2 ˜̄B1i
˜̄BT
1j

⎞

⎟

⎠
(∗)T

[

Y ˜̄CT
1i
+ CT

i
˜̄DT
12j

]T −I

⎞

⎟

⎟

⎟

⎟

⎠

(75)
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Ψ22ij =

⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎝

AT
i X+ XAi

+BiC2j + CT
2i
BT
j

+ ˜̄CT
1i
˜̄C1j

⎞

⎟

⎠
(∗)T

[

X ˜̄B1i + Bi
˜̄D21j

]T −γ2 I

⎞

⎟

⎟

⎟

⎠

(76)

with
˜̄B1i =

[

δI I δI 0 B1i 0
]

,

˜̄C1i =
[

γρ̄
δ H̄T

1i
0

γρ̄
δ H̄T

5i

√
2λ̄ρ̄H̄T

4i

√
2λ̄CT

1i

]T
,

˜̄D12i =
[

0
γρ̄
δ H̄T

3i
0

√
2λ̄ρ̄H̄T

6i

√
2λ̄DT

12i

]T
,

˜̄D21i =
[

0 0 0 δI D21i I
]

and λ̄ =

⎛

⎝1+ ρ̄2
r

∑
i=1

r

∑
j=1

[

‖H̄T
2i
H̄2j‖+ ‖H̄T

7i
H̄7j‖

]

⎞

⎠

1
2

,

then the prescribed H∞ performance γ > 0 is guaranteed. Furthermore, a suitable controller is of the
form (64) with

Âij =
[

Y−1 − X
]−1MijY

−1

B̂i =
[

Y−1 − X
]−1Bi

Ĉi = CiY−1

(77)

where

Mij = −AT
i − XAiY− XB2i ĈjY

−
[

Y−1 − X
]

B̂iC2jY− ˜̄CT
1i

[ ˜̄C1jY + ˜̄D12j ĈjY
]

−γ−2
{

X ˜̄B1i +
[

Y−1 − X
]

B̂i
˜̄D21i

}

˜̄BT
1j
. (78)

Proof: Since (67) is of the form of (1), it can be shown by employing the proof for Theorem 2.

5. Example

Consider the following problem of the chaotic Lorenz system which is described by the
following equations (see [29]).

ẋ1(t) = −σx1(t) + σx2(t) + u(t) + 0.1w1(t)
ẋ2(t) = rx1(t)− x2(t)− x1(t)x3(t) + 0.1w2(t)
ẋ3(t) = x1(t)x2(t)− bx3(t) + 0.1w3(t)

z(t) =
[

xT1 (t) xT2 (t) xT3 (t)
]T

y(t) = Jx(t) + 0.1w1(t)

(79)

where x1(t), x2(t), x3(t) denote the state vectors, u(t) is the control input, w1(t), w2(t), w3(t)
are the disturbance noise inputs, y(t) is the measurement output, z(t) is the controlled output,
J is the sensor matrix and the bounded uncertain parameters σ, r and b are given by 10± 30%,
28± 30% and 8/3± 30%, respectively. Note that the variables x1(t), x2(t) and x3(t) are treated
as the deviation variables (variables deviate from the desired trajectories).
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11N

Fig. 1. Membership functions for the two fuzzy set.

Since the nonlinear terms in (79) can be viewed as a function of x1(t), we can re-expressed (79)
as

ẋ1(t) = −σx1(t) + σx2(t) + u(t) + 0.1w1(t)
ẋ2(t) = rx1(t)− x2(t)− (x1(t)) · x3(t) + 0.1w2(t)
ẋ3(t) = (x1(t)) · x2(t)− bx3(t) + 0.1w3(t)

z(t) =
[

xT1 (t) xT2 (t) xT3 (t)
]T

y(t) = Jx(t) + 0.1w1(t).

(80)

The control objective is to control the state variable x1(t) for the range x1(t) ∈ [N1 N2]. For the
sake of simplicity, we will use as few rules as possible. Note that Figure 1 shows the plot of
the membership functions represented by

M1(x1(t)) =
−x1(t) + N2

N2 − N1
and M2(x1(t)) =

x1(t)− N1

N2 − N1
.

Knowing that x1(t) ∈ [N1 N2], the nonlinear system (80) can be approximated by the following
two rules TS model:
Plant Rule 1: IF x1(t) is M1(x1(t)) THEN

ẋ(t) = [A1 + ∆A1]x(t) + B11w(t) + B21u(t), x(0) = 0,

z(t) = C11x(t),

y(t) = C21x(t) + D211w(t).

Plant Rule 2: IF x1(t) is M2(x1(t)) THEN

ẋ(t) = [A2 + ∆A2]x(t) + B12w(t) + B22u(t), x(0) = 0,

z(t) = C12x(t),

y(t) = C22x(t) + D212w(t)

where

A1 =

⎡

⎣

−10 10 0
28 −1 −N1

0 N1 −8/3

⎤

⎦ , A2 =

⎡

⎣

−10 10 0
28 −1 −N2

0 N2 −8/3

⎤

⎦ ,
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B11 = B12 =

⎡

⎣

0.1 0 0
0 0.1 0
0 0 0.1

⎤

⎦ , B21 = B22

⎡

⎣

1
0
0

⎤

⎦ ,

C11 = C12

⎡

⎣

1 0 0
0 1 0
0 0 1

⎤

⎦ , C21 = C22 = J,

D211 = D212 =
[

0.1 0 0
]

, ∆A1 = F(x(t), t)H11 , ∆A2 = F(x(t), t)H12 ,

x(t) = [xT1 (t) x
T
2 (t) x

T
3 (t)]

T and w(t) = [wT
1 (t) w

T
2 (t) w

T
3 (t)]

T.

Let us choose the value of [N1 N2] in the membership function as [−20 30]. Now, by assuming
that in (2), ‖F(x(t), t)‖ ≤ ρ = 1 and since the values of σ, r, b are uncertain but bounded within
30% of their nominal values given in (79), we have

H11 = H12 =

⎡

⎣

−0.3σ 0.3σ 0
0.3r 0 0
0 0 −0.3b

⎤

⎦ .

State-feedback controller design
Using the LMI optimization algorithm and Theorem 1 with γ = 1 and δ = 1, we obtain

P =

⎡

⎣

104.7498 −8.1629 −1.1823
−8.1629 5.1783 0.9345
−1.1823 0.9345 6.7383

⎤

⎦,

K1 =
[

−38.8875 −816.1115 −3.9273
]

, K2 =
[

−37.4290 −815.5695 4.1287
]

.

The resulting fuzzy controller is

u(t) =
2

∑
j=1

µjKjx(t)

where

µ1 = M1(x1(t)) and µ2 = M2(x1(t)).

Output feedback controller design
Case I: ν(t) are available for feedback
In this case, x1(t) = ν(t) is assumed to be available for feedback; for instance, J = [1 0 0]. This
implies that µi is available for feedback. Using the LMI optimization algorithm and Theorem
2 with γ = 1 and δ = 1, we obtain the following results:

X =

⎡

⎣

40.9617 −0.3001 0.0003
−0.3001 0.0326 −0.0020
0.0003 −0.0020 0.0529

⎤

⎦, Y =

⎡

⎣

64.0418 −6.6279 −0.0180
−6.6279 0.7784 0.0345
−0.0180 0.0345 0.8385

⎤

⎦,

Â11 =

⎡

⎣

−52.6459 913.0329 11.1683
0.4211 −93.8119 −1.1292
2.3239 −0.4233 0.0865

⎤

⎦, Â12 =

⎡

⎣

−52.9740 909.6351 0.8313
0.5070 −93.0535 −0.2157
2.3414 −0.2540 0.1024

⎤

⎦,
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Â21 =

⎡

⎣

−54.8390 912.4579 −6.7553
1.4467 −93.6196 0.6829
−3.5367 −0.1599 0.2080

⎤

⎦, Â22 =

⎡

⎣

−54.7676 913.4610 −17.1638
1.3897 −94.0748 1.5985
−3.5229 −0.0374 0.1865

⎤

⎦,

B̂1 =

⎡

⎣

−110.4306
4.8589
2.9909

⎤

⎦, B̂2 =

⎡

⎣

113.2188
6.1387
−4.5464

⎤

⎦,

Ĉ1 =
[

−36.1488 −710.9845 −3.2817
]

, Ĉ2 =
[

−35.9847 −709.7215 5.1803
]

.

The resulting fuzzy controller is

˙̂x(t) =
2

∑
i=1

2

∑
j=1

µiµj Âij x̂(t) +
2

∑
i=1

µiB̂iy(t)

u(t) =
2

∑
i=1

µiĈi x̂(t)

where
µ1 = M1(x1(t)) and µ2 = M2(x1(t)).

Case II: ν(t) are unavailable for feedback
In this case, x1(t) = ν(t) is assumed to be unavailable for feedback; for instance, J = [0 0 1].
This implies that µi is unavailable for feedback. Using the LMI optimization algorithm and
Theorem 3 with γ = 1 and δ = 1, we obtain the following results:

X =

⎡

⎣

15.3866 −0.0454 0.0001
−0.0454 0.0086 −0.0005
0.0001 −0.0005 0.0121

⎤

⎦, Y =

⎡

⎣

195.0825 −19.8577 −0.0836
−19.8577 2.3203 0.1018
−0.0836 0.1018 2.5038

⎤

⎦,

Â11 =

⎡

⎣

−72.5111 1594.5334 6.34563
5.0232 −162.6656 −0.6001
1.2000 −0.7556 0.1000

⎤

⎦, Â12 =

⎡

⎣

−72.9233 1603.7455 −9.7233
5.1345 −162.8555 0.9974
1.2000 −0.5689 0.1000

⎤

⎦,

Â21 =

⎡

⎣

−74.5456 1595.2543 −5.6743
5.5411 −162.1785 0.5609
−1.7009 −0.9421 0.2000

⎤

⎦, Â22 =

⎡

⎣

−74.5290 1595.2231 −5.6744
5.5411 −162.1323 0.5966
−1.7008 −0.9432 0.2000

⎤

⎦,

B̂1 =

⎡

⎣

−166.7783
7.4682
4.5048

⎤

⎦, B̂2 =

⎡

⎣

−173.8473
9.1193
−6.8346

⎤

⎦,

Ĉ1 =
[

14.1938 −410.5257 −0.3593
]

, Ĉ2 =
[

14.2366 −412.9750 3.8984
]

.

The resulting fuzzy controller is
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Fig. 2. The ratio of the regulated output energy to the disturbance noise energy:
(

∫ Tf
0 zT(t)z(t)dt
∫ Tf
0 wT(t)w(t)dt

)

.

˙̂x(t) =
2

∑
i=1

2

∑
j=1

µ̂iµ̂j Âij x̂(t) +
2

∑
i=1

µ̂iB̂iy(t)

u(t) =
2

∑
i=1

µ̂iĈi x̂(t)

where

µ̂1 = M1(x̂1(t)) and µ̂2 = M2(x̂1(t)).

Remark 1 Both robust fuzzy state and output controllers guarantee that the L2-gain, γ, is less than
the prescribed value. The ratio of the regulated output energy to the disturbance input noise energy
which is obtained by using the H∞ fuzzy controllers is depicted in Figure 2. The disturbance input
signals, w1(t), w2(t) and w3(t), which were used during the simulation is given in Figure 3. After
3 seconds, the ratio of the regulated output energy to the disturbance input noise energy tends to a
constant value which is about 0.32 for the state-feedback controller, and 0.21 for the output feedback
controller in Case I and 0.14 in Case II. Thus, for the state-feedback controller where γ =

√
0.32 =

0.566, for output feedback controller in Case I where γ =
√
0.21 = 0.458 and in Case II where γ =√

0.14 = 0.374, all are less than the prescribed value 1.

6. Conclusion

This chapter has investigated the problem of designing a robust fuzzy controller for a TS
fuzzy system with parametric uncertainties that guarantees the L2-gain from an exogenous
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input to a regulated output being less than or equal to the prescribed value. An LMI-based
approach has been employed to derive sufficient conditions for the existence of a robust H∞

fuzzy controller in terms of a family of LMIs. Finally, a numerical simulation example has
been presented to illustrate the effectiveness of the designs.
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Fig. 3. The disturbance input signals, w1(t), w2(t) and w3(t).
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