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1. Introduction

In the last two decades there has seen an increasing interest in the coupling analysis
between fluid flow and stress/deformation in fractured rocks, mainly due to the modeling
requirements for design and performance assessment of underground radioactive waste
repositories, natural gas/oil recovery, seepage flow through dam foundations, reservoir
induced earthquakes, etc. Characterization of hydraulic conductivity for fractured rock
masses, however, is one of the most challenging problems that are faced by geotechnical
engineers. This difficulty largely comes from the fact that rock is a heterogeneous geological
material that contains various natural fractures of different scales (Jing, 2003). When
engineering works are constructed on or in a rock mass, deformation of both the fractures
and intact rock will usually occur as a result of the stress changes. Due to the stiffer rock
matrix, most deformation occurs in the fractures, in the form of normal and shear
displacement. As a result, the existing fractures may close, open, grow and new fractures
may be induced, which in turn changes the structure of the rock mass concerned and alters
its fluid flow behaviours and properties. Therefore, the fractures often play a dominant role
in understanding the flow-stress/deformation coupling behavior of a rock system, and their
mechanical and hydraulic properties have to be properly established (Jing, 2003).
Traditionally, fluid flow through rock fractures has been described by the cubic law, which
follows the assumption that the fractures consist of two smooth parallel plates. Real rock
fractures, however, have rough walls, variable aperture and asperity areas where the two
opposing surfaces of the fracture walls are in contact with each other (Olsson & Barton,
2001). To simplify the problem, a single, average value (or together with its stochastic
characteristics) is commonly used to describe the mechanical aperture of an individual
fracture. A great amount of work (Lomize, 1951; Louis, 1971; Patir & Cheng, 1978; Barton et
al., 1985; Zhou & Xiong, 1996) has been done to find an equivalent, smooth wall hydraulic
aperture out of the real mechanical aperture such that when Darcy’s law or its modified
version is applied, the equivalent smooth fracture yields the same water conducting
capacity with its original rough fracture. It is worth noting that clear distinction manifests
between the geometrically measured mechanical aperture (denoted by b in the context) and
the theoretical smooth wall hydraulic aperture (denoted by b"), and the former is usually
larger in magnitude than the latter due to the roughness of and filling materials in rock
fractures (Olsson & Barton, 2001).
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4 Developments in Hydraulic Conductivity Research

The ubiquity of fractures significantly complicates the flow behaviour in a discontinuous rock
mass. The primary problem here is how to model the flow system and how to determine its
corresponding hydraulic properties for flow analysis. Theoretically, the representative
elementary volume (REV) of a rock mass can serve as a criterion for selecting a reasonable
hydromechanical model. This statement relates to the fact that REV is a fundamental concept
that bridges the micro-macro, discrete-continuous and stochastic-determinate behaviours of
the fractured rock mass and reflects the size effect of its hydraulic and mechanical properties.
The REV size for the hydraulic or mechanical behaviour is a macroscopic measurement for
which the fractured medium can be seen as a continuum. It is defined as the size beyond
which the rock mass includes a large enough population of fractures and the properties (such
as hydraulic conductivity tensor and elastic compliance tensor) basically remain the same
(Bear, 1972; Min & Jing, 2003; Zhou & Yu, 1999; Wang & Kulatilake, 2002). Owing to high
heterogeneity of fractured rock masses, however, the REV can be very large or in some
situations may not exist. If the REV does not exist, or is larger than the scale of the flow region
of interest, it is no longer appropriate to use the equivalent continuum approach. Instead, the
discrete fracture flow approach may be applied to investigate and capture the hydraulic
behaviour of the fractured rock masses. However, due to the limited available information on
fracture geometry and their connectivity, it is not a trivial task to make a detailed flow path
model. Thus, in practice, the equivalent continuum model is still the primary choice to
approximate the hydraulic behaviour of discontinuous rocks.

The hydraulic conductivity tensor is a fundamental quantity to characterizing the
hydromechanical behaviour of a fractured rock. Various techniques have been proposed to
quantify the hydraulic conductivity tensor, based on results from field tests, numerical
simulations, and back analysis techniques, etc. Earlier investigations focused on using field
measurements (e.g. aquifer pumping test or packer test (Hsieh & Neuman, 1985)) to
estimate the three-dimensional hydraulic conductivity tensor. This approach, however, is
generally time-consuming, expensive and needs well controlled experimental conditions.
Numerical and analytical methods are also used to estimate the hydraulic properties of
complex rock masses due to its flexibility in handling variations of fracture system geometry
and ranges of material properties for sensitivity or uncertainty estimations. In the literature,
both the equivalent continuum approach (Snow, 1969; Long et al., 1982; Oda, 1985; Oda,
1986; Liu et al., 1999; Chen et al., 2007; Zhou et al., 2008) and the discrete approach (Wang &
Kulatilake, 2002; Min et al., 2004) are widely applied. In this chapter, however, only the
equivalent continuum approach is focused for its capability of representing the overall
behaviour of fractured rock masses at large scales.

Among many others, Snow (1969) developed a mathematical expression for the
permeability tensor of a single fracture of arbitrary orientation and aperture and considered
that the permeability tensor for a network of such fractures can be formed by adding the
respective components of the permeability tensors for each individual fracture. Oda (1985,
1986) formulated the permeability tensor of rock masses based on the geometrical statistics
of related fractures. Liu et al. (1999) proposed an analytical solution that links changes in
effective porosity and hydraulic conductivity to the redistribution of stresses and strains in
disturbed rock masses. Zhou et al. (2008) suggested an analytical model to determine the
permeability tensor for fractured rock masses based on the superposition principle of liquid
dissipation energy. Although slight discrepancy exists between the permeability tensor and
the hydraulic conductivity tensor (the former is an intrinsic property determined by fracture
geometry of the rock mass, while the latter also considers the effects of fluid viscosity and
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Stress/Strain-Dependent Properties of Hydraulic Conductivity for Fractured Rocks 5

gravity), when taking into account the flow-stress coupling effect, the above models
presented, respectively, by Snow (1969), Oda (1985) and Zhou et al. (2008) were proved to be
functionally equivalent for a certain fluid (Zhou et al., 2008). A common limitation with the
above models lies in the fact that the hydraulic conductivity tensor of a fractured rock mass
is all formulated to be either stress-dependent or elastic strain-dependent. Consequently,
material nonlinearity and post-peak dilatancy are not considered in the formulation of the
hydraulic conductivity tensor for disturbed rock masses. To address this problem, Chen et
al. (2007) extended the above work and proposed a numerical model to establish the
hydraulic conductivity for fractured rock masses under complex loading conditions.

Based on the observation that natural fractures in a rock mass are most often clustered in
certain critical orientations resulting from their geological modes and history of formation
(Jing, 2003), characterizing the rock mass as an equivalent continuum containing one or
multiple sets of planar and parallel fractures with various critical orientations, scales and
densities turns out to be a desirable approximation. Starting from this point of view, the
deformation patterns of the fracture network can be first characterized by establishing an
equivalent elastic or elasto-plastic constitutive model for the homogenized medium. On this
basis, a stress-dependent hydraulic conductivity tensor may be formulated for the former
for describing the hydraulic behaviour of the rock mass at low stress level and with overall
elastic response; and a strain-dependent hydraulic conductivity tensor for the latter for
demonstrating the influences of material non-linearity and shear dilatancy on the hydraulic
properties after post-peak loading. This chapter mainly presents the research results on the
stress/strain-dependent hydraulic properties of fractured rock masses under mechanical
loading or engineering disturbance achieved by Chen et al. (2006), Zhou et al. (2006), Chen
et al. (2007) and Zhou et al. (2008).

The stress-dependent hydraulic conductivity model (Zhou et al., 2008) was proposed for
estimation of the hydraulic properties of fractured rock masses at relatively lower stress
level based on the superposition principle of flow dissipation energy. It was shown that the
model is equivalent to Snow’s model (Snow, 1969) and Oda’s model (Oda, 1986) not only in
form but also in function when considering the effects of mechanical loading process on the
evolution of hydraulic properties. This model relies on the geometrical characteristics of
rock fractures and the corresponding fracture network, and demonstrates the coupling effect
between fluid flow and deformation. In this model, the pre-peak dilation and contraction
effect of the fractures under shear loading is also empirically considered. It was applied to
estimate the hydraulic properties of the rock mass in the dam site of the Laxiwa
Hydropower Project located in the upstream of the Yellow River, China, and the model
predictions have a good agreement with the site observations from a large number of single-
hole packer tests.

The strain-dependent hydraulic conductivity model (Chen et al., 2007), on the other hand,
was established by an equivalent non-associative elastic-perfectly plastic constitutive model
with mobilized dilatancy to characterize the nonlinear mechanical behaviour of fractured
rock masses under complex loading conditions and to separate the deformation of weaker
fractures from the overall deformation response of the homogenized rock masses. The major
advantages of the model lie in the facts that the proposed hydraulic conductivity tensor is
related to strains rather than stresses, hence enabling hydro-mechanical coupling analysis to
include the effect of material nonlinearity and post-peak dilatancy, and the proposed model
is easy to be included in a FEM code, particularly suitable for numerical analysis of
hydromechanical problems in rock engineering with large scales. Numerical simulations
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6 Developments in Hydraulic Conductivity Research

were performed to investigate the changes in hydraulic conductivities of a cube of fractured
rock mass under triaxial compression and shear loading as well as an underground circular
excavation in biaxial stress field at the Stripa mine (Kelsall et al., 1984; Pusch, 1989), and the
simulation results are justified by in-situ experimental observations and compared with
Liu’s elastic strain-dependent analytical solution (Liu et al., 1999).

Unless otherwise noted, continuum mechanics convention is adopted in this chapter, i.e.,
tensile stresses are positive while compressive stresses are negative. The symbol (:) denotes
an inner product of two second-order tensors (e.g., a:b=a;b;) or a double contraction of
adjacent indices of tensors of rank two and higher (e.g., c:d=cjjudy), and (®) denotes a dyadic
product of two vectors (e.g., a®b=a;b;) or two second-order tensors (e.g., c®d=cjjd).

2. Stress-dependent hydraulic conductivity of rock fractures

In this section, the elastic deformation behaviour of rock fractures at the pre-peak loading
region will be first presented, and then a stress-dependent hydraulic conductivity model
will be formulated. The deformation model (or indirectly the hydraulic conductivity model)
is validated by the laboratory shear-flow coupling test data obtained by Liu et al. (2002). The
main purpose of this section is to provide a theory for developing a stress-dependent
hydraulic conductivity tensor for fractured rock masses that will be presented later in
Section 4.

2.1 Characterization of rock fractures

One of the major factors that govern the flow behaviour through fractured rocks is the void
geometry, which can be described by several geometrical parameters, such as aperture,
orientation, location, size, frequency distribution, spatial correlation, connectivity, and
contact area, etc. (Olsson & Barton, 2001; Zhou et al., 1997; Zhou & Xiong, 1997). Real
fractures are neither so solid as intact rocks nor void only. They have complex surfaces and
variable apertures, but to make the flow analysis tractable, the geometrical description is
usually simplified. It is common to assume that individual fractures lie in a single plane and
have a constant hydraulic aperture. When the fractures are subjected to normal and shear
loadings, the fracture aperture, the contact area and the matching between the two opposing
surfaces will be altered. As a result, the equivalent hydraulic aperture of the fractures varies
with their normal and shear stresses/displacements, which demonstrates the apparent
coupling mechanism between fluid flow and stress/deformation (Min et al., 2004).

The aperture of rock fractures tends to be closed under applied normal compressive stress. The
asperities of the surfaces will be crushed when their localized compressive stresses exceed
their compressive strength. As a large number of asperities are crushed under high
compressive stress, the contact area between the fracture walls increases remarkably and the
crushed rock particles partially or fully fill the nearby void, which decreases the effective flow
area, reduces the hydraulic conductivity of the fracture, and even changes the flow paths
through fracture plane. Fig. 1 depicts the increase in contact area of fractures under increasing
compressive stresses modelled by boundary element method (Zimmerman et al., 1991).

The coupling process between fluid flow and shear deformation is more related to the
roughness of fractures and the matching of the constituent walls. Fig. 2 shows the impact of
the fracture structure on the shear stress-deformation coupling mechanism. In Fig. 2(a), the
opposing walls of the fracture are well matched so that the fracture always dilates and the
hydraulic conductivity increases under shear loading as long as the applied normal stress is
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Stress/Strain-Dependent Properties of Hydraulic Conductivity for Fractured Rocks 7

not high enough for the asperities to be crushed. For the state shown in Fig. 2(c), shear
loading will result in the closure of the fracture and the reduction in hydraulic conductivity.
Fig. 2(b) illustrates a middle state between (a) and (c), and its shearing effect depends on the
direction of shear stress. When the matching of a fracture changes from (a) to (b) then to (c)
under shear loading, shear dilation occurs. On the other hand, shear contraction takes place
from the movement of the matching from (c) to (b) then to (a). In a more complex scenario,
shear dilation and shear contraction may happen alternately, resulting in the fluctuation of
the hydraulic behaviour of the fractures.

©) (d)
Fig. 1. Variation of contact surface of fractures under increasing compressive stresses (after
Zimmerman et al., (1991): (a) P=0 MPa; (b) P=20 MPa; (c) P=40 MPa and (d) P=60 MPa

NN NN, NN

(@) (b) (©)
Fig. 2. Shear dilation and shear contraction of fractures: (a) well-matched; (b) fair-matched;
and (c) bad-matched
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8 Developments in Hydraulic Conductivity Research

2.2 An elastic constitutive model for rock fractures

To formulate the stress-dependent hydraulic conductivity for rock fractures, we model the
fractures by an interfacial layer, as shown in Fig. 3. The interfacial layer is a thin layer with
complex constituents and textures (depending on the fillings, asperities and the contact area
between its two opposing walls). Assumption is made here that the apparent mechanical
response of the interfacial layer can be described by Lame’s constant 4 and shear modulus z.
Because the thickness of the interfacial layer (i.e., the initial mechanical aperture of the
fracture) is generally rather small comparing to the size of rock matrix, it is reasonable to
assume that &=g,=0 and y,=,=0 within the interfacial layer. Then according to the Hooke’s
law of elasticity, the elastic constitutive relation for the interfacial layer under normal stress
on and shear stress 7 can be written in the following incremental form:

O
}» y Rock block

Rock block

bo

x
?

X

Interfacial layer

«— «— < <«

Fig. 3. The interfacial layer model for rock fractures

doy| |A+2ux 0|[de, 1
Lok 0 ) :

For convenience, we use u; to denote the relative normal displacement of the interfacial
layer caused by the effective normal stress o'y, 0 to denote the relative tangential
displacement caused by the shear stress 7, and u> to denote the relative normal displacement
caused by shear dilation or contraction (positive for dilatant shear, negative for contractive
shear). Hence, the total normal relative displacement u is represented as

U=1uy+1uy (2)

The increments of strains, d&, and dy, can be expressed in terms of the increments of relative
displacements, du; and dd, as follows:

de, =duq / (by +u) 3
dy=dé / (b +u) )

where by is the thickness of the interfacial layer or the initial mechanical aperture of the
fracture. Substituting Eq. (3) in Eq. (1) yields:

dop)| [ke 07(du '
(el o) ®
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where k, and ks denote the tangential normal stiffness and tangential shear stiffness of the
interfacial layer, respectively.

ko =(A+2u) [/ (by +u), ks =p/(by+u) ®)

Interestingly, k, and ks show a hyperbolic relation with normal deformation and characterize
the deformation response of the interfacial layer under the idealized conditions that each
fracture is replaced by two smooth parallel planar plates connected by two springs with
stiffness values k, and k;. As can be seen from Eq. (5), as long as the initial normal stiffness
and shear stiffness with zero normal displacement, kno and ks, are known, they can be used
as substitutes for A and z.
Substituting Eq. (2) in Eq. (4) results in:
do!, = (A +2u)duy
by +uq +uy

6)

udo

dr=—"——
b0+l/l1 + Uy

)

Suppose normal stress o, is firstly applied before the loading of shear stress, u; can be
obtained by directly integrating Eq. (6):

= (0 + uz{exp( ; f”;ﬂj—l} ®)

Here, it is to be noted that the elastic constitutive model for the rock fracture leads to an
exponential relationship between the fracture closure and the applied normal stress, which
has been widely revealed in the literature, e.g., in Min et al. (2004).

On the other hand, the shear expansion caused by dJ can be estimated from shear dilation
angle dp:

du, = tan d, do )

By introducing two parameters, s and ¢, pertinent to normal stress o, we represent the
dilation angle d, under normal stress o in the form of Barton’s strength criterion for joints
(Barton, 1976) (7 = on tan(2dm+¢p), where ¢, is the basic frictional angle of joints):

tand,, = l[arct(m (1) - go} (10)
2 s

Obviously, s is a normal stress-like parameter, and ¢ is a frictional angle-like parameter. But
to make the above formulation still valid into pre-dilation state (i.e., shear contraction state),
s and ¢ differ from their initial implications. Later, we will show how they can be back
calculated from shear experimental data.

Substituting Egs. (9) and (10) into (7) yields:

s 1L 2)-ola an

b0+u1+u2_2,u S
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10 Developments in Hydraulic Conductivity Research

By integrating Eq. (11), we have:

2
Uy =(by +uq)qexp m(arctanm—(pj—iln 1+T—2 -1 (12)
2u s 4u s

By solving the simultaneous equations, Egs. (8) and (12), we have:

I A(1+B) by
1-AB (13)
B(1+A)
Uy = bO
1-AB
where
O_V
A=ex o -1 14
P(/HZ/J (14)
7] 7] s 2
B=exp| —| arctan——¢ |-—In| 1+— || -1 (15)
2u s 4u S

Thus, the total normal deformation under normal and shear loading can be obtained,

A+B+2AB
1-AB
The actual aperture of the fracture, b = bo+u, is given by:

U=U;+Uy = by (16)

b =by+u =(1+y)b (17)
where
_ A+B+2AB (18)
1-AB

2.3 Stress-dependent hydraulic conductivity for rock fractures

Since natural fractures have rough walls and asperity areas, it is not appropriate to directly
use the aperture derived by Eq. (17) for describing the hydraulic conductivity of the
fractures. Instead, an equivalent hydraulic aperture is usually taken to represent the
percolation property of the fractures, as demonstrated in Section 1. Based on experimental
data, the relationship between the equivalent hydraulic aperture and the mechanical
aperture has been widely examined in the literature, and the empirical relations proposed
by Lomize (1951), Louis (1971), Patir & Cheng (1978), Barton el al. (1985) and Olsson &
Barton (2001) are listed in Table 1. For example, if Patir and Cheng’s model is used to
estimate the equivalent hydraulic aperture that accounts for the flow-deformation coupling
effect in pre-peak shearing stage, then there is

1/3

b"=(1+ x)bo[1-09exp(-0.56 / C,)] (19)
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where C; is the variation coefficient of the mechanical aperture of the discontinuities, which
is mathematically defined as the ratio of the root mean squared deviation to the arithmetic
mean of the aperture. For convenience, Eq. (19) is rewritten as:

b =byf(B) (20)

Obviously, f(f) is a function of the normal and shear loadings, the mechanical characteristics
and the aperture statistics of the fractures.

Thus, the hydraulic conductivity of the fractures subjected to normal and shear loadings is
approximated by the hydraulic conductivity of the laminar flow through a pair of smooth
parallel plates with infinite dimensions:

(8
12v

(21)

where k is the hydraulic conductivity, ¢ is the gravitational acceleration, and v is the
kinematic viscosity of the fluid.

An alternative approach to account for the deviation of the real fractures from the ideal
conditions assumed in the parallel smooth plate theory is to adopt a dimensionless constant,
¢ to replace the constant multiplier, 1/12, in Eq. (21), where 0<¢<1/12 (Oda, 1986). In this
manner, the hydraulic conductivity of the fractures is estimated by

2

k= g& (22)
v

Clearly, the constant, ¢, approaches 1/12 with increasing scale and decreasing roughness of
the fractures.
Egs. (21) and (22) show that the hydraulic conductivity of a rock fracture varies
quadratically with its mechanical aperture. The latter depends, by Eq. (18), on the normal
and shear stresses applied on the fracture. Hence, we call the established model, Eq. (21) or
(22), the stress-dependent hydraulic conductivity model, and it is suitable to describe the

hydraulic behaviour of the fractures subjected to mechanical loading in the pre-peak stage.

Authors Expressions Descriptions

) * -1/3 b is the equivalent hydraulic
Lomize (1951) 9= b[1'0+6'0(8/ b)l‘s} aperture of fractures, b the

) , 157-1/3 mechanical aperture, e the absolute
Louis (1971) b =b[1.0+8.8(em / Dn) } asperity height, e, the average
Patir & Cheng | « 1/3 | asperity height, Dy the hydraulic
(1978) b =b[1-0.9exp(-0.56 / C,)] radius, C, the variation coefficient
Barton, et al. x .9 s of the mechanical aperture, [RC the
(1985) b =b"JRC joint roughness coefficient, JRCo

. ”5 the initial value of JRC, JRCpob the
Olsson & Barton b =b"JRCy”~ 6<0.756, mobilized JRC, ¢ the shear

(2001) b =bY/2JRC 5235, displacement and &, the peak shear

mob displacement.

Table 1. Empirical relations between equivalent hydraulic aperture and mechanical aperture
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12 Developments in Hydraulic Conductivity Research

2.4 Validation of the elastic constitutive model

The key point of the stress-dependent hydraulic conductivity model is whether the
established elastic constitutive model can properly describe the variation of mechanical
aperture under normal and shear loadings at low stress level. Here, we use the results of the
laboratory test performed by Liu et al. (2002) to validate the mechanical model. The test was
conducted to study shear-flow coupling properties for a marble fracture with fillings of sand
under low normal stresses and small shear displacements.

The marble specimen for shear-flow coupling test is illustrated in Fig. 4, which was collected
from the Daye Iron Mine in China. The uniaxial compressive strength and density of the
rock sample are 52.4 MPa and 2.66x103 kg/m3, respectively. The specimen was cut into
round shape and the fracture surfaces were polished, with its size of 290 mm in diameter
and 200 mm in height. The opposite walls of the fracture were cemented with a layer of
filtered sands with their diameters ranged from 0.5 to 0.69 mm, and the fracture was further
filled with the same sands. The initial aperture of the fracture, by, is about 1.31 mm.

The coupled shear-flow test were conducted by first applying a prescribed normal stress
ranging between 0.1 and 0.5 MPa and then applying shear displacement in steps until a
maximum displacement of about 0.4 mm was reached. During tests, steady-state fluid flow
rate and normal displacement were continuously recorded.

With such low normal stresses and small shear displacements, it is reasonable to consider
that the fracture behaves elastic during the coupled shear-flow test. According to the
experimental results, the elastic parameters, 4 and u, of the fracture with fillings are
estimated as A4=1.81 MPa and =3.62 MPa. In order to enable Eq. (16) to predict the
mechanical aperture of the facture under normal and shear loads, the normal stress-like
parameter, s, and the frictional angle-like parameter, ¢, should be further determined.
Fortunately, both of them can be derived by fitting the experimental curve between normal
displacement and shear displacement, as plotted in Fig. 5, using Eq. (16) such that the least
square error is minimized. With this approach, we obtain that for 0,=0.1 MPa, s=0.062,
¢=1.324, and for 0,=0.4 MPa, s=0.046, ¢=1.310.

Fig. 5 plots the experimental results as well as the model predictions of the relation between
mechanical aperture and shear displacement of the fracture under constant normal stresses.
Generally, the proposed elastic constitutive model manifests the behaviour of the fracture
with fillings during the shear-flow coupling test with low normal and shear loads. Shear
contraction is observed in the initial 0.06-0.08 mm of shear displacement, which is followed
by shear dilation in the remaining of the shear displacement. This property, which is
actually ensured by the empirical relation assumed in Eq. (9), suggests that the resultant
model is suitable for phenomenologically describing the pre-peak shear-flow coupling effect
of fractures.

Fig. 6 further depicts the sensitivity of s and ¢ on the behaviour of the fracture. In Fig.
6(a), ¢ is fixed to 1.324, while s varies from 0.02 to 0.08. As s increases, shear contraction
more apparently manifests, and the mechanical aperture versus shear displacement
curves become lower as a whole. On the other hand, the effect of varying ¢ from 0.524 to
1.222 but fixing s to 0.062 is plotted in Fig. 6(b). For small value of ¢, shear contraction is
trivial and the curve extends with a larger slope. As ¢ increases, however, shear
contraction becomes relatively remarkable and the curve turns relatively flat. Thus, by
adjusting s and ¢, the mechanical and hydraulic behaviours of the fracture can be
appropriately established.
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Fig. 4. Sketch of the marble specimen for shear-flow coupling test
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14 Developments in Hydraulic Conductivity Research

3. Strain-dependent hydraulic conductivity of rock fractures

In this section, we develop an elasto-plastic constitutive model for single hard rock fractures
with consideration of nonlinear normal deformation and post-peak shear dilatancy, and
then formulate the strain-dependent hydraulic conductivity for the fractures under dilated
shear loading. Compared with the stress-dependent model presented in Section 2, one major
difference is that the strain-dependent model is capable of describing the influence of post-
peak mechanical response on the hydraulic properties of the fractures. This work is of
paramount importance in the sense that the theoretical results are directly comparable with
the experimental data of coupled shear-flow test, e.g. in Esaki et al. (1999). The strain-
dependent hydraulic conductivity tensor can then be developed on this basis, which will be
presented later in Section 5.

3.1 An elasto-plastic constitutive model for rock fractures

The underlying physical model considered is the same with the model plotted in Fig. 3, in
which a fracture of hard rock is located at the mid-height of a specimen between two intact
rock blocks. The height of the specimen is denoted by s, and the initial aperture of the
fracture is bp. When constant normal stress o, and increasing shear displacement & are
applied on the specimen, typical and idealized curves of shear displacement versus shear
stress and shear displacement versus normal displacement (i.e. 5~z curve and o~u curve) are
plotted in Fig. 7. The shear stress increases linearly with the shear displacement (linked by
the initial shear stiffness of the fracture, k) until the shear stress approaches the peak, 7z,
which is then followed by a shear softening process in which the shear stress decreases to a
residual level at a decreasing gradient with increasing shear displacement. For the purpose
of deriving the hydraulic property of the fracture in post-peak loading section, however, an
elastic-perfectly plastic 5~rrelationship can be assumed, as shown in Fig. 7(a).

T A Idealized 6~1 curve

Experimental 6 ~ 7 curve du
; do

| : -
@) 6, 5o~ 5

Fig. 7. Typical and idealized curves of shear displacement versus shear stress and shear
displacement versus normal displacement of a fracture subjected to normal and shear loads

The deformation response of a rock fracture subjected to normal and shear loadings includes
two components: one is the nonlinear closure of the fracture due to normal compression, and
the other is the opening of the fracture due to shear dilation. Experimental results in Esaki et
al. (1999) show that in the shearing process under constant normal loading, dilatancy will start
when the shear stress approaches the peak and it increases at a decreasing gradient with
increasing shear displacement, as illustrated in Fig. 7(b). As a result, the aperture of the
fracture and then the hydraulic conductivity vary with increasing shear displacement.
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Therefore, we may consider that shear dilatancy as well as the change in hydraulic
conductivity accompanies normal and plastic shear deformations of the fracture. To deduce
the hydraulic conductivity of the fracture with an averaging method, which will be further
used later for deriving the hydraulic conductivity tensor for fractured rocks, we view the
specimen with fracture as an equivalent continuous medium, i.e. the hydromechanical
properties of the fracture are averaged into the whole specimen. As can be seen later, such a
treatment does not affect our final solution to a single fracture, but it renders valid the small
strain assumption on the fractures in the presence of post-sliding plasticity.

For a one-dimensional problem with a single rock fracture, the elasto-plastic constitutive
model can be represented in the following forms:

T
7p=7—7e=é—i=é——p (23)
s s s sky
_%n
&n = %, + I tanydy, (24)

where 7, % and y, are the total shear strain, the elastic shear strain and the plastic shear
strain of the fracture, respectively; &, is the normal strain of the fracture; 7, is the peak shear
stress of the fracture under effective normal stress o'y; kn and kg are, respectively, the normal
stiffness and the initial shear stiffness of the fracture; & is the maximum elastic shear
displacement upon shear yielding, with & = 7,/ks0, as shown in Fig. 7(a); and y is the
mobilized dilatancy angle of the fracture. Note that in Eq. (24), the first term on the right
hand side denotes the nonlinear closure of the fracture subjected to effective normal stress
o'n, while the second term denotes the opening of the fracture due to shear dilatancy.
Existing studies have indicated that shear dilatancy is highly dependent on the plasticity
already experienced by the fractures and normal stress, and non-negligibly dependent on
scale (Barton & Bandis, 1982; Yuan & Harrison, 2004; Alejano & Alonso, 2005). The decaying
process of the dilatancy angle in line with plasticity can be described by the following
negative exponential expression through the plastic shear strain, y, or indirectly through
the plastic shear displacement, &, on the basis of Eq. (23):

¥V = V¥peak€XP [—1’(5 - 50 )] (25)

where 7 is a parameter for modelling the rate of decay that y undergoes as the plastic shear
strain evolves. If =0, then a constant dilatancy angle is recovered. As r—o, the dilatancy
angle quickly decays to zero. ypeax is the peak dilatancy angle of the fracture in the form of
(Barton & Bandis, 1982)

l//peak = ]RC ’ 10810 Q (26)
—o!,
where JRC and JCS are the roughness coefficient and the wall compressive strength of
fractures, respectively, and the actual values of them should be scale-corrected (Barton &
Bandis, 1982). Thus, the dependencies of fracture dilatancy on plasticity, normal stress and
scale are established through Eqs. (25) and (26).
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Note that Eq. (25) shares the same shape with the asperity angle proposed for the
description of shear dilatancy and surface degradation (Plesha, 1987), but the latter is
represented as a function of the plastic tangential work. With the assumption of elastic-
perfectly plasticity, they are fully equivalent for monotonic loading (Jing et al., 1993). Cyclic
loading is not a concern in this simple model, but when cyclic loading is involved, another
independent function can be associated to the reverse loading that starts from the original
point, just as the suggestion given in Plesha (1987) for asperity angles in two opposite
directions, in order to satisfy the thermodynamic restriction condition presented in Jing et
al. (1993).
Using the Mohr-Coulomb criteria, the peak shear stress 7, of the fracture under effective
normal stress o', satisfies

T, =—optang +c (27)
where ¢ and c are the frictional angle and the cohesion of the fracture.
Differentiating Eq. (23) yields

dyp =d7=%d§ (28)

Combining Egs. (24) and (28) results in
o, (%
Ab~se, = k—: + j% tany (5)do (29)

An interesting phenomenon in Eq. (29) is, as described before, the change in the aperture of
the fracture, Ab, is irrelevant to the height of the specimen, s. To conveniently use this
formulation, two remedies can be further made:
First, suppose that the hyperbolic variation of k, with the increase of aperture can be
considered in the following (Huang et al., 2002):

_ ~%n *+bokng

k
n bo

(30)

where kn is the initial normal stiffness of the fracture.

Second, by employing the Taylor series expansion (truncated at the third order term), tany
can be adequately approximated by y+y?/3 in radians for a rather large yjpeax, €.g. 30°.

From Eq. (29) and the above two remedies, we have

Ab = b, (31)

b=by+Ab=(1+ x)b, (32)

with the parameter, y, in the following form

' 1w v
Z = ,L_{__ peak [1 _e_r(§_50):| +Lak|:1 _e_3r(5_50)J (33)
—Op t bokno bo r 9r

www.intechopen.com



Stress/Strain-Dependent Properties of Hydraulic Conductivity for Fractured Rocks 17

3.2 Strain-dependent hydraulic conductivity for rock fractures
Rewrite from Eq. (22) the initial hydraulic conductivity of the fracture, ko, in the following
form:

b
k=g &0 (34

Then, the hydraulic conductivity of the fracture under effective normal stress o', and shear
displacement o can be described by

b2
k=8 = k(14 2)7 (35)

Hence, a theoretical model of the hydraulic conductivity for a single rock fracture is finally
formulated, which is totally determined by the effective normal stress o' and the shear
displacement ¢, as well as a set of parameters characterizing the behaviour of the fracture
(i.e. bo, ¢ kno, kso, @ ¢, JRC, JCS and r, which all can be deduced or back-calculated from
experimental data).

Note that by Egs. (35) and (33), the proposed hydraulic conductivity model for rock
fractures subjected to normal and shear loadings with mobilized dilatancy behaviour
depends in form on the plastic shear displacement, but from Eq. (23), one observes that the
model depends indirectly on the plastic shear strain. Thus, we classify the established model
into the stain-dependent hydraulic conductivity model.

3.3 Validation of the proposed model

Esaki et al. (1999) systematically investigated the coupled effect of shear deformation and
dilatancy on hydraulic conductivity of rock fractures by developing a new laboratory
technique for coupled shear-flow tests of rock fractures. In this section, we validate the
theory proposed in Section 3.2 using the experimental data reported in Esaki et al. (1999).
For this purpose, we first briefly introduce the experiments, and then predict our analytical
results through Egs. (31) and (35) by directly comparing with the experimental data.

3.3.1 The coupled shear-flow tests

The coupled shear-flow tests were conducted with an artificially created granite fracture
sample under various constant normal loads and up to a residual shear displacement of 20
mm (Esaki et al., 1999). The underlying specimen for coupled shear-flow tests is sketched in
Fig. 3, with its size of 120 mm in length, 100 mm in width and 80 mm in height. The initial
aperture of the created fracture, by, is about 0.15 mm. The value of JRC is 9, and the value of
JCS is 162 MPa, respectively.

The coupled shear-flow tests were conducted by first applying a prescribed normal stress
ranging between 1 MPa and 20 MPa and then applying shear displacement in steps at a rate
of 0.1 mm/s until a maximum shear displacement of 20 mm was reached. During tests,
steady-state fluid flow rate, shear loading and dilatancy were all continuously recorded. The
hydraulic aperture and conductivity were back-calculated by applying the cubic law, with
the flow equations solved by using a finite difference method.
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3.3.2 Determination of the parameters for the proposed model

Some of the experimental values of the mechanical parameters of the fracture specimen
during the coupled shear-flow tests are listed in Table 2 (taken from Table 1 in Esaki et al.
(1999)). Using the data as listed in Table 2, we plot the peak shear stress versus normal stress
curve in Fig. 8, which can be fitted by a linear equation 7,=1.0580,+0.993 with a high
correlation coefficient of 0.9999. Therefore, the shear strength of the specimen can be derived
as ¢=46.6° and ¢=0.99 MPa, respectively.

on (MPa) 7, (MPa) kso (MPa/mm)
1 2.06 3.37
5 6.16 10.65
10 11.74 11.97
20 22.10 17.97

Table 2. Mechanical parameters of the artificial fracture (After Esaki et al. (1999))

The initial normal stiffness of the fracture of the specimen, kno, has to be estimated from the
recorded initial normal displacement with zero shear displacement under different normal
stresses. From the data plotted in Fig. 9 (which is taken from Fig. 7b in Esaki et al. (1999)), kno
can be estimated as k=100 MPa/mm by considering the possible deformation of the intact
rock under high normal stresses. It is to be noted that in the remainder of this section, the
hard intact rock deformation of the small specimen is neglected, meaning that the normal
displacement of the specimen mainly occurs in the fracture of the specimen and it is
approximately equal to the increment of the mechanical aperture of the fracture.
Theoretically, the decay coefficient of the fracture dilatancy angle, r, can be directly
measured from the normal displacement versus shear displacement curves as plotted in Fig.
9. A better alternative, however, is to fit the experimental curves using Eq. (31) such that the
least square error is minimized. By this approach, we obtain that r=0.13 with a correlation
coefficient of 0.9538.

25

— [\
()] (=]

—_
(=)

Peak shear stress (MPa)

Normal stess (MPa)

Fig. 8. Peak shear stress versus normal stress curve of the fracture.
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To obtain the dimensionless constant, ¢, in Eq. (35) that relates the mechanical aperture to
the hydraulic conductivity of the fracture under testing, further efforts are needed. A simple
approach is to back-calculate ¢ directly using Eq. (34) with initial hydraulic conductivity, ko.
But similarly, the better alternative is to fit the hydraulic conductivity versus shear
displacement curves, as plotted in Fig. 11 (which is taken from Fig. 7c-f in Esaki et al. (1999)),
using Eq. (35) such that the least square error is minimized. With such a method, we obtain
that ¢=0.00875. This means that the mechanical aperture, b, and the hydraulic aperture, b",
are linked with b*=0.324b, which is very close to the experimental result shown in Fig. 8 in
Esaki et al. (1999).
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3.0 3.0 ‘ ‘
- | |
g 25 = 25 - - - - - - - - |— — — — — — - - —
E g w w
= 20 = 20 Lo _____ L
5y s [ \
£ 15 | E 15 - |yt & AT T
g g
2 1.0 =T | T
S 3
—g 05 Té 0.5 F--2¢----- —a— -Experimental -~
S 00 o* - - ————- Analytical - S 00 L& - - __ Analytical |
Z ' [ [ Z 1 ; ;
-0.5 ‘ : -0.5 ‘ ‘
0 5 10 15 20 0 5 10 15 20
Shear displacement (mm) Shear disp lacement (mm)
(@) (b)
Normal stress: 10 MPa Normal stress: 20 MPa
3.0 ‘ ‘ ‘ 3.0 : :
| | |
B L =25 b ________ - [
g 25 4‘ : : g | |
S 2.0 ! ! ! Z 20 [ ‘ ‘
S 20 p----- g s . = | |
S | | | g ! !
E 15 Lo S mmm oo — 8 15 F---------——- - - = — - R et
2 | | | 2 ! !
2 10 F----- ‘ %4 210 F-——————————— :——————:— ——————
= =
Té 05 F-—-———a=FfF—--—- : 777777 : 777777 g 0.5 [ [
S 00 ~ — & — Experimental E 00 L2 —a— -Experimental |
4 | Analytical 4 Analytical
-0.5 : : : 05 !
0 5 10 15 20 0 5 10 15 20
Shear displacement (mm) Shear displacement (mm)
(©) (d)

Fig. 9. Comparison of the fracture aperture analytically predicted by Eq. (31) with that
measured in coupled shear-flow tests.

3.3.3 Validation of the proposed theory

With the necessary parameters obtained in Section 3.3.2, we are now ready to compare the
proposed model in Egs. (31) and (35) with the experimental data presented in Esaki et al.
(1999). Note that although the experimental data are available for one cycle of forward and
reverse shearing, only the results for the forward shearing part are considered. The reverse
shearing process, however, can be similarly modelled.
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Fig. 9 depicts the relations between the mechanical aperture and shear displacement that were
measured from the coupled shear-flow tests presented in Esaki et al. (1999) and predicted by
using the proposed model given in Eq. (31) under different normal stresses applied during the
testing. It can be observed from Fig. 9 that our proposed analytical model is able to describe
the shear dilatancy behaviour of a real fracture under wide range of normal stresses between 1
MPa and 20 MPa by feeding appropriate parameters. Even the fracture aperture increases by
one order of magnitude due to shear dilation, the analytical model still fitted the experimental
results well. For practical uses, the slight discrepancies between the analytical results and the
experimental data are negligible and the proposed model is accurate enough to characterize
the significant dilatancy behaviour of a real fracture.

This performance is largely attributed to the dilatancy model introduced through Egs. (25)
and (26). The dilatancy angles of the fracture evolving with the plastic shear displacement
under different normal stresses are illustrated in Fig. 10. The high dependencies of the
dilatancy angle of the fracture on normal stress and plasticity are clearly demonstrated in
the curves. The peak dilatancy angle, which can be rather accurately modelled by Barton’s
peak dilatancy relation (Barton & Bandis, 1982), decreases logarithmically with the increase
of the applied normal stress. For normal stresses of 1 MPa, 5 MPa, 10 MPa and 20 MPa, the
peak dilatancy angles are 19.9°, 13.6°, 10.9° and 8.2°, respectively. On the other hand, the
dilatancy angle undergoes negative exponential decay with increasing plastic shear
displacement, a process related to surface degradation of rough fractures.

Fig. 11 shows the hydraulic conductivity versus shear displacement relations that were
back-calculated from fluid flow results using the finite difference method from the coupled
shear-flow tests presented in Esaki et al. (1999) and that are predicted by the proposed
model given in Eq. (35) under different normal stresses during testing. As shown in the
semi-logarithmic graphs in Fig. 11, the proposed analytical model can well predict the
evolution of hydraulic conductivity of the tested rock fracture, with the change in the
magnitude of 2 orders, during coupled shear-flow tests under different normal stresses. The
ratios of the predicted hydraulic conductivities to the corresponding experimental results all
fall in between 0.3 and 3.0, indicating that they are rather close in orders of magnitude and
the predicted results are suitable for practical use.
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Fig. 10. Dilatancy angles of the fracture evolving with the plastic shear displacement under
different normal stresses.
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Fig. 11. Comparison of the hydraulic conductivity analytically predicted by Eq. (35) with
that calculated from coupled shear-flow tests with finite difference method.

4. Stress-dependent hydraulic conductivity tensor of fractured rocks

When the response of each fracture under normal and shear loading is understood (see
Section 2), the remaining problem is how to formulate the hydraulic conductivity for
fractured rock mass based on the geometry of the underlying fracture network. Fig. 12
depicts a two-dimensional fracture network (taken after Min et al. (2004)) in a biaxial stress
field. As shown in Fig. 12, each fracture plays a role in the hydraulic conductivity of the rock
mass, and its contribution primarily depends on its stress state, its occurrence, as well as its
connectivity with other fractures. Also shown in Fig. 12 is the scale effect of the rock mass on
hydraulic properties. When the size of the rock mass is small, only a few number of
fractures are included and heterogeneity of the hydraulic conductivity of the rock mass may
dominate. As the population of factures grows with the increasing size, an upscaling scheme
may be available to derive a representative hydraulic conductivity tensor for the rock mass
at the macroscopic scale.

Based on the above observations, in this section, we formulate an equivalent hydraulic
conductivity tensor for fractured rock mass based on the superposition principle of liquid
dissipation energy, in which the concept of REV is integrated and the applicability of an
equivalent continuum approach is able to be validated.
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Fig. 12. A fracture network (taken after Min et al. (2004)) in biaxial stress field and the scale
effect of the rock mass

4.1 Computational model
Without loss of generality, the global coordinate system X1X>X3 is established in such a way
that its Xj-axis points towards the East, X»-axis toward the North and X3z-axis vertically

upward. A local coordinate system x{ x{ xéc is associated with the fth set of fractures such

that the x{ -axis is along the main dip direction, the x{ -axis is in the strike, and the xéc -axis

is normal to the fractures, as shown in Fig. 13.

In order to formulate the stress-dependent hydraulic conductivity tensor for fractured rock

masses using the aforementioned elastic constitutive model for rock fractures, the following

assumptions, similar to Oda (1986), are made in this section:

1. A cube of volume, V,, is considered as the flow region of interest, which is cut by n sets
of fractures. The orientation of each set of fractures is indicated by a mean azimuth
angle fand a mean dip anglea. Other geometrical statistics of the fractures are assumed
to be available through field measurements or empirical estimations.

2. Even though the geometry of real fractures is complex, generally it can be simplified as
a thin interfacial layer with radius r and aperture b".

3. The rock mass is regarded as an equivalent continuum medium, which means the
representative elementary volume (REV) exists in the rock mass and its size is smaller
than or equal to V.
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Fractures

Fig. 13. Coordinate systems

4.2 Stress-dependent hydraulic conductivity tensor
Fluid flow through the equivalent continuum media can be described by the generalized 3-
D Darcy’s law as follows:

v=K]J (36)

where v denotes the vector of flow velocities, J denotes the vector of hydraulic gradients,

and K is the hydraulic conductivity tensor for the rock mass.
For steady-state seepage flow, the dissipation energy density, e(X1, X», X3), of fluid flow
through the media can be represented as (Indelman & Dagan, 1993):

_1or
e=>1"K] (37)

Hence, the total flow dissipation energy, E, in the rock mass V, can be calculated by
performing an integration throughout the whole flow domain:

1
E=[yed@= 5 [v,1KIde (38)

If REV does exist in the rock mass and its size is smaller than or equal to V}, by defining J

to be the vector of the average hydraulic gradient within V, and K to be the average
hydraulic conductivity tensor, Eq. (38) can be reduced to:

g [
E :E]TK]VP (39)

Suppose that the volume density of the ith set of fractures is Ji;. The number of this set of
fractures can be estimated by m; = J; V.

For permeable rock matrix, the flow dissipation energy shown in Eq. (39) consists of two
components, i.e., the flow dissipation energy through rock matrix, E;, and the flow
dissipation energy through crack network, E.:

E=E, +E, (40)
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E, can be represented as:

1 e —
Er =§]TKr]Vp (41)

where K, denotes the hydraulic conductivity tensor for rock matrix. If rock matrix is

impermeable, all elements in I_(r vanish.
To estimate E., we introduce a weight coefficient Wj; to describe the effect of the connectivity
of the fracture network on fluid flow:

Wy =& /& (42)

where &; is a stochastic variable denoting the number of fractures intersected by the jth
fracture belonging to the ith set; and &; denotes the maximum number of fractures cut by
the ith set of fractures. Obviously, 0 < Wj; <1 and when &; = 0, Wj; = 0. This implies that an
entirely isolated fracture which does not intersect any other fracture effectively contributes
nothing to the hydraulic conductivity of the total rock mass.

For the jth fracture belonging to the ith set, a void volume equal to 71'1’1']2'17:]- is associated with
it. Then, the flow dissipation energy through it is described as:

Ei = Wjeymriby (43)

where e;; is shown as follows:

1 —e
e; = Ekij T T (44)

where k;; denotes the hydraulic conductivity of the jth fracture of the ith set, which can be
calculated by the stress-dependent hydraulic conductivity model, Eq. (21).

J.i denotes the hydraulic gradient within the ith set of fractures:

Ji=(8-n;®n;)] (45)

where Jis the Kronecker delta tensor, and #n; denotes the unit vector normal to the ith set of
fractures, with its components ni1=sinasinf, no=sinacosf, and nz=cosa.
Thus, E. can be represented as

ZZwl]rjb"S (8—n; ®n;)J (46)
Vi= 1j=1

From Egs. (39)-(41), (46) and (20), it can be referred that

2p3.(6—n; ® 47
Kt 12V11]1 i Ol]( o) @

In Eq. (47), n is determined by the orientation of the fractures, which reflects the effect of the
orientation of the fractures on the fluid flow. r and by represent the size or the scale of the
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fractures; they retrain the fluid flow through the fractures from their developing magnitude.
W is a parameter introduced to show the impact of the connectivity of the fracture network
on fluid flow. Finally, f(f) is a function used to demonstrate the coupling effect between
fluid flow and stress state.

The hydraulic tensor for fractured rock masses given in Eq. (47) is related to the volume of
the flow region, V,, which exactly shows the size effect of the hydraulic properties.
Intuitively, the smaller the V), size is, the less number of fractures is contained within the
volume, and thus the poorer the representative of the computed hydraulic conductivity
tensor. On the other hand, when V, is increased up to a certain value, the fractures involved
in the cubic volume are dense enough and the hydraulic conductivity tensor for the rock
mass does not vary with the size of the volume. This V, size is exactly the representative
elementary volume, REV, of the flow region. The V; size of the flow region is required to be
larger than REV for estimating the hydraulic conductivity tensor for the fractured rock
mass. Otherwise, treating the fractured rock mass as an equivalent continuum medium is
not appropriate, and the discrete fracture flow approach is preferable.

4.3 Comparison with Snow’s and Oda’s models

Now we make a comparison between the formulation of the hydraulic conductivity tensor
presented in Eq. (47) and the formulation given by Snow (1969) as well as the formulation
given by Oda (1986). The Snow’s formulation is as follows:

g N biS
K=—52(8-n.®n. 48
12v;si( n; ©n;) (48)

where s; is the average spacing of the ith set of fractures. If we neglect the hydraulic
conductivity of the rock matrix and the connectivity of the factures, and define

1 mi . T mi
bi=—3 f(B;j)bo; and s;'=—->r7 (49)

Then, the formulation presented in Eq. (47) is totally equivalent to Snow’s formulation, Eq.
(48).
On the other hand, the Oda’s formulation is described by

K =¢(Pyd-P) (50)

where P is the fracture geometry tensor, with Py = P11+P2y+Pss.

P=rp jg’ j(;” [,r*0°n ® nE(n,r,b)d2drdb (51)

where E(n, 1, b) is a probability density function of the geometry of the fractures, p is the
number of fracture centers per unit of volume, with p = m,/V,, m, = Zmi , and ¢ is the
dimensionless scalar adopted to penalize the permeability of real fractures with roughness
and asperities. Assuming that a statistically valid REV exists and being aware that the
fracture orientation is a discrete event, the fracture geometry tensor may be empirically
constructed by the following direct summation
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mV
P= erizb?ni ®n; 52)
pi=1

Following a similar deduction, it can be inferred that all these three formulations are
equivalent not only in form but also in function, though they are derived from different
approaches and different assumptions. The formulation presented in Eq. (47) can be directly
obtained from Snow’s formulation by considering the connectivity and roughness of the
fractures and integrating the aperture changes under engineering disturbance. The
discretized form of the Oda’s formulation is much closer to the current formulation, and the
latter can also be directly achieved from the former by considering the connectivity of the
fracture network. However, the proposed method for formulating an equivalent hydraulic
conductivity tensor for complex rock mass based on the superposition principle of liquid
dissipation energy is a widely applicable approach not only to equivalent continuum but
also to discrete medium.

4.4 A numerical example: hydraulic conductivity of the rock mass in the Laxiwa
Hydropower Project

In order to validate the theoretical model presented in Section 4.2, we investigated the
hydraulic conductivity of a fractured rock mass at the construction site of the Laxiwa
Hydropower Project, the second largest hydropower project on the upstream of the Yellow
River. The selected construction site for a double curvature arch dam is a V-shaped valley
formed by granite rocks, as shown in Fig. 14. The dam height is 250 m, the top elevation of
the dam is 2460 m, the reservoir storage capacity is 1.06 billion m? and the total installed
capacity is 4200 MW.

A typical section of the Laxiwa dam site is illustrated in Fig. 15. Besides faults, four sets of
critically oriented fractures are developed in the rock mass at the construction site. The
geological characteristics of the fractures are described by spacing, trace length, aperture,
azimuth, dip angle, the joint roughness coefficient, JRC, of the fractures as well as the
connectivity of the fracture network (i.e., the number of fractures intersected by one
fracture). According to site investigation, the statistics (i.e., the averages and the mean
squared deviations, as well as the distribution of the characteristics) of the fractured rock
mass on the right bank of the valley are listed in Table 3.

Fig. 14. Site photograph of the Laxiwa valley
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Fig. 15. A typical section of the Laxiwa dam site

Length Aperture Azimuth Dip

Spacin Connectivit
Set pacine (m) (mm) ©) ©) Y
(m) ave. d d d d d

g. dev. avg. ev. avg. dev. avg. dev. avg. ev.
1 1.45 5 1.5 0.09% 002 853 10 545 10 5 3
2 2.62 3 1.0 0.096 0.02 3551 20 298 5 3 2
3 10.96 3 1.0 0.096 0.02 2874 20 614 10 3 2
4 10.96 3 1.0 0.096¢ 0.02 3202 20 119 5 3 2
Distribution logarithmic  negative Gama normal normal normal

normal  exponential

“avg.” denotes arithmetic mean of a variable,
‘dev.” represents root mean squared deviation

Table 3. Characteristic variables of the fractured rock mass*

At the construction site of the Laxiwa dam, a total number of 1450 single-hole packer tests
were conducted to measure the hydraulic properties of the rock mass, with 113 packer tests
for the shallow rock mass on the right bank in 0-80 m horizontal depth and 278 packer tests
for the deeper rock mass. The measurements of the hydraulic conductivity range from 1075
cm/s to 1076 cm/s for the shallow rock mass and from 1076 cm/s to 1077 cm/s for the deeper
rock mass, with in average 4.94x107> cm/s for the former and 3.80x107¢ cm/s for the latter,
respectively (Liu, 1996). On the other hand, in-situ stress tests showed that the geostress in
the base of the valley and in deep rock mass has a magnitude of 20-60 MPa, with the
direction of the major principal stress pointing towards NNE. As a result of stress release,
the release fractures are frequently developed and a high permeability zone of 0-80 m
horizontal depth is formed in the bank slope, as shown in Fig. 15. The stress release
fractures, however, become infrequent in deeper rock mass, and the measured hydraulic
conductivity is generally 1-2 orders of magnitude smaller than the hydraulic conductivity of
the rock mass in shallow depth away from the bank slope. Therefore, the hydraulic
conductivity of the rock mass at the construction site of the Laxiwa arch dam is mainly
controlled by the fracture network and the stress state.
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Based on these statistics given in Table 3, fracture networks can be generated and calibrated
for the rock mass at the construction site of the Laxiwa Hydropower Project using the Monte-
Carlo method by assuming that each fracture is a smooth, planar disc, with its center
uniformly distributed in the simulated area. For each set of fractures, the geometrical
parameters of any one are sampled by Monte-Carlo method until enough fractures are
included in the simulated area. Then, a calibration procedure is invoked to check whether the
generated model satisfies the distribution mode of the real fracture network. If doesn’t, the
fracture network will be regenerated until one matches the distribution mode. With the
generated fracture network, the actual connectivity can be computed by spatial operation on
the fractures. But for calibrated fracture network, a more convenient approximate approach to
determine the connectivity of the fracture network, as it is adopted here, is to directly produce
&iin Eq. (42) with the Monte-Carlo method and the characteristics presented in Table 3, then

Wi is derived from Eq. (42) with Ei , the maximum number of fractures cut by the ith set of

fractures. Field measurements are used to estimate &;, with &, =11, &, =8 and &, =&, =6 for

the four sets of fractures, respectively. Fig. 16 illustrates a simulated fracture network with size
of 20x20x20 m.

On the basis of the fracture network generated above, we compute the hydraulic conductivity
tensor for the simulated cubic volume of rock mass with size of 20x20x20 m using the method
given by Snow (1969) and the method presented in Section 4.2, respectively. To show the
coupling effect of stress/deformation on hydraulic properties, we consider two scenarios for
examination. In the first scenario, we consider the fracture network located in the shallow
depth away from the bank slope, where the impact of the in-situ stress is negligible. While in
the second scenario, the fracture network is situated in larger depth, and a typical stress state
with 6:=0,=10 MPa and ;=20 MPa is associated with it. Based on laboratory test results, the
shear modulus of the fractures is estimated as ;=2 MPa, and then by taking the Poisson’s ratio
as v=0.25, the Lame’s constant is derived with A=2 MPa. The kinematic viscosity of
underground water is set to be %,=1.14x10"¢m?2/s and the frictional angle-like parameter and
the normal stress-like parameter are taken as ¢=0.4363 and s=a;,/20.

Fig. 16. A three dimensional fracture network with size of 20x20x20 m generated by using
the Monte-Carlo method for the rock mass in the Laxiwa Hydropower Project: (a) fracture
network and (b) traces of the fractures on the surfaces of the simulated area
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The predicted hydraulic conductivity tensor for the examined rock mass is listed in Table 4.
From Table 4, one observes that for shallow rock mass (where the effect of in-situ stress is
not considered), the Snow’s method and the method presented in Section 4.2 predict similar
results and the predicted hydraulic conductivity is in the magnitude of 1075 cm/s and close
to in-situ hydraulic observations, but the anisotropy in hydraulic conductivity manifests due
to non-uniform distribution of fractures. Compared with the hydraulic conductivity of the
shallow rock mass, the predicted hydraulic conductivity for the rock mass in larger depth
with the same fracture network decreases in 2 orders of magnitude due to the closure of the
fractures applied by the in-situ stresses, but the anisotropic property of the hydraulic
conductivity remains, which suggests that the occurrence of the fractures has a significant
impact on permeability. Taking into consideration the applied stress level, the reduction of
hydraulic conductivity in orders of magnitude is very close to the results achieved in Min et
al. (2004) through a discrete element method, and generally agrees with the in-situ hydraulic
observations.

Snow’s model (for shallow rock mass)

4.78E-05 —-4.76E-07 -1.71E-05
—-4.76E-07 7.49E-05 -1.41E-05
-1.71E-05 -1.41E-05 4.08E-05
The proposed model (for shallow rock mass)

1.93E-05 -1.75E-07 —-6.39E-06
-1.75E-07 2.99E-05 -5.81E-06
—-6.39E-06 -5.81E-06 1.64E-05
The proposed model (for deep rock mass)

9.06E-08 —-4.81E-09 -6.10E-08
—4.81E-09 1.85E-07 -1.92E-08
—6.10E-08 -1.92E-08 1.10E-07

Table 4. Predicted hydraulic conductivity tensor of the rock mass at the construction site of
the Laxiwa dam (cm/s)

Now, we take for example the rock mass in shallow depth to estimate the REV size of the
rock mass. For this purpose, the scale of the rock mass is increased gradually from 3x3x3 m
to 40x40x40 m with an increment of 1 m in each dimension. In each step, a fracture network
with prescribed size is generated by using the Monte-Carlo method described above, and it
is worth noting that this method is somewhat different from the method used by Min & Jing
(2003) and Long et al. (1982). For each fracture network, the hydraulic conductivity tensor is
calculated from Eq. (47) and then the principal hydraulic conductivities are further obtained
from the hydraulic conductivity tensor. The relationship between the computed principal
hydraulic conductivities and the sizes of the rock mass is illustrated in Fig. 17. As we can see
from Fig. 17, when the block size of the rock mass is smaller than 18x18x18 m, the
population of fractures is not dense enough and the principal hydraulic conductivities
fluctuate dramatically. On the other hand, as the size scales up to about 20x20x20 m, the
examined rock mass has included enough fractures and the computed principal hydraulic
conductivities approach a rather steady state, with ki, ky, ks estimated to be 2.41x1075 cm/s,
3.59x1075 cm/s, 1.08x1075 cm/s, respectively. This suggests that the REV does exist in the
rock mass and the rock mass can be regarded as an equivalent continuum medium as long
as its size is no less than, e.g., 20x20x20 m or 8000 m?3.
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Fig. 17. Hydraulic conductivity versus the volume size of the fractured rock mass

5. Strain-dependent hydraulic conductivity tensor of fractured rocks

On the basis of the strain-dependent model presented in Section 3 for rock fractures, this
section formulates the strain-dependent hydraulic conductivity tensor for fractured rock
masses cut by one or multiple sets of parallel fractures. The major difference between the
model in this section and the stress-dependent model presented in Section 4 is that the
former is capable of describing influence of the post-peak mechanical behaviours on the
hydraulic properties of the rock masses, and is suited for modelling the coupled processes in
rock masses at high stress level and in drastic engineering disturbance condition.

5.1 An equivalent elasto-plastic constitutive model for fractured rocks

Consider a fractured rock mass cut by n sets of planar and parallel fractures of constant
apertures with various orientations, scales and densities. The global response of the
fractured rock mass under loading comes both from weak fractures and from stronger rock
matrix. Based on this observation, an equivalent elasto-plastic constitutive model can be
formulated by imposing assumptions on the interaction between fractures and rock matrix.
The coordinate systems are defined in the same way with those defined in Section 4.1 (see
Fig. 13). Denote the unit vector along X;-axis of the global frame as e; (i=1, 2, 3) and the unit
vector along xlf -axis of the fth local frame as ezf (i=1, 2, 3). Then, a second order tensor, I,
can be defined for transforming physical quantities between the frames, with the
components in the form of

foef
Regarding the fractured rock mass as a continuous medium at the macroscopic scale, it is
rational to assume that the global strain increment of the fractured rock mass is composed of
the strain increments of rock matrix and fractures (Pande & Xiong, 1982; Chen & Egger,
1999), i.e.
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de=de® + > de" (54)
F

where dg, d&R and dé&F are the total incremental strain tensor, the incremental strain tensor of
rock matrix and the incremental strain tensor of fth set of fractures measured in the global
coordinate system, respectively. Note that a variable with a superscript in upper case (i.e. R
or F) means that it is measured in the X;X»X3 system, while a variable with a superscript in
lower case (i.e. f) is measured in x{ x{ xg system, respectively. Unless otherwise specified,
the superscripts F and f are not summing indices.

On the other hand, traction continuity has to be ensured across the fracture interfaces. In the
global coordinate system, this condition can be strictly represented by (Pande & Xiong, 1982;
Chen & Egger, 1999)

do =do® =do’f (55)

where do’, do'R and do'F are the effective incremental stress tensor of the fractured rock
mass, the effective incremental stress tensor of rock matrix and the effective incremental
stress tensor of fth set of fractures, respectively. The effective stress tensor ¢’ is defined as

o'=0+apd (56)

where o is the total stress tensor (positive for tension), p is the pore water pressure (positive
for compressive pressure), and « (a<1) is an effective stress parameter.

Combining the plastic potential flow theory and the consistency conditions of rock matrix
and fractures, an equivalent elasto-plastic constitutive model can be derived from Eqgs. (54)
and (55):

de =S°P:do’ (57)
with
Sep — (CR,ep )—1 + Z(CF,EP)—l (58)
F

where Ser is the equivalent elasto-plastic compliance tensor of the fractured rock mass.

CRep in Eq. (58) is the elasto-plastic modulus tensor of rock matrix. Neglecting the
degradation of rock strength in the volume close to fracture intersections, CRer can be
written as

R R o e, ok

CRep _ R _ oo’ oo’ (59)
ai:CR :LQR +Hg
oo’ oo’

where CR is the fourth-order elastic modulus tensor of rock matrix, which can be
represented in terms of the Lame’s constants A4 and s

C}}kl = A0ijokl + p(04,0 it 0;0 jk) (€0)
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Fr, Qr and Hg in Eq. (59) are the yield function, the plastic potential function and the
hardening modulus of rock matrix, respectively. A non-associative flow rule with elastic-
perfectly plasticity (i.e. Hr=0) is adopted for better modeling dilatant behavior of rock
matrix by virtue of, for example, the Druker-Prager criterion with its cone fully inscribed by
the Mohr-Coulomb hexagon, defined by functions

Fg=al +J]J, —x=0 (61)
Qr = Ali+\I» (62)

with

a =singy /3(3+sin’ gg) (63)
K = 3cR COS PR /\/3(3+sin2(pR) (64)
B =sinyy /+/3(3 +sin’yy) (65)

where cr and ¢r are the cohesion and the friction angle of rock matrix, respectively. I1 and
J» are the first invariant of the effective stress and the second invariant of the deviatoric
stress of rock matrix, respectively. yr is the mobilized dilatancy angle of rock matrix.

It should be noted here that in the literature, Drucker-Prager criterion has been used by
many authors to model the elasto-plastic behaviour of intact rock matrix, see Pande & Xiong
(1982) and Chen & Egger (1999) for example. Although a modified Drucker-Prager yield
function may be more suitable for this formulation in order to model plastic deformation
properties of intact rock such as pressure dependency, strain hardening, transition from
compressibility to dilatancy and stress path dependency (Chiarelli et al., 2003), the criterion
given above may keep the formulation compact and does not lose generality. Other yield
functions, such as the modified Drucker-Prager criterion (Chiarelli et al., 2003) or the
modified Hoek-Brown criterion (Hoek et al., 1992), can also be integrated into the
formulation without major mathematical difficulties.

With the researches conducted by Yuan & Harrison (2004) and Alejano & Alonso (2005), the
decaying process of the rock dilatancy angle in line with plasticity can be described by the
following negative exponential expression through the equivalent plastic strain of rock

matrix, £§ (Lai, 2002):

wr =B exp( - irER) (66)

where rr>0 is a parameter for modelling the decaying process of the dilatancy angle, and

ngeak is the peak dilatancy angle of rock matrix and the following expression has been

proposed by recovering the shape of the peak dilatancy angle of fractures given by Barton &
Bandis (1982) and by assuming t//ﬁeak =@r for null confinement pressures (Alejano &

Alonso, 2005):
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peak ___ PR, 9¢ 67
R 1+logqg0o- 810 -05+0.1 (©7)

where o is the unconfined compressive strength for intact rock. By Egs. (66) and (67), the
dependencies of rock dilatancy on plasticity, confining stress and scale are produced.

The equivalent plastic strain ¥ is computed by the following;:

P =[dzP = /%dep : deP (68)

Similarly, CFer in Eq. (58) is the elasto-plastic modulus tensor of fth set of fractures
measured in the X;X>X3 system, which can be calculated from its corresponding elasto-
plastic modulus tensor measured in the xlf x% x{ system, Cfep, with the assumption of small
strain and by imposing the following tensor transformation:
F, /
Cijk(;p = l;{ﬁl;{jl&l;{lcirfo}; (69)

with

cf 9 % or

cfep —cf _ oo’ oo’ (70)
OF 0
=-f el :—Qf +Hf
oo’ oo’

where (fis the fourth-order tangential elastic modulus tensor of the fth set of fractures, with
C{333 =S¢kns, C§323 = C:{131 =s¢kgr , and with all other elements equal to zero. The symbols
kuos, ks and s¢ are the normal stiffness, the tangential stiffness and the spacing of the fth set of
fractures, respectively. The expressions for the elements in Cf mean that the strain of
fractures is evaluated over the fracture spacing, not over the fracture aperture, thus enabling
the proposed model to consider the post-sliding plasticity of fractures and nonlinear
variations of kns and ks with dilatancy caused by shear loading, without violating the small
strain assumption.

F;, Qf and Hy in Eq. (70) are the yield function, the plastic potential function and the
hardening modulus of the fth set of fractures, respectively. The elasto-plastic behaviour of
the fractures is treated in a similar fashion as that for the rock matrix, with a non-associative

Mohr-Coulomb criterion:
Ff =,'T§xf +Tzzyf +O';ftal’1¢)f _Cf =0 (71)

Qf =4 ’ngxf + ng}/f + Ggftangz/f (72)

where o7¢, 7y and zf are the effective normal stress and the shear stresses on the fracture
surfaces, respectively. c;, ¢r and y are the cohesion, the friction angle and the mobilized
dilatancy angle of the fth set of fractures, respectively. Similar to Eq. (66), yr is also a
shrinking function of the equivalent plastic strain of fractures E}’ , and depends on normal
stress and scale as well, in the following form:
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wr =y i exp(~rsz}) (73)

where 1/ is the decaying parameter and l//}’eak is the peak dilatancy angle of the fth set of
fractures, respectively, with the latter calculated by Eq. (26).

Thus at any loading step, as long as the stress increment of the equivalent rock mass, d¢’, is
obtained, the local strain pertinent to fth set of fractures can be derived as follows:

def = (C"*P).do’ (74)
and
def =1/ I de},, (75)

The separation of the incremental strain of fractures from that of the rock mass through the
proposed equivalent constitutive model plays a significant role in the present study. It
enables the formulation of strain-dependent hydraulic conductivity that accounts for the
mobilized dilatancy behaviour, which will be demonstrated in the following section.

5.2 Strain-dependent hydraulic conductivity tensor for fractured rocks
Consider a domain of flow that has been discretized into several sub-domains according to

rock quality classification. Suppose that each sub-domain contains n sets of fractures, with
average initial aperture bp and spacing sy for the fth set of fractures. Starting from Eq. (22)
and using the averaging concept for the hydraulic conductivity over the whole sub-domain,
the equivalent initial hydraulic conductivity of the fth set of fractures, kp, in the examined
sub-domain can be represented as (Castillo, 1972; Liu et al., 1999)

85?0
VSf

kro=¢ (76)
where ¢, as pointed out before, is a dimensionless constant introduced to penalize the real
water conducting capacity of natural fractures with rough walls, finite scales, asperity areas
and filling materials. The validity of using a constant value of ¢has been examined by Zhou
et al. (2006).

Assuming that the change in spacing sy during modeling is negligible, under normal and
shear stress loadings we have

. gb}z gbso +4bs)?
=9 S
VSf VSf

(77)

where Abrand krare the increment of the aperture and the equivalent hydraulic conductivity
of the fth set of fractures under loading, respectively. Suppose that strain localization (Lai,
2002; Vajdova, 2003) is not dominantly exhibited in the concerned fractures, it is
approximately valid that

Abf = SngZf (78)
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where Agy is the increment of the normal strain of the fth set of fractures, which can be
directly obtained from Eq. (75).
Substituting Eq. (78) into Eq. (77) then yields

Sf >
kf = ka 1+b—A€Zf (79)
f0

Following the theory proposed by Snow (1969), a strain-dependent equivalent hydraulic
conductivity tensor for fractured rock masses with 7 sets of fractures is represented by

3
S
KZ;kf(a—nf®nf)=§:kf0[1+bf—foﬁ8sz (ﬁ—nf®nf) (80)

where K is the equivalent hydraulic conductivity tensor of the examined rock mass, and nyis

the unit vector normal to the fth set of fractures.

The following significant implications can be observed from the formulation of K in Eq. (80):

1. K is a cubic function of Agy, and any variation in & under loading will trigger the
change in K, even in orders of magnitude. This exactly accounts for the coupling effect
of mechanical loading (strain/stress) on hydraulic properties.

2. K depends on incremental strains, rather than on stresses, which makes it possible to
integrate various material nonlinearities in hydro-mechanical coupling analysis.

3. In addition to cubic relation, the influence of Ag;s on K is amplified by s¢/bp, indicating
that K can be rather sensitive to bp and sz Therefore, techniques for estimating bp and s¢
need to be carefully developed, on the basis of laboratory or in-situ hydraulic test data.

4. The orientations of fractures possibly render K highly anisotropic, even if K is initially
assumed isotropic, as has been systematically examined, e.g. by Liu et al. (1999).

5. When implemented in a FEM code, a different K can be associated to each geological
sub-domain or even to each element, as long as kp, bp and s; for the sub-domains or
elements can be estimated in advance.

6. As a nature of the homogenized equivalent continuum approach, the size effect of
fractures, especially the size-dependency of aperture, is not fully considered in the
formulation of K for simplicity, even though it can be reflected to some degree through
¢ and scaled JRC and JCS values. The connectivity and the intersection effect of
fractures, on the other hand, may have a more significant influence on K, but similarly,
they cannot be properly considered in the equivalent continua without explicit
representation of fractures. A rough remedy is to process the fracture system in such a
way that only the connected fracture populations are included for conducting analyses.

To determine K of a fractured rock under any loading paths, a coupled hydro-mechanical

process has to be invoked. With the assumption of incompressible rock matrix and fluid

(e.g. groundwater), the governing equations for the coupled process of saturated fluid flow

and deformation are given below as balance equation, geometric equation and fluid flow

equation, respectively:

U{]/] - ap,i + fl =0 (81)
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1
81']' = E(l/li,]' + u]"i) (82)
ai ki].ﬂ _ Oy (83)
X; ﬁx] ot

where f; and u; are the components of the body force and displacement in the ith direction,
h=p/ n+z the water head, z the vertical coordinate, y, the unit weight of water, and &, the
volume strain of the rock mass.

In the coupled process given above, mechanical loading or disturbance to the rock mass
results in change in flow properties and flow behaviour through Egs. (80) and (83), while the
change in flow behavior leads to change in mechanical response of the rock mass through
Eq. (81). When the coupled process reaches a stable state, the solution to K is also available.
Now we briefly discuss how to determine kp, bp and syin Eq. (80) based on laboratory or in-
situ hydraulic test or site investigation data. Obviously, the initial hydraulic conductivity,
kp, can be determined by in-situ hydraulic tests. Suppose the initial hydraulic conductivity
tensor, Ko, is known through in-situ hydraulic test, as suggested by Hsieh & Neuman (1985),
then Ky can be rewritten, from Eq. (80), in the following form:

K0=Zkf0(6—nf ®nf) (84)
f

By optimizing Eq. (84), kp (=1, ..., n) can be estimated if the number of the sets of critically
oriented fractures, n, is less than or equal to 6 (i.e. the number of the independent
components of Ko), regardless K is assumed to be isotropic or anisotropic.

The average spacing of the fth set of fractures, s;, can be roughly estimated from the statistics
of drill holes or scanlines. An alterative, however, is to use RQD (Rock Quality Designation)
for determining s;, as suggested by Liu et al. (1999), when the value of RQD for a specific
rock mass is known a priori.

After the initial hydraulic conductivity, kp, and the average spacing, sy, of the fractures are
determined, the mean initial aperture of the fractures, by, is ready to be back-calculated from
Eq. (76).

5.3 Validation of the proposed model

5.3.1 Hydraulic conductivity of the surrounding rock of a circular tunnel in the Stripa
mine

Here we compare the proposed method with results from a previous study as presented by
Liu el al. (1999) by applying the method to an excavated circular tunnel with a biaxial stress
field, oy and o;. The physical model is illustrated in Fig. 18, which is actually a manifestation
of the reality of the Stripa mine in Sweden (Kelsall et al., 1984; Pusch, 1989). The following
description about the tunnel is directly taken from Liu et al. (1999):

A Buffer Mass Test was conducted in Stripa Mine over the period 1981-1985 (Kelsall et al.,
1984; Pusch, 1989) to measure the permeability of a large volume of low permeability
fractured rock mass by monitoring water flow into a 33 m long section of the tunnel, as a
large scale in-situ experiment for the research and development programs of underground
geological disposal of nuclear wastes of the participating countries of the Stripa Project. The
radius of the tunnel is about 2.5 m with two major sets of fractures striking obliquely to the

www.intechopen.com



Stress/Strain-Dependent Properties of Hydraulic Conductivity for Fractured Rocks 37

O:
AREEEEEEE X

+ o o
7L+ Tro

7L7L ”0 (o7}
T
TL

EEREEEEERE

O

Q
IRERERREREE)
IEEEEEEERER)

3

Fig. 18. Sketch of a circular excavation in a biaxial stressed rock mass.

tunnel axis, as shown in Fig. 18. Fracture frequency measured in holes drilled from the

tunnel was on average 4.5 fractures/m in inclined holes and 2.9 fractures/m in vertical

holes. The initial stress field is anisotropic with high horizontal stress component and the

conductivity of the virgin rock is about 10710 m/s. The excavation of the test drift produced a

dramatic increase in axial hydraulic conductivity in a narrow zone adjacent to the periphery

of the drift. The conductivity increase is estimated to be 3 orders of magnitude.

The following assumptions are made in the calculations, with some of them similar to those

in Liu et al. (1999):

1. Statically uniform aperture and spacing distributions exist before excavation;

2. Fracture spacing and continuity are not altered by the excavation;

3. The high obliquity of the two major sets of fractures can be well approximated by two
orthogonal sets of fractures;

4. Excavation-induced strain redistribution may be adequately captured by the proposed
equivalent elasto-plastic constitutive model.

Some of the parameters are directly taken from Liu et al. (1999), while other unavailable

parameters are assumed, as listed in Table 5, in which the initial mechanical aperture of the

fractures is back-calculated from Eq. (76) by taking ko=10710 m/s. Consistent with Liu et al.

(1999), the far-field stress components are taken as 0;=20 MPa and 0,=10 MPa, respectively.

Category Parameter Setting
Elastic modulus, E 37.5 GPa

Intact rock matrix Poisson’s ratio, v 0.25
Cohesion, cr 5 MPa
Friction angle, ¢r 46°
Initial mechanical aperture, by 0.0075 mm
Spacing, s 0.27 m
Normal stiffness, kn 200 GPa/m

Fractures Shear stiffness, ks 100 GPa/m
Dimensionless constant, ¢ 0.0067
Cohesion, cf 0.4 MPa
Friction angle, ¢r 40°

Table 5. Geometrical and mechanical parameters for a circular tunnel
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To avoid the difficulty in determining the initial dilatancy angles and the corresponding decay
parameters of fractures and intact rock matrix, associative flow rule is used in this simulation.
Again for simplicity, both the normal stiffness and the shear stiffness of the fractures are
assumed constant during excavation. The finite element mesh of the model is shown in Fig. 19,
and the FEM program was run to simulate the excavation effect of the tunnel. Fig. 20 shows
the deformation zone and plastic zone of the rock mass after the tunnel excavation. Fig. 21
plots the excavation-induced changes in hydraulic conductivities around the circular tunnel,
which are directly compared with the results presented in Liu et al. (1999).

17T I [T

H} I——.H

(a) (b)

Fig. 20. Deformation zone and plastic zone induced by the tunnel excavation: (a)
deformation zone and (b) plastic zone
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Fig. 21. Excavation-induced hydraulic conductivity ratios around a circular tunnel in a
biaxial stressed rock mass, where 7 is the radius of the tunnel and r is the distance away
from the tunnel center. =0° denotes the horizontal direction while 6=90° the vertical
direction.

It can be observed from Fig. 21 that generally tangential conductivities are found to increase
greatly due to the formation of the excavation disturbed zone around the tunnel, while
radial conductivities diminish greatly as a result of closure on related fractures. In the
horizontal direction (i.e. £=0°), the excavation-induced tangential hydraulic conductivity
ratios, kq/ko, predicted by our model are very close to the results presented in Liu et al.
(1999). For radial hydraulic conductivity ratios, k./ko, however, deviation occurs in the
vicinity of the excavation. Such a deviation is also found both for k,/ko and for k,/ko in the
vertical direction (i.e. £=90°).

Clearly, these deviations are largely resulted from the facts that (1) Different strain
distribution patterns are assumed in the elastic model in Liu et al. (1999) and in our elasto-
plastic model; (2) Different methods are used to compute the strain increments of fractures.
In Liu et al. (1999), normal strains of fractures were separated from rock matrix through a
modulus reduction ratio empirically defined as a function of RMR, while in this simulation
fracture strains were calculated by strain decomposition through an equivalent elasto-plastic
constitutive model; (3) Radial and tangential fractures were assumed in Liu et al. (1999),
leading to different background fracture networks; and (4) As mentioned above, some of the
parameters, such as the shear strength of fractures and rock matrix, the shear stiffness and
normal stiffness of the fractures, are unavailable in the literature (Kelsall et al., 1984; Pusch,
1989; Liu et al., 1999) and hence are empirically assumed in the calculations. If these
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parameters are determined based on in-situ or laboratory experiments, more convincing
results may be achieved.

Despite the deviations, the trends of variation of the hydraulic conductivity ratios around
the tunnel due to excavation are consistent between the two studies, and basically accord
with the in-situ experimental observations, demonstrating the applicability of the present
model in this section.

From Fig. 20, one observes that the excavation-induce deformation zone and plastic zone are
asymmetric, due to the anisotropic initial stress field. As a result, the predicted hydraulic
conductivities are highly anisotropic due to strain redistribution, as shown in Fig. 21. In the
horizontal direction (i.e. £=0°), the deformation zone extends as far as more than 16 times of
the tunnel radius and the plastic zone extends 2 times of the tunnel radius, while in the
vertical direction (i.e. 6=90°), they are, respectively, within 2 and 5 times of the tunnel
radius. The asymmetry of deformation zone and plastic zone demonstrates why the
predicted hydraulic conductivities approach ko more slowly in the horizontal direction than
in the vertical direction. The changes in hydraulic conductivities resulted from strain
redistribution in the disturbed rock mass indicate that a different hydraulic conductivity
tensor should be associated to each geological sub-domain or even each element of the rock
mass, which is important for hydro-mechanical coupling analyses.

5.3.2 Hydraulic conductivity of a cubic block of rock mass with three orthogonal sets
of identical fractures

In this section, a numerical simulation is conducted to evaluate hydraulic behaviour of a
cubic block of rock mass containing three orthogonal sets of identical fractures under
isotropic triaxial compression and shear loading. The primary goal is to investigate the
change in the hydraulic conductivity of the rock mass with increasing shear load, which is
obviously not achievable through any elastic models considering only the deformation of
fractures under normal stresses, e.g. in Liu et al. (1999).

The underlying rock mass block model for examination, with a size of 10x10x10 m (a scale
that can represent both the initial mechanical and hydraulic REVs (Min et al., 2004)), is
assumed to contain three orthogonal sets of identical fractures, as sketched in Fig. 22. The
spacing, s, of each set of fractures and the initial aperture, by, of each fracture are assumed to
be identical, with s=1 m and bp=1 mm. The mechanical properties of each fracture are also
regarded identical and for simplicity, both the normal stiffness and the shear stiffness of the
fractures are assumed to be constant during shear loading. All parameters used in this
simulation are listed in Table 6, and such parameter settings enable us to demonstrate how
the hydraulic conductivity evolves from initial isotropy to anisotropy in the shearing
process.

The examined rock mass block model is divided into 1000 brick elements, and the resultant
mesh is shown in Fig. 22. The loading condition is as follows. First, triaxial compressive
stresses are applied on the surfaces of the cubic block, with o;=0y=0.=20 MPa. Then, a
shearing load , 7, is applied on the upper and lower surfaces of the block model step by step,
increasing at an increment of 1 MPa until a maximum shear load, 20 MPa, is reached. At
each step of shear loading, numerical divergence may occur. If numerical divergence does
occur, the simulation program terminates after 1000 iterations with a modified Newton-
Raphson method.
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Fig. 22. Sketch of a cubic block of rock mass with three orthogonal sets of identical fractures

Category Parameter Setting
Elastic modulus, E 6 GPa
Poisson’s ratio, v 0.25
Cohesion, cr 1 MPa
Intact rock matrix Friction angle, gr 46°
Peak dilatancy angle, t//ﬁeak 35°
Decay parameter of dilatancy, rr 100
Initial mechanical aperture, bo 1 mm
Spacing, s Tm
Normal stiffness, kn 30 GPa/m
Shear stiffness, ks 10 GPa/m
Fractures Dimensionless constant, ¢ 0.0067
Cohesion, ¢f 0.4 MPa
Friction angle, ¢r 40°
Peak dilatancy angle, w}’eak 26°
Decay parameter of dilatancy, r¢ 100

Table 6. Geometrical and mechanical parameters for a cubic block of fractured rock mass

Clearly, before the rock mass is loaded, its initial hydraulic properties are isotropic, with
kxo=ky0=k-0=1.30x10"2 cm/s by Eq. (84). Under the condition of isotropic compression, the
rock mass remains elastic, the isotropic property of hydraulic conductivity is maintained,
and the magnitude of the hydraulic conductivity reduces by 2 orders of magnitude due to
compression of fractures, with k,=k,=k.=4.82x10* cm/s by Eq. (80). When shear stress is
added incrementally on the rock mass block model from 0 to 20 MPa, the proposed method
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predicts some interesting results, as depicted in Table 7, Figs. 23 and 24, respectively. Table 7
and Fig. 23 show the major hydraulic conductivities of the rock mass and Fig. 24 shows a
typical case of mobilized dilatancy angle of a fracture under increasing shear loading.

As can be observed from Fig. 23, shear load has a substantial impact on the evolution of
hydraulic conductivity of the rock mass model. Before the shear load reaches 4 MPa, the
response of the rock mass model remains elastic, and the hydraulic conductivity
components of the rock mass model are basically identical and do not vary with the shear
load. When the shear load exceeds 4 MPa, however, hydraulic conductivity of the model
becomes anisotropic. Due to shear dilation of fractures in the z-direction, the major
hydraulic conductivities parallel to the direction of shear load in x-y plane, k. and k,
increase mildly at first when the shear load is smaller than 8 MPa. Afterwards, they increase
dramatically, reaching an increase of 3-4 orders of magnitude. They approach a relatively
stable state after the shear load increases up to 14 MPa. Obviously, the increase of k. and k, is
resulted from the dilatancy behavior of the fractures related to equivalent plastic strain, as
shown in Fig. 24, where the mobilized dilatancy angle approaches zero as the shear load
approaches 14 MPa. When the shear load exceeds 14 MPa, shear dilatancy of the related
fractures becomes trivial and hence k, and k, become steady. From Table 7 and Fig. 23, we
can further see that k, and k, are very close to each other in values and they generally have
the same varying trend with the increasing shear load.

7(MPa) ki (cm/s) k,(cm/s) k.(cm/s) 7(MPa) k:(cm/s) k,(cm/s) k. (cm/s)

- 0.013016  0.013016  0.013016 10 0.279373  0.279350  0.000020
0 0.000482  0.000482  0.000482 11 1.088835 1.088816  0.000056
1 0.000482  0.000482  0.000482 12 2204162  2.204158  0.000375
2 0.000482  0.000482  0.000482 13 3.171558  3.171559  0.001374
3 0.000483  0.000483  0.000482 14 3.676801  3.697449  0.022811
4 0.000494  0.000486  0.000474 15 3.915193 4.137786  0.224877
5 0.000543  0.000509 0.000444 16 4.063688  4.696511  0.635383
6 0.000657  0.000576  0.000372 17 4.243447  5.407600 1.167070
7 0.000742  0.000643  0.000282 18 4.635512  6.233203  1.600997
8 0.000704  0.000581  0.000207 19 5.390907  7.316177  1.928768
9 0.012562  0.012459  0.000106 20 6.462514  8.618240  2.159053

Table 7. Major hydraulic conductivities of a cubic block of rock mass under isotropic
compression and increasing shear loading

With the increase of shear load from 4 to 20 MPa, the change in the major hydraulic
conductivity vertical to the direction of shear load, k., is even more interesting. Before the
shear load reaches 10 MPa, k. decreases significantly with increasing shear load and
manifests a shear contraction-like behavior. When the shear load further increases, shear
dilatancy occurs and k. increases drastically, with changes in as high as 4-5 orders of
magnitude. k, reaches a relatively stable state after the shear load increases up to 17 MPa,
which is actually a critical loading point that numerical instability may occur.
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Fig. 23. Major hydraulic conductivities of a cubic block of rock mass with increasing shear
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Fig. 24. A typical case of mobilized dilatancy angle of a fracture with increasing shear load.

6. Conclusions

In this chapter, mathematical models were developed to estimate the hydraulic conductivity
tensor for fractured rock masses subjected to mechanical loading or engineering
disturbance. Emphases are placed on the investigation of the geological characteristics of
rock masses as well as the coupling between fluid flow and stress/deformation, especially
the effect of shear dilation or shear contraction on the hydraulic behavior of rock fractures.

The stress-dependent hydraulic conductivity tensor was formulated by using the
superposition principle of flow dissipation energy on the basis of the concept of
representative elementary volume (REV) and the assumption that rock masses can be
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treated as equivalent continuum media. The deformation behaviours of rock fractures

subjected to normal and shear loadings are described with an elastic constitutive model, in

which the pre-peak shear dilation or contraction of the fractures is empirically modelled.

The validity of using the superposition principle of flow dissipation energy for development

of the model is supported by the functional equivalence between the current formulation

and the Snow’s and Oda’s models. This model is best suited for estimation of the hydraulic
properties of rock masses at low stress level and with overall elastic response, and can be
used to determine the applicability of the continuum approach to coupling analysis. The
latter is achieved by performing numerical experiments to test the existence of the REV, and
if exists, to further estimate the REV by gradually increasing the cubic volume of flow
region, V,, to see whether the hydraulic conductivity of the rock mass can eventually
approach a steady point. The hydraulic properties and the REV size of the fractured rock
mass at the construction site of the Laxiwa Hydropower Project were evaluated with the
proposed model, and the calculation results were compared with the predictions of the

Snow’s model and validated by in-situ hydraulic tests, hence the feasibility of the proposed

model in rock engineering practices is demonstrated.

The strain-dependent hydraulic conductivity tensor, on the other hand, was developed for

disturbed rock masses under excavation or loading. In the model, a non-associative elastic-

perfectly plastic constitutive model was integrated to describe the deformation behaviours
of the rock masses by characterizing them as equivalent continua containing one or multiple
sets of parallel fractures. The clear advantages of the formulation are:

e The proposed hydraulic conductivity tensor is related to strains rather than stresses,
hence enabling easier hydro-mechanical coupling analysis to include the effect of
material nonlinearity of fractured rock masses.

e Beneficial from the equivalent non-associative elastic-perfectly plastic constitutive
model, the hydraulic conductivity tensor considers the impact of shear dilatancy of
fractures on fluid flow properties via mobilized dilatancy angles.

e When reduced to one dimensional case with a single fracture under normal and shear
loadings, a closed-form solution to the hydraulic conductivity can be obtained, enabling
validation of the model by laboratory coupled shear-flow tests of rock fractures.

e  The proposed model is easy to be implemented in a FEM code, particularly suitable for
numerical analysis of coupled hydro-mechanical processes in rock engineering.

The closed-form solution was validated by an existing coupled shear-flow test, and the
evaluation results show that the proposed solution can closely describe the hydraulic
behavior of a hard rock fracture under a wide range of normal and shear loads. The results
of the simulation conducted to predict the excavation-induced hydraulic conductivities
around a circular tunnel in a biaxial stress field at the Stripa mine are justified by in-situ
experimental observations and compared with an existing elastic strain-dependent model,
which show that engineering disturbance such as underground excavations may
dramatically alter the hydraulic conductivities of the rock mass surrounding the excavations
and change the isotropic pattern of the initial hydraulic conductivities. The numerical
simulation on a cubic block model of a rock mass with three orthogonal sets of identical
fractures under isotropic triaxial compression and shear loading further demonstrates that
shear loading may drastically change the hydraulic properties of fractured rocks, in the
magnitude of as high as 4-5 orders, and lead to high anisotropy of the hydraulic properties.
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Despite all these efforts, characterizing the hydraulic properties for fractured rock masses
remains one of the most difficult research topics in rock mechanics. In the proposed models
presented in this chapter, rock masses are assumed with rather regular distribution patterns
of fractures, and the existence of a hydraulic conductivity tensor of the rock masses with any
distribution of fractures is not discussed. The interaction between the fractures in the rock
masses is also out of the scope of this chapter, and its effect on the hydraulic properties
remains an open issue. Furthermore, the proposed models are established with a rather
intuitive upscaling approach, and more rigorous homogenization schemes should be
developed. All of there issues should be addressed in the future research.
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