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1. Introduction 

In the last two decades there has seen an increasing interest in the coupling analysis 
between fluid flow and stress/deformation in fractured rocks, mainly due to the modeling 
requirements for design and performance assessment of underground radioactive waste 
repositories, natural gas/oil recovery, seepage flow through dam foundations, reservoir 
induced earthquakes, etc. Characterization of hydraulic conductivity for fractured rock 
masses, however, is one of the most challenging problems that are faced by geotechnical 
engineers. This difficulty largely comes from the fact that rock is a heterogeneous geological 
material that contains various natural fractures of different scales (Jing, 2003). When 
engineering works are constructed on or in a rock mass, deformation of both the fractures 
and intact rock will usually occur as a result of the stress changes. Due to the stiffer rock 
matrix, most deformation occurs in the fractures, in the form of normal and shear 
displacement. As a result, the existing fractures may close, open, grow and new fractures 
may be induced, which in turn changes the structure of the rock mass concerned and alters 
its fluid flow behaviours and properties. Therefore, the fractures often play a dominant role 
in understanding the flow-stress/deformation coupling behavior of a rock system, and their 
mechanical and hydraulic properties have to be properly established (Jing, 2003). 
Traditionally, fluid flow through rock fractures has been described by the cubic law, which 
follows the assumption that the fractures consist of two smooth parallel plates. Real rock 
fractures, however, have rough walls, variable aperture and asperity areas where the two 
opposing surfaces of the fracture walls are in contact with each other (Olsson & Barton, 
2001). To simplify the problem, a single, average value (or together with its stochastic 
characteristics) is commonly used to describe the mechanical aperture of an individual 
fracture. A great amount of work (Lomize, 1951; Louis, 1971; Patir & Cheng, 1978; Barton et 
al., 1985; Zhou & Xiong, 1996) has been done to find an equivalent, smooth wall hydraulic 
aperture out of the real mechanical aperture such that when Darcy’s law or its modified 
version is applied, the equivalent smooth fracture yields the same water conducting 
capacity with its original rough fracture. It is worth noting that clear distinction manifests 
between the geometrically measured mechanical aperture (denoted by b in the context) and 
the theoretical smooth wall hydraulic aperture (denoted by b*), and the former is usually 
larger in magnitude than the latter due to the roughness of and filling materials in rock 
fractures (Olsson & Barton, 2001). 
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The ubiquity of fractures significantly complicates the flow behaviour in a discontinuous rock 
mass. The primary problem here is how to model the flow system and how to determine its 
corresponding hydraulic properties for flow analysis. Theoretically, the representative 
elementary volume (REV) of a rock mass can serve as a criterion for selecting a reasonable 
hydromechanical model. This statement relates to the fact that REV is a fundamental concept 
that bridges the micro-macro, discrete-continuous and stochastic-determinate behaviours of 
the fractured rock mass and reflects the size effect of its hydraulic and mechanical properties. 
The REV size for the hydraulic or mechanical behaviour is a macroscopic measurement for 
which the fractured medium can be seen as a continuum. It is defined as the size beyond 
which the rock mass includes a large enough population of fractures and the properties (such 
as hydraulic conductivity tensor and elastic compliance tensor) basically remain the same 
(Bear, 1972; Min & Jing, 2003; Zhou & Yu, 1999; Wang & Kulatilake, 2002). Owing to high 
heterogeneity of fractured rock masses, however, the REV can be very large or in some 
situations may not exist. If the REV does not exist, or is larger than the scale of the flow region 
of interest, it is no longer appropriate to use the equivalent continuum approach. Instead, the 
discrete fracture flow approach may be applied to investigate and capture the hydraulic 
behaviour of the fractured rock masses. However, due to the limited available information on 
fracture geometry and their connectivity, it is not a trivial task to make a detailed flow path 
model. Thus, in practice, the equivalent continuum model is still the primary choice to 
approximate the hydraulic behaviour of discontinuous rocks. 
The hydraulic conductivity tensor is a fundamental quantity to characterizing the 
hydromechanical behaviour of a fractured rock. Various techniques have been proposed to 
quantify the hydraulic conductivity tensor, based on results from field tests, numerical 
simulations, and back analysis techniques, etc. Earlier investigations focused on using field 
measurements (e.g. aquifer pumping test or packer test (Hsieh & Neuman, 1985)) to 
estimate the three-dimensional hydraulic conductivity tensor. This approach, however, is 
generally time-consuming, expensive and needs well controlled experimental conditions. 
Numerical and analytical methods are also used to estimate the hydraulic properties of 
complex rock masses due to its flexibility in handling variations of fracture system geometry 
and ranges of material properties for sensitivity or uncertainty estimations. In the literature, 
both the equivalent continuum approach (Snow, 1969; Long et al., 1982; Oda, 1985; Oda, 
1986; Liu et al., 1999; Chen et al., 2007; Zhou et al., 2008) and the discrete approach (Wang & 
Kulatilake, 2002; Min et al., 2004) are widely applied. In this chapter, however, only the 
equivalent continuum approach is focused for its capability of representing the overall 
behaviour of fractured rock masses at large scales. 
Among many others, Snow (1969) developed a mathematical expression for the 
permeability tensor of a single fracture of arbitrary orientation and aperture and considered 
that the permeability tensor for a network of such fractures can be formed by adding the 
respective components of the permeability tensors for each individual fracture. Oda (1985, 
1986) formulated the permeability tensor of rock masses based on the geometrical statistics 
of related fractures. Liu et al. (1999) proposed an analytical solution that links changes in 
effective porosity and hydraulic conductivity to the redistribution of stresses and strains in 
disturbed rock masses. Zhou et al. (2008) suggested an analytical model to determine the 
permeability tensor for fractured rock masses based on the superposition principle of liquid 
dissipation energy. Although slight discrepancy exists between the permeability tensor and 
the hydraulic conductivity tensor (the former is an intrinsic property determined by fracture 
geometry of the rock mass, while the latter also considers the effects of fluid viscosity and 
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gravity), when taking into account the flow-stress coupling effect, the above models 
presented, respectively, by Snow (1969), Oda (1985) and Zhou et al. (2008) were proved to be 
functionally equivalent for a certain fluid (Zhou et al., 2008). A common limitation with the 
above models lies in the fact that the hydraulic conductivity tensor of a fractured rock mass 
is all formulated to be either stress-dependent or elastic strain-dependent. Consequently, 
material nonlinearity and post-peak dilatancy are not considered in the formulation of the 
hydraulic conductivity tensor for disturbed rock masses. To address this problem, Chen et 
al. (2007) extended the above work and proposed a numerical model to establish the 
hydraulic conductivity for fractured rock masses under complex loading conditions. 
Based on the observation that natural fractures in a rock mass are most often clustered in 
certain critical orientations resulting from their geological modes and history of formation 
(Jing, 2003), characterizing the rock mass as an equivalent continuum containing one or 
multiple sets of planar and parallel fractures with various critical orientations, scales and 
densities turns out to be a desirable approximation. Starting from this point of view, the 
deformation patterns of the fracture network can be first characterized by establishing an 
equivalent elastic or elasto-plastic constitutive model for the homogenized medium. On this 
basis, a stress-dependent hydraulic conductivity tensor may be formulated for the former 
for describing the hydraulic behaviour of the rock mass at low stress level and with overall 
elastic response; and a strain-dependent hydraulic conductivity tensor for the latter for 
demonstrating the influences of material non-linearity and shear dilatancy on the hydraulic 
properties after post-peak loading. This chapter mainly presents the research results on the 
stress/strain-dependent hydraulic properties of fractured rock masses under mechanical 
loading or engineering disturbance achieved by Chen et al. (2006), Zhou et al. (2006), Chen 
et al. (2007)  and Zhou et al. (2008).  
The stress-dependent hydraulic conductivity model (Zhou et al., 2008) was proposed for 
estimation of the hydraulic properties of fractured rock masses at relatively lower stress 
level based on the superposition principle of flow dissipation energy. It was shown that the 
model is equivalent to Snow’s model (Snow, 1969) and Oda’s model (Oda, 1986) not only in 
form but also in function when considering the effects of mechanical loading process on the 
evolution of hydraulic properties. This model relies on the geometrical characteristics of 
rock fractures and the corresponding fracture network, and demonstrates the coupling effect 
between fluid flow and deformation. In this model, the pre-peak dilation and contraction 
effect of the fractures under shear loading is also empirically considered. It was applied to 
estimate the hydraulic properties of the rock mass in the dam site of the Laxiwa 
Hydropower Project located in the upstream of the Yellow River, China, and the model 
predictions have a good agreement with the site observations from a large number of single-
hole packer tests. 
The strain-dependent hydraulic conductivity model (Chen et al., 2007), on the other hand, 
was established by an equivalent non-associative elastic-perfectly plastic constitutive model 
with mobilized dilatancy to characterize the nonlinear mechanical behaviour of fractured 
rock masses under complex loading conditions and to separate the deformation of weaker 
fractures from the overall deformation response of the homogenized rock masses. The major 
advantages of the model lie in the facts that the proposed hydraulic conductivity tensor is 
related to strains rather than stresses, hence enabling hydro-mechanical coupling analysis to 
include the effect of material nonlinearity and post-peak dilatancy, and the proposed model 
is easy to be included in a FEM code, particularly suitable for numerical analysis of 
hydromechanical problems in rock engineering with large scales. Numerical simulations 
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were performed to investigate the changes in hydraulic conductivities of a cube of fractured 
rock mass under triaxial compression and shear loading as well as an underground circular 
excavation in biaxial stress field at the Stripa mine (Kelsall et al., 1984; Pusch, 1989), and the 
simulation results are justified by in-situ experimental observations and compared with 
Liu’s elastic strain-dependent analytical solution (Liu et al., 1999). 
Unless otherwise noted, continuum mechanics convention is adopted in this chapter, i.e., 
tensile stresses are positive while compressive stresses are negative. The symbol (:) denotes 
an inner product of two second-order tensors (e.g., a:b=aijbij) or a double contraction of 

adjacent indices of tensors of rank two and higher (e.g., c:d=cijkldkl), and (⊗) denotes a dyadic 

product of two vectors (e.g., a⊗b=aibj) or two second-order tensors (e.g., c⊗d=cijdkl). 

2. Stress-dependent hydraulic conductivity of rock fractures 

In this section, the elastic deformation behaviour of rock fractures at the pre-peak loading 
region will be first presented, and then a stress-dependent hydraulic conductivity model 
will be formulated. The deformation model (or indirectly the hydraulic conductivity model) 
is validated by the laboratory shear-flow coupling test data obtained by Liu et al. (2002). The 
main purpose of this section is to provide a theory for developing a stress-dependent 
hydraulic conductivity tensor for fractured rock masses that will be presented later in 
Section 4. 

2.1 Characterization of rock fractures 

One of the major factors that govern the flow behaviour through fractured rocks is the void 
geometry, which can be described by several geometrical parameters, such as aperture, 
orientation, location, size, frequency distribution, spatial correlation, connectivity, and 
contact area, etc. (Olsson & Barton, 2001; Zhou et al., 1997; Zhou & Xiong, 1997). Real 
fractures are neither so solid as intact rocks nor void only. They have complex surfaces and 
variable apertures, but to make the flow analysis tractable, the geometrical description is 
usually simplified. It is common to assume that individual fractures lie in a single plane and 
have a constant hydraulic aperture. When the fractures are subjected to normal and shear 
loadings, the fracture aperture, the contact area and the matching between the two opposing 
surfaces will be altered. As a result, the equivalent hydraulic aperture of the fractures varies 
with their normal and shear stresses/displacements, which demonstrates the apparent 
coupling mechanism between fluid flow and stress/deformation (Min et al., 2004). 
The aperture of rock fractures tends to be closed under applied normal compressive stress. The 
asperities of the surfaces will be crushed when their localized compressive stresses exceed 
their compressive strength. As a large number of asperities are crushed under high 
compressive stress, the contact area between the fracture walls increases remarkably and the 
crushed rock particles partially or fully fill the nearby void, which decreases the effective flow 
area, reduces the hydraulic conductivity of the fracture, and even changes the flow paths 
through fracture plane. Fig. 1 depicts the increase in contact area of fractures under increasing 
compressive stresses modelled by boundary element method (Zimmerman et al., 1991). 
The coupling process between fluid flow and shear deformation is more related to the 
roughness of fractures and the matching of the constituent walls. Fig. 2 shows the impact of 
the fracture structure on the shear stress-deformation coupling mechanism. In Fig. 2(a), the 
opposing walls of the fracture are well matched so that the fracture always dilates and the 
hydraulic conductivity increases under shear loading as long as the applied normal stress is 
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not high enough for the asperities to be crushed. For the state shown in Fig. 2(c), shear 
loading will result in the closure of the fracture and the reduction in hydraulic conductivity. 
Fig. 2(b) illustrates a middle state between (a) and (c), and its shearing effect depends on the 
direction of shear stress. When the matching of a fracture changes from (a) to (b) then to (c) 
under shear loading, shear dilation occurs. On the other hand, shear contraction takes place 
from the movement of the matching from (c) to (b) then to (a). In a more complex scenario, 
shear dilation and shear contraction may happen alternately, resulting in the fluctuation of 
the hydraulic behaviour of the fractures. 
 

  
(a)  (b)  

  
(c)  (d)  

Fig. 1. Variation of contact surface of fractures under increasing compressive stresses (after 
Zimmerman et al., (1991): (a) P=0 MPa; (b) P=20 MPa; (c) P=40 MPa and (d) P=60 MPa 
 

  
(a)  (b)  (c)  

Fig. 2. Shear dilation and shear contraction of fractures: (a) well-matched; (b) fair-matched; 
and (c) bad-matched 
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2.2 An elastic constitutive model for rock fractures 

To formulate the stress-dependent hydraulic conductivity for rock fractures, we model the 
fractures by an interfacial layer, as shown in Fig. 3. The interfacial layer is a thin layer with 
complex constituents and textures (depending on the fillings, asperities and the contact area 
between its two opposing walls). Assumption is made here that the apparent mechanical 

response of the interfacial layer can be described by Lame’s constant λ and shear modulus μ. 
Because the thickness of the interfacial layer (i.e., the initial mechanical aperture of the 
fracture) is generally rather small comparing to the size of rock matrix, it is reasonable to 

assume that εx=εy=0 and γxy=γyx=0 within the interfacial layer. Then according to the Hooke’s 
law of elasticity, the elastic constitutive relation for the interfacial layer under normal stress 

σn and shear stress τ can be written in the following incremental form: 
 

 

Rock block

Rock block

Interfacial layer

x
y

z

σn

b0

τ

τ  

Fig. 3. The interfacial layer model for rock fractures 

 
n nd 2 0 d

d 0 d

σ λ μ ε
τ μ γ
′ +⎧ ⎫ ⎡ ⎤ ⎧ ⎫

=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎩ ⎭ ⎣ ⎦ ⎩ ⎭

 (1) 

For convenience, we use u1 to denote the relative normal displacement of the interfacial 

layer caused by the effective normal stress σ’n, δ to denote the relative tangential 

displacement caused by the shear stress τ, and u2 to denote the relative normal displacement 

caused by shear dilation or contraction (positive for dilatant shear, negative for contractive 

shear). Hence, the total normal relative displacement u is represented as 

 1 2u u u= +  (2) 

The increments of strains, dεn and dγ, can be expressed in terms of the increments of relative 

displacements, du1 and dδ, as follows: 

 
n 1 0

0

d d ( )

d d ( )

= +⎧
⎨ = +⎩

u / b u

/ b u

ε
γ δ

  (3) 

where b0 is the thickness of the interfacial layer or the initial mechanical aperture of the 
fracture. Substituting Eq. (3) in Eq. (1) yields: 

 
n n 1

s

d 0 d

d 0 d

k u

k

σ
τ δ
′⎧ ⎫ ⎡ ⎤ ⎧ ⎫

=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎩ ⎭ ⎣ ⎦ ⎩ ⎭

  (4) 
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where kn and ks denote the tangential normal stiffness and tangential shear stiffness of the 
interfacial layer, respectively. 

 n 0 s 0( 2 ) /( ),     /( )= + + = +k b u k b uλ μ μ  (5) 

Interestingly, kn and ks show a hyperbolic relation with normal deformation and characterize 
the deformation response of the interfacial layer under the idealized conditions that each 
fracture is replaced by two smooth parallel planar plates connected by two springs with 
stiffness values kn and ks. As can be seen from Eq. (5), as long as the initial normal stiffness 
and shear stiffness with zero normal displacement, kn0 and ks0, are known, they can be used 
as substitutes for λ and μ. 
Substituting Eq. (2) in Eq. (4) results in: 

 1
n

0 1 2

( 2 )d
d

+′ =
+ +

u

b u u

λ μσ   (6) 

 
0 1 2

d
d

b u u

μ δτ =
+ +

  (7) 

Suppose normal stress σn is firstly applied before the loading of shear stress, u1 can be 
obtained by directly integrating Eq. (6): 

 n
1 0 2( ) exp 1

2

⎡ ⎤′⎛ ⎞
= + −⎢ ⎥⎜ ⎟+⎝ ⎠⎣ ⎦

u b u
σ

λ μ
  (8) 

Here, it is to be noted that the elastic constitutive model for the rock fracture leads to an 
exponential relationship between the fracture closure and the applied normal stress, which 
has been widely revealed in the literature, e.g., in Min et al. (2004).  
On the other hand, the shear expansion caused by dδ can be estimated from shear dilation 
angle dm: 

 2 md  tan  du d δ=  (9) 

By introducing two parameters, s and ϕ, pertinent to normal stress σn, we represent the 
dilation angle dm under normal stress σn in the form of Barton’s strength criterion for joints 
(Barton, 1976) (τ = σn tan(2dm+ϕb), where ϕb is the basic frictional angle of joints): 

 m
1

2
tand arctan

s

τ ϕ⎡ ⎤⎛ ⎞= −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
  (10) 

Obviously, s is a normal stress-like parameter, and ϕ is a frictional angle-like parameter. But 
to make the above formulation still valid into pre-dilation state (i.e., shear contraction state), 
s and ϕ differ from their initial implications. Later, we will show how they can be back 
calculated from shear experimental data.  
Substituting Eqs. (9) and (10) into (7) yields: 

 2

0 1 2

d 1
d

2

u
arctan

b u u s

τ ϕ τ
μ
⎡ ⎤⎛ ⎞= −⎜ ⎟⎢ ⎥+ + ⎝ ⎠⎣ ⎦

  (11) 
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By integrating Eq. (11), we have: 

 
2

2 0 1 2

| | | |
( ) exp arctan ln 1 1

2 4

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎛ ⎞= + − − + −⎢ ⎥⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭

s
u b u

s s

τ τ τϕ
μ μ

 (12) 

By solving the simultaneous equations, Eqs. (8) and (12), we have: 

 
1 0

2 0

(1 )

1
(1 )

1

+⎧ =⎪⎪ −
⎨ +⎪ =
⎪ −⎩

A B
u b

AB
B A

u b
AB

  (13) 

where 

 n 1
2

A exp
σ

λ μ
′⎛ ⎞

= −⎜ ⎟+⎝ ⎠
  (14) 

 
2

2
1 1

2 4

| | | | s
B exp arctan ln

s s

τ τ τϕ
μ μ

⎡ ⎤⎛ ⎞⎛ ⎞= − − + −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
  (15) 

Thus, the total normal deformation under normal and shear loading can be obtained, 

 1 2 0
2

1

A B AB
u u u b

AB

+ +
= + =

−
  (16) 

The actual aperture of the fracture, b = b0+u, is given by: 

 0 0(1 )= + = + χb b u b  (17) 

where 

 
2

1

A B AB

AB
χ + +
=

−
  (18) 

2.3 Stress-dependent hydraulic conductivity for rock fractures 
Since natural fractures have rough walls and asperity areas, it is not appropriate to directly 
use the aperture derived by Eq. (17) for describing the hydraulic conductivity of the 
fractures. Instead, an equivalent hydraulic aperture is usually taken to represent the 
percolation property of the fractures, as demonstrated in Section 1. Based on experimental 
data, the relationship between the equivalent hydraulic aperture and the mechanical 
aperture has been widely examined in the literature, and the empirical relations proposed 
by Lomize (1951), Louis (1971), Patir & Cheng (1978), Barton el al. (1985) and Olsson & 
Barton (2001) are listed in Table 1. For example, if Patir and Cheng’s model is used to 
estimate the equivalent hydraulic aperture that accounts for the flow-deformation coupling 
effect in pre-peak shearing stage, then there is 

 [ ]1/3*
0 v(1 ) 1 0.9exp( 0.56 / )= + − −b b Cχ   (19) 
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where Cv is the variation coefficient of the mechanical aperture of the discontinuities, which 
is mathematically defined as the ratio of the root mean squared deviation to the arithmetic 
mean of the aperture. For convenience, Eq. (19) is rewritten as: 

 0
*b b f ( )β=   (20) 

Obviously, f(β) is a function of the normal and shear loadings, the mechanical characteristics 
and the aperture statistics of the fractures. 
Thus, the hydraulic conductivity of the fractures subjected to normal and shear loadings is 
approximated by the hydraulic conductivity of the laminar flow through a pair of smooth 
parallel plates with infinite dimensions: 

 
2

12

*gb
k

ν
=   (21) 

where k is the hydraulic conductivity, g is the gravitational acceleration, and ν is the 
kinematic viscosity of the fluid. 
An alternative approach to account for the deviation of the real fractures from the ideal 
conditions assumed in the parallel smooth plate theory is to adopt a dimensionless constant,  

ς, to replace the constant multiplier, 1/12, in Eq. (21), where 0<ς≤1/12 (Oda, 1986). In this 
manner, the hydraulic conductivity of the fractures is estimated by 

 
2gb

k ς
ν

=   (22) 

Clearly, the constant, ς, approaches 1/12 with increasing scale and decreasing roughness of 
the fractures. 
Eqs. (21) and (22) show that the hydraulic conductivity of a rock fracture varies 
quadratically with  its mechanical aperture. The latter depends, by Eq. (18), on the normal 
and shear stresses applied on the fracture. Hence, we call the established model, Eq. (21) or 
(22), the stress-dependent hydraulic conductivity model, and it is suitable to describe the 
hydraulic behaviour of the fractures subjected to mechanical loading in the pre-peak stage. 
 

Authors Expressions Descriptions 

Lomize (1951) 
1 31 51 0 6 0( )

/* .b b . . e / b
−

⎡ ⎤= +⎣ ⎦  

Louis (1971) 
1 31 5

m H1 0 8 8( )
/* .b b . . e / D

−
⎡ ⎤= +⎣ ⎦

Patir & Cheng 
(1978) [ ]1/3*

v1 0.9exp( 0.56 / )= − −b b C

Barton, et al. 
(1985) 

2 2 5* .b b JRC−=  

Olsson & Barton 
(2001) 

* 2 2.5
0 p

* 1/2
mob p

0.75−⎧ = ≤⎪
⎨

= ≥⎪⎩

b b JRC

b b JRC

δ δ

δ δ
 

b* is the equivalent hydraulic 
aperture of fractures, b the 
mechanical aperture, e the absolute 
asperity height, em the average 
asperity height, DH the hydraulic 
radius, Cv the variation coefficient 
of the mechanical aperture, JRC the 
joint roughness coefficient, JRC0 
the initial value of JRC, JRCmob the 

mobilized JRC, δ the shear 

displacement and δp the peak shear 
displacement. 

Table 1. Empirical relations between equivalent hydraulic aperture and mechanical aperture 
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2.4 Validation of the elastic constitutive model 

The key point of the stress-dependent hydraulic conductivity model is whether the 
established elastic constitutive model can properly describe the variation of mechanical 
aperture under normal and shear loadings at low stress level. Here, we use the results of the 
laboratory test performed by Liu et al. (2002) to validate the mechanical model. The test was 
conducted to study shear-flow coupling properties for a marble fracture with fillings of sand 
under low normal stresses and small shear displacements.  
The marble specimen for shear-flow coupling test is illustrated in Fig. 4, which was collected 
from the Daye Iron Mine in China. The uniaxial compressive strength and density of the 

rock sample are 52.4 MPa and 2.66×103 kg/m3, respectively. The specimen was cut into 
round shape and the fracture surfaces were polished, with its size of 290 mm in diameter 
and 200 mm in height. The opposite walls of the fracture were cemented with a layer of 
filtered sands with their diameters ranged from 0.5 to 0.69 mm, and the fracture was further 
filled with the same sands. The initial aperture of the fracture, b0, is about 1.31 mm. 
The coupled shear-flow test were conducted by first applying a prescribed normal stress 
ranging between 0.1 and 0.5 MPa and then applying shear displacement in steps until a 
maximum displacement of about 0.4 mm was reached. During tests, steady-state fluid flow 
rate and normal displacement were continuously recorded. 
With such low normal stresses and small shear displacements, it is reasonable to consider 
that the fracture behaves elastic during the coupled shear-flow test. According to the 

experimental results, the elastic parameters, λ and μ, of the fracture with fillings are 

estimated as λ=1.81 MPa and μ=3.62 MPa. In order to enable Eq. (16) to predict the 
mechanical aperture of the facture under normal and shear loads, the normal stress-like 

parameter, s, and the frictional angle-like parameter, ϕ, should be further determined. 
Fortunately, both of them can be derived by fitting the experimental curve between normal 
displacement and shear displacement, as plotted in Fig. 5, using Eq. (16) such that the least 

square error is minimized. With this approach, we obtain that for σn=0.1 MPa, s=0.062, 

ϕ=1.324, and for σn=0.4 MPa, s=0.046, ϕ=1.310. 
Fig. 5 plots the experimental results as well as the model predictions of the relation between 
mechanical aperture and shear displacement of the fracture under constant normal stresses. 
Generally, the proposed elastic constitutive model manifests the behaviour of the fracture 
with fillings during the shear-flow coupling test with low normal and shear loads. Shear 
contraction is observed in the initial 0.06-0.08 mm of shear displacement, which is followed 
by shear dilation in the remaining of the shear displacement. This property, which is 
actually ensured by the empirical relation assumed in Eq. (9), suggests that the resultant 
model is suitable for phenomenologically describing the pre-peak shear-flow coupling effect 
of fractures. 

Fig. 6 further depicts the sensitivity of s and ϕ on the behaviour of the fracture. In Fig. 

6(a), ϕ is fixed to 1.324, while s varies from 0.02 to 0.08. As s increases, shear contraction 
more apparently manifests, and the mechanical aperture versus shear displacement 

curves become lower as a whole. On the other hand, the effect of varying ϕ from 0.524 to 

1.222 but fixing s to 0.062 is plotted in Fig. 6(b). For small value of ϕ, shear contraction is 

trivial and the curve extends with a larger slope. As ϕ increases, however, shear 
contraction becomes relatively remarkable and the curve turns relatively flat. Thus, by 

adjusting s and ϕ, the mechanical and hydraulic behaviours of the fracture can be 
appropriately established. 
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Fig. 4. Sketch of the marble specimen for shear-flow coupling test 
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Fig. 5. Mechanical aperture versus shear displacement curve under constant normal stress: 
(a) Normal stress: 0.1 MPa and (b) Normal stress: 0.4 MPa. 
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Fig. 6. The sensitivity of s and ϕ on the behavior of the fracture: (a) ϕ=1.324 and (b) s=0.062 
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3. Strain-dependent hydraulic conductivity of rock fractures 

In this section, we develop an elasto-plastic constitutive model for single hard rock fractures 
with consideration of nonlinear normal deformation and post-peak shear dilatancy, and 
then formulate the strain-dependent hydraulic conductivity for the fractures under dilated 
shear loading. Compared with the stress-dependent model presented in Section 2, one major 
difference is that the strain-dependent model is capable of describing the influence of post-
peak mechanical response on the hydraulic properties of the fractures. This work is of 
paramount importance in the sense that the theoretical results are directly comparable with 
the experimental data of coupled shear-flow test, e.g. in Esaki et al. (1999). The strain-
dependent hydraulic conductivity tensor can then be developed on this basis, which will be 
presented later in Section 5. 

3.1 An elasto-plastic constitutive model for rock fractures 

The underlying physical model considered is the same with the model plotted in Fig. 3, in 

which a fracture of hard rock is located at the mid-height of a specimen between two intact 

rock blocks. The height of the specimen is denoted by s, and the initial aperture of the 

fracture is b0. When constant normal stress σn and increasing shear displacement δ are 

applied on the specimen, typical and idealized curves of shear displacement versus shear 

stress and shear displacement versus normal displacement (i.e. δ~τ curve and δ~u curve) are 

plotted in Fig. 7. The shear stress increases linearly with the shear displacement (linked by 

the initial shear stiffness of the fracture, ks0) until the shear stress approaches the peak, τp, 

which is then followed by a shear softening process in which the shear stress decreases to a 

residual level at a decreasing gradient with increasing shear displacement. For the purpose 

of deriving the hydraulic property of the fracture in post-peak loading section, however, an 

elastic-perfectly plastic δ~τ relationship can be assumed, as shown in Fig. 7(a). 
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d
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ψ
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Fig. 7. Typical and idealized curves of shear displacement versus shear stress and shear 
displacement versus normal displacement of a fracture subjected to normal and shear loads 

The deformation response of a rock fracture subjected to normal and shear loadings includes 

two components: one is the nonlinear closure of the fracture due to normal compression, and 

the other is the opening of the fracture due to shear dilation. Experimental results in Esaki et 

al. (1999) show that in the shearing process under constant normal loading, dilatancy will start 

when the shear stress approaches the peak and it increases at a decreasing gradient with 

increasing shear displacement, as illustrated in Fig. 7(b). As a result, the aperture of the 

fracture and then the hydraulic conductivity vary with increasing shear displacement. 
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Therefore, we may consider that shear dilatancy as well as the change in hydraulic 

conductivity accompanies normal and plastic shear deformations of the fracture. To deduce 

the hydraulic conductivity of the fracture with an averaging method, which will be further 

used later for deriving the hydraulic conductivity tensor for fractured rocks, we view the 

specimen with fracture as an equivalent continuous medium, i.e. the hydromechanical 

properties of the fracture are averaged into the whole specimen. As can be seen later, such a 

treatment does not affect our final solution to a single fracture, but it renders valid the small 

strain assumption on the fractures in the presence of post-sliding plasticity. 

For a one-dimensional problem with a single rock fracture, the elasto-plastic constitutive 

model can be represented in the following forms: 

 
p0

p e
s0s s s sk

τδ δ δγ γ γ= − = − = −   (23) 

 n
n p

n

tan d
sk

σε ψ γ
′

= + ∫   (24) 

where γ, γe and γp are the total shear strain, the elastic shear strain and the plastic shear 

strain of the fracture, respectively; εn is the normal strain of the fracture; τp is the peak shear 

stress of the fracture under effective normal stress σ′n; kn and ks0 are, respectively, the normal 

stiffness and the initial shear stiffness of the fracture; δ0 is the maximum elastic shear 

displacement upon shear yielding, with δ0 = τp/ks0, as shown in Fig. 7(a); and ψ is the 

mobilized dilatancy angle of the fracture. Note that in Eq. (24), the first term on the right 

hand side denotes the nonlinear closure of the fracture subjected to effective normal stress 

σ′n, while the second term denotes the opening of the fracture due to shear dilatancy. 

Existing studies have indicated that shear dilatancy is highly dependent on the plasticity 

already experienced by the fractures and normal stress, and non-negligibly dependent on 

scale (Barton & Bandis, 1982; Yuan & Harrison, 2004; Alejano & Alonso, 2005). The decaying 

process of the dilatancy angle in line with plasticity can be described by the following 

negative exponential expression through the plastic shear strain, γp, or indirectly through 

the plastic shear displacement, δ, on the basis of Eq. (23): 

 [ ]peak 0exp ( )= − −rψ ψ δ δ   (25) 

where r is a parameter for modelling the rate of decay that ψ undergoes as the plastic shear 

strain evolves. If r=0, then a constant dilatancy angle is recovered. As r→∞, the dilatancy 

angle quickly decays to zero. ψpeak is the peak dilatancy angle of the fracture in the form of 

(Barton & Bandis, 1982) 

 peak 10
n

log
JCS

JRCψ
σ

= ⋅
′−

  (26) 

where JRC and JCS are the roughness coefficient and the wall compressive strength of 

fractures, respectively, and the actual values of them should be scale-corrected (Barton & 

Bandis, 1982). Thus, the dependencies of fracture dilatancy on plasticity, normal stress and 

scale are established through Eqs. (25) and (26). 
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Note that Eq. (25) shares the same shape with the asperity angle proposed for the 
description of shear dilatancy and surface degradation (Plesha, 1987), but the latter is 
represented as a function of the plastic tangential work. With the assumption of elastic-
perfectly plasticity, they are fully equivalent for monotonic loading (Jing et al., 1993). Cyclic 
loading is not a concern in this simple model, but when cyclic loading is involved, another 
independent function can be associated to the reverse loading that starts from the original 
point, just as the suggestion given in Plesha (1987) for asperity angles in two opposite 
directions, in order to satisfy the thermodynamic restriction condition presented in Jing et 
al. (1993). 

Using the Mohr-Coulomb criteria, the peak shear stress τp of the fracture under effective 

normal stress σ′n satisfies 

 p ntan cτ σ ϕ′= − +   (27) 

where ϕ and c are the frictional angle and the cohesion of the fracture. 
Differentiating Eq. (23) yields 

 p
1

d d d
s

γ γ δ= =   (28) 

Combining Eqs. (24) and (28) results in 

 
0

n
n

n

tan ( )d
′

≈ = + ∫b s
k

δ

δ

σΔ ε ψ δ δ   (29) 

An interesting phenomenon in Eq. (29) is, as described before, the change in the aperture of 

the fracture, Δb, is irrelevant to the height of the specimen, s. To conveniently use this 
formulation, two remedies can be further made: 
First, suppose that the hyperbolic variation of kn with the increase of aperture can be 
considered in the following (Huang et al., 2002): 

 n 0 n0
n

0

b k
k

b

σ ′− +
=   (30) 

where kn0 is the initial normal stiffness of the fracture. 

Second, by employing the Taylor series expansion (truncated at the third order term), tanψ 

can be adequately approximated by ψ+ψ3/3 in radians for a rather large ψpeak, e.g. 30°. 
From Eq. (29) and the above two remedies, we have 

 0b bΔ χ=   (31) 

 0 0(1 )= + = +b b b bΔ χ   (32) 

with the parameter, χ, in the following form 

 0 0

3
peak peak( ) 3 ( )n

n 0 n0 0

1
1 e 1 e

9
− − − −

⎧ ⎫′ ⎪ ⎪⎡ ⎤ ⎡ ⎤= + − + −⎨ ⎬⎣ ⎦ ⎣ ⎦′− + ⎪ ⎪⎩ ⎭

r r

b k b r r
δ δ δ δψ ψσχ

σ
  (33) 
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3.2 Strain-dependent hydraulic conductivity for rock fractures 

Rewrite from Eq. (22) the initial hydraulic conductivity of the fracture, k0, in the following 

form: 

 
2
0

0
gb

k ς
ν

=   (34) 

Then, the hydraulic conductivity of the fracture under effective normal stress σ′n and shear 

displacement δ can be described by 

 
2

2
0(1 )= = +

gb
k kς χ

ν
  (35) 

Hence, a theoretical model of the hydraulic conductivity for a single rock fracture is finally 

formulated, which is totally determined by the effective normal stress σ′n and the shear 

displacement δ, as well as a set of parameters characterizing the behaviour of the fracture 

(i.e. b0, ς, kn0, ks0, ϕ, c, JRC, JCS and r, which all can be deduced or back-calculated from 

experimental data). 
Note that by Eqs. (35) and (33), the proposed hydraulic conductivity model for rock 

fractures subjected to normal and shear loadings with mobilized dilatancy behaviour 

depends in form on the plastic shear displacement, but from Eq. (23), one observes that the 

model depends indirectly on the plastic shear strain. Thus, we classify the established model 

into the stain-dependent hydraulic conductivity model. 

3.3 Validation of the proposed model 

Esaki et al. (1999) systematically investigated the coupled effect of shear deformation and 

dilatancy on hydraulic conductivity of rock fractures by developing a new laboratory 

technique for coupled shear-flow tests of rock fractures. In this section, we validate the 

theory proposed in Section 3.2 using the experimental data reported in Esaki et al. (1999). 

For this purpose, we first briefly introduce the experiments, and then predict our analytical 

results through Eqs. (31) and (35) by directly comparing with the experimental data. 

3.3.1 The coupled shear-flow tests 

The coupled shear-flow tests were conducted with an artificially created granite fracture 

sample under various constant normal loads and up to a residual shear displacement of 20 

mm (Esaki et al., 1999). The underlying specimen for coupled shear-flow tests is sketched in 

Fig. 3, with its size of 120 mm in length, 100 mm in width and 80 mm in height. The initial 

aperture of the created fracture, b0, is about 0.15 mm. The value of JRC is 9, and the value of 

JCS is 162 MPa, respectively. 

The coupled shear-flow tests were conducted by first applying a prescribed normal stress 

ranging between 1 MPa and 20 MPa and then applying shear displacement in steps at a rate 

of 0.1 mm/s until a maximum shear displacement of 20 mm was reached. During tests, 

steady-state fluid flow rate, shear loading and dilatancy were all continuously recorded. The 

hydraulic aperture and conductivity were back-calculated by applying the cubic law, with 

the flow equations solved by using a finite difference method.  
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3.3.2 Determination of the parameters for the proposed model 

Some of the experimental values of the mechanical parameters of the fracture specimen 

during the coupled shear-flow tests are listed in Table 2 (taken from Table 1 in Esaki et al. 

(1999)). Using the data as listed in Table 2, we plot the peak shear stress versus normal stress 

curve in Fig. 8, which can be fitted by a linear equation τp=1.058σn+0.993 with a high 

correlation coefficient of 0.9999. Therefore, the shear strength of the specimen can be derived 

as ϕ=46.6° and c=0.99 MPa, respectively. 

 

σn (MPa) τp (MPa) ks0 (MPa/mm) 

1 2.06 3.37 
5 6.16 10.65 
10 11.74 11.97 
20 22.10 17.97 

Table 2. Mechanical parameters of the artificial fracture (After Esaki et al. (1999)) 

The initial normal stiffness of the fracture of the specimen, kn0, has to be estimated from the 

recorded initial normal displacement with zero shear displacement under different normal 

stresses. From the data plotted in Fig. 9 (which is taken from Fig. 7b in Esaki et al. (1999)), kn0 

can be estimated as kn0=100 MPa/mm by considering the possible deformation of the intact 

rock under high normal stresses. It is to be noted that in the remainder of this section, the 

hard intact rock deformation of the small specimen is neglected, meaning that the normal 

displacement of the specimen mainly occurs in the fracture of the specimen and it is 

approximately equal to the increment of the mechanical aperture of the fracture. 

Theoretically, the decay coefficient of the fracture dilatancy angle, r, can be directly 

measured from the normal displacement versus shear displacement curves as plotted in Fig. 

9. A better alternative, however, is to fit the experimental curves using Eq. (31) such that the 

least square error is minimized. By this approach, we obtain that r=0.13 with a correlation 

coefficient of 0.9538. 
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Fig. 8. Peak shear stress versus normal stress curve of the fracture. 
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To obtain the dimensionless constant, ς, in Eq. (35) that relates the mechanical aperture to 

the hydraulic conductivity of the fracture under testing, further efforts are needed. A simple 

approach is to back-calculate ς directly using Eq. (34) with initial hydraulic conductivity, k0. 

But similarly, the better alternative is to fit the hydraulic conductivity versus shear 

displacement curves, as plotted in Fig. 11 (which is taken from Fig. 7c-f in Esaki et al. (1999)), 

using Eq. (35) such that the least square error is minimized. With such a method, we obtain 

that ς=0.00875. This means that the mechanical aperture, b, and the hydraulic aperture, b*, 

are linked with b*=0.324b, which is very close to the experimental result shown in Fig. 8 in 

Esaki et al. (1999). 
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Fig. 9. Comparison of the fracture aperture analytically predicted by Eq. (31) with that 
measured in coupled shear-flow tests. 

3.3.3 Validation of the proposed theory 

With the necessary parameters obtained in Section 3.3.2, we are now ready to compare the 
proposed model in Eqs. (31) and (35) with the experimental data presented in Esaki et al. 
(1999). Note that although the experimental data are available for one cycle of forward and 
reverse shearing, only the results for the forward shearing part are considered. The reverse 
shearing process, however, can be similarly modelled. 
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Fig. 9 depicts the relations between the mechanical aperture and shear displacement that were 
measured from the coupled shear-flow tests presented in Esaki et al. (1999) and predicted by 
using the proposed model given in Eq. (31) under different normal stresses applied during the 
testing. It can be observed from Fig. 9 that our proposed analytical model is able to describe 
the shear dilatancy behaviour of a real fracture under wide range of normal stresses between 1 
MPa and 20 MPa by feeding appropriate parameters. Even the fracture aperture increases by 
one order of magnitude due to shear dilation, the analytical model still fitted the experimental 
results well. For practical uses, the slight discrepancies between the analytical results and the 
experimental data are negligible and the proposed model is accurate enough to characterize 
the significant dilatancy behaviour of a real fracture.  
This performance is largely attributed to the dilatancy model introduced through Eqs. (25) 
and (26). The dilatancy angles of the fracture evolving with the plastic shear displacement 
under different normal stresses are illustrated in Fig. 10. The high dependencies of the 
dilatancy angle of the fracture on normal stress and plasticity are clearly demonstrated in 
the curves. The peak dilatancy angle, which can be rather accurately modelled by Barton’s 
peak dilatancy relation (Barton & Bandis, 1982), decreases logarithmically with the increase 
of the applied normal stress. For normal stresses of 1 MPa, 5 MPa, 10 MPa and 20 MPa, the 
peak dilatancy angles are 19.9°, 13.6°, 10.9° and 8.2°, respectively. On the other hand, the 
dilatancy angle undergoes negative exponential decay with increasing plastic shear 
displacement, a process related to surface degradation of rough fractures. 
Fig. 11 shows the hydraulic conductivity versus shear displacement relations that were 
back-calculated from fluid flow results using the finite difference method from the coupled 
shear-flow tests presented in Esaki et al. (1999) and that are predicted by the proposed 
model given in Eq. (35) under different normal stresses during testing. As shown in the 
semi-logarithmic graphs in Fig. 11, the proposed analytical model can well predict the 
evolution of hydraulic conductivity of the tested rock fracture, with the change in the 
magnitude of 2 orders, during coupled shear-flow tests under different normal stresses. The 
ratios of the predicted hydraulic conductivities to the corresponding experimental results all 
fall in between 0.3 and 3.0, indicating that they are rather close in orders of magnitude and 
the predicted results are suitable for practical use. 
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Fig. 10. Dilatancy angles of the fracture evolving with the plastic shear displacement under 
different normal stresses. 
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Fig. 11. Comparison of the hydraulic conductivity analytically predicted by Eq. (35) with 
that calculated from coupled shear-flow tests with finite difference method. 

4. Stress-dependent hydraulic conductivity tensor of fractured rocks 

When the response of each fracture under normal and shear loading is understood (see 
Section 2), the remaining problem is how to formulate the hydraulic conductivity for 
fractured rock mass based on the geometry of the underlying fracture network. Fig. 12 
depicts a two-dimensional fracture network (taken after Min et al. (2004)) in a biaxial stress 
field. As shown in Fig. 12, each fracture plays a role in the hydraulic conductivity of the rock 
mass, and its contribution primarily depends on its stress state, its occurrence, as well as its 
connectivity with other fractures. Also shown in Fig. 12 is the scale effect of the rock mass on 
hydraulic properties. When the size of the rock mass is small, only a few number of 
fractures are included and heterogeneity of the hydraulic conductivity of the rock mass may 
dominate. As the population of factures grows with the increasing size, an upscaling scheme 
may be available to derive a representative hydraulic conductivity tensor for the rock mass 
at the macroscopic scale. 
Based on the above observations, in this section, we formulate an equivalent hydraulic 
conductivity tensor for fractured rock mass based on the superposition principle of liquid 
dissipation energy, in which the concept of REV is integrated and the applicability of an 
equivalent continuum approach is able to be validated. 
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Fig. 12. A fracture network (taken after Min et al. (2004)) in biaxial stress field and the scale 
effect of the rock mass 

4.1 Computational model 

Without loss of generality, the global coordinate system X1X2X3 is established in such a way 
that its X1-axis points towards the East, X2-axis toward the North and X3-axis vertically 

upward. A local coordinate system 1 2 3
f f fx x x  is associated with the fth set of fractures such 

that the 1
f

x -axis is along the main dip direction, the 2
f

x -axis is in the strike, and the 3
f

x -axis 

is normal to the fractures, as shown in Fig. 13. 
In order to formulate the stress-dependent hydraulic conductivity tensor for fractured rock 
masses using the aforementioned elastic constitutive model for rock fractures, the following 
assumptions, similar to Oda (1986), are made in this section: 
1. A cube of volume, Vp, is considered as the flow region of interest, which is cut by n sets 

of fractures. The orientation of each set of fractures is indicated by a mean azimuth 

angle β and a mean dip angleα. Other geometrical statistics of the fractures are assumed 
to be available through field measurements or empirical estimations. 

2. Even though the geometry of real fractures is complex, generally it can be simplified as 
a thin interfacial layer with radius r and aperture b*. 

3. The rock mass is regarded as an equivalent continuum medium, which means the 
representative elementary volume (REV) exists in the rock mass and its size is smaller 
than or equal to Vp. 

www.intechopen.com



Stress/Strain-Dependent Properties of Hydraulic Conductivity for Fractured Rocks 

 

23 

O

1X

3X

2X

fs
fs

Fractures

fo

fx1

fx3

fx2

 

Fig. 13. Coordinate systems 

4.2 Stress-dependent hydraulic conductivity tensor 

Fluid flow through the equivalent continuum media can be described by the generalized 3-
D Darcy’s law as follows: 

 =KJv   (36) 

where v denotes the vector of flow velocities, J  denotes the vector of hydraulic gradients, 

and K  is the hydraulic conductivity tensor for the rock mass. 
For steady-state seepage flow, the dissipation energy density, e(X1, X2, X3), of fluid flow 
through the media can be represented as (Indelman & Dagan, 1993): 

 T1

2
e = J KJ   (37) 

Hence, the total flow dissipation energy, E, in the rock mass Vp can be calculated by 
performing an integration throughout the whole flow domain: 

 
p p

T1
d d

2
V VE e Ω Ω= =∫ ∫ J KJ   (38) 

If REV does exist in the rock mass and its size is smaller than or equal to Vp, by defining J  

to be the vector of the average hydraulic gradient within Vp and K  to be the average 
hydraulic conductivity tensor, Eq. (38) can be reduced to: 

 T
p

1

2
E V= J KJ   (39) 

Suppose that the volume density of the ith set of fractures is Jvi. The number of this set of 
fractures can be estimated by mi = Jvi Vp. 
For permeable rock matrix, the flow dissipation energy shown in Eq. (39) consists of two 
components, i.e., the flow dissipation energy through rock matrix, Er, and the flow 
dissipation energy through crack network, Ec: 

 r cE E E= +  (40) 
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Er can be represented as: 

 T
r r p

1

2
E V= J K J   (41) 

where rK  denotes the hydraulic conductivity tensor for rock matrix. If rock matrix is 

impermeable, all elements in rK  vanish. 
To estimate Ec, we introduce a weight coefficient Wij to describe the effect of the connectivity 
of the fracture network on fluid flow: 

 ij ij iW /ξ ξ=   (42) 

where ξij is a stochastic variable denoting the number of fractures intersected by the jth 

fracture belonging to the ith set; and iξ  denotes the maximum number of fractures cut by 

the ith set of fractures. Obviously, 0 ≤ Wij ≤ 1 and when ξij = 0, Wij = 0. This implies that an 

entirely isolated fracture which does not intersect any other fracture effectively contributes 

nothing to the hydraulic conductivity of the total rock mass. 

For the jth fracture belonging to the ith set, a void volume equal to 2 *
ij ijr bπ  is associated with 

it. Then, the flow dissipation energy through it is described as: 

 2
c

*
ij ij ij ij ijE W e r bπ=   (43) 

where eij is shown as follows: 

 T
c c

1

2
= J Jij ij i ie k   (44) 

where kij denotes the hydraulic conductivity of the jth fracture of the ith set, which can be 
calculated by the stress-dependent hydraulic conductivity model, Eq. (21). 

ciJ  denotes the hydraulic gradient within the ith set of fractures: 

 ( )ci i i= − ⊗J ├ n n J   (45) 

where δ is the Kronecker delta tensor, and ni denotes the unit vector normal to the ith set of 

fractures, with its components n1=sinαsinβ, n2=sinαcosβ, and n3=cosα. 
Thus, Ec can be represented as 

 ( )2 3 T
c

1 112

imn
*

ij ij ij i i
i j

g
E W r b

π
ν = =

= − ⊗∑∑ J ├ n n J   (46) 

From Eqs. (39)-(41), (46) and (20), it can be referred that 

 ( )3 2 3
r 0

1 112

imn

ij ij ij ij i i
p i j

g
W f ( )r b

V

π
β

ν = =
= + − ⊗∑∑K K ├ n n   (47) 

In Eq. (47), n is determined by the orientation of the fractures, which reflects the effect of the 
orientation of the fractures on the fluid flow. r and b0 represent the size or the scale of the 
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fractures; they retrain the fluid flow through the fractures from their developing magnitude. 
W is a parameter introduced to show the impact of the connectivity of the fracture network 

on fluid flow. Finally, f(β) is a function used to demonstrate the coupling effect between 
fluid flow and stress state. 
The hydraulic tensor for fractured rock masses given in Eq. (47) is related to the volume of 

the flow region, Vp, which exactly shows the size effect of the hydraulic properties. 

Intuitively, the smaller the Vp size is, the less number of fractures is contained within the 

volume, and thus the poorer the representative of the computed hydraulic conductivity 

tensor. On the other hand, when Vp is increased up to a certain value, the fractures involved 

in the cubic volume are dense enough and the hydraulic conductivity tensor for the rock 

mass does not vary with the size of the volume. This Vp size is exactly the representative 

elementary volume, REV, of the flow region. The Vp size of the flow region is required to be 

larger than REV for estimating the hydraulic conductivity tensor for the fractured rock 

mass. Otherwise, treating the fractured rock mass as an equivalent continuum medium is 

not appropriate, and the discrete fracture flow approach is preferable. 

4.3 Comparison with Snow’s and Oda’s models 

Now we make a comparison between the formulation of the hydraulic conductivity tensor 
presented in Eq. (47) and the formulation given by Snow (1969) as well as the formulation 
given by Oda (1986). The Snow’s formulation is as follows: 

 ( )
3

112

n
i

i i
ii

g b

sν =
= − ⊗∑K ├ n n   (48) 

where si is the average spacing of the ith set of fractures. If we neglect the hydraulic 
conductivity of the rock matrix and the connectivity of the factures, and define 

 0
1

1
( )

im

i ij ij
i j

b f ┚ b
m =

= ∑   and   1 2

p 1

im

i ij
j

┨
s r

V
−

=
= ∑   (49) 

Then, the formulation presented in Eq. (47) is totally equivalent to Snow’s formulation, Eq. 
(48). 
On the other hand, the Oda’s formulation is described by 

 ( )= −K ├ PkkPς   (50) 

where P is the fracture geometry tensor, with Pkk = P11+P22+P33. 

 2 3

0 0
( , , )d d d

∞ ∞
= ⊗∫ ∫ ∫P n n

Ω
┨┩ r b E n r b r bΩ   (51) 

where E(n, r, b) is a probability density function of the geometry of the fractures, ρ is the 

number of fracture centers per unit of volume, with ρ = mv/Vp, v im m=∑ , and ς is the 

dimensionless scalar adopted to penalize the permeability of real fractures with roughness 

and asperities. Assuming that a statistically valid REV exists and being aware that the 

fracture orientation is a discrete event, the fracture geometry tensor may be empirically 

constructed by the following direct summation 
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v

2 3

p 1

m

i i i i
i

┨
r b

V =
= ⊗∑P n n   (52) 

Following a similar deduction, it can be inferred that all these three formulations are 
equivalent not only in form but also in function, though they are derived from different 
approaches and different assumptions. The formulation presented in Eq. (47) can be directly 
obtained from Snow’s formulation by considering the connectivity and roughness of the 
fractures and integrating the aperture changes under engineering disturbance. The 
discretized form of the Oda’s formulation is much closer to the current formulation, and the 
latter can also be directly achieved from the former by considering the connectivity of the 
fracture network. However, the proposed method for formulating an equivalent hydraulic 
conductivity tensor for complex rock mass based on the superposition principle of liquid 
dissipation energy is a widely applicable approach not only to equivalent continuum but 
also to discrete medium. 

4.4 A numerical example: hydraulic conductivity of the rock mass in the Laxiwa 
Hydropower Project 
In order to validate the theoretical model presented in Section 4.2, we investigated the 
hydraulic conductivity of a fractured rock mass at the construction site of the Laxiwa 
Hydropower Project, the second largest hydropower project on the upstream of the Yellow 
River. The selected construction site for a double curvature arch dam is a V-shaped valley 
formed by granite rocks, as shown in Fig. 14. The dam height is 250 m, the top elevation of 
the dam is 2460 m, the reservoir storage capacity is 1.06 billion m3 and the total installed 
capacity is 4200 MW. 
A typical section of the Laxiwa dam site is illustrated in Fig. 15. Besides faults, four sets of 
critically oriented fractures are developed in the rock mass at the construction site. The 
geological characteristics of the fractures are described by spacing, trace length, aperture, 
azimuth, dip angle, the joint roughness coefficient, JRC, of the fractures as well as the 
connectivity of the fracture network (i.e., the number of fractures intersected by one 
fracture). According to site investigation, the statistics (i.e., the averages and the mean 
squared deviations, as well as the distribution of the characteristics) of the fractured rock 
mass on the right bank of the valley are listed in Table 3. 
 

 

Fig. 14. Site photograph of the Laxiwa valley 
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Fig. 15. A typical section of the Laxiwa dam site 

 

Length 
(m) 

Aperture 
(mm) 

Azimuth 

(°) 
Dip 

(°) 
Connectivity 

Set 
Spacing 

(m) 
avg. dev. avg. dev. avg. dev. avg. dev. avg. dev. 

1 1.45 5 1.5 0.096 0.02 85.3 10 54.5 10 5 3 
2 2.62 3 1.0 0.096 0.02 355.1 20 29.8 5 3 2 
3 10.96 3 1.0 0.096 0.02 287.4 20 61.4 10 3 2 
4 10.96 3 1.0 0.096 0.02 320.2 20 11.9 5 3 2 

Distribution 
logarithmic 

normal 
negative 

exponential
Gama normal normal normal 

*’avg.’ denotes arithmetic mean of a variable,  
‘dev.’ represents root mean squared deviation 

Table 3. Characteristic variables of the fractured rock mass* 

At the construction site of the Laxiwa dam, a total number of 1450 single-hole packer tests 
were conducted to measure the hydraulic properties of the rock mass, with 113 packer tests 

for the shallow rock mass on the right bank in 0−80 m horizontal depth and 278 packer tests 

for the deeper rock mass. The measurements of the hydraulic conductivity range from 10−5 

cm/s to 10−6 cm/s for the shallow rock mass and from 10−6 cm/s to 10−7 cm/s for the deeper 

rock mass, with in average 4.94×10−5 cm/s for the former and 3.80×10−6 cm/s for the latter, 
respectively (Liu, 1996). On the other hand, in-situ stress tests showed that the geostress in 

the base of the valley and in deep rock mass has a magnitude of 20−60 MPa, with the 
direction of the major principal stress pointing towards NNE. As a result of stress release, 

the release fractures are frequently developed and a high permeability zone of 0−80 m 
horizontal depth is formed in the bank slope, as shown in Fig. 15. The stress release 
fractures, however, become infrequent in deeper rock mass, and the measured hydraulic 

conductivity is generally 1−2 orders of magnitude smaller than the hydraulic conductivity of 
the rock mass in shallow depth away from the bank slope. Therefore, the hydraulic 
conductivity of the rock mass at the construction site of the Laxiwa arch dam is mainly 
controlled by the fracture network and the stress state. 
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Based on these statistics given in Table 3, fracture networks can be generated and calibrated 
for the rock mass at the construction site of the Laxiwa Hydropower Project using the Monte-
Carlo method by assuming that each fracture is a smooth, planar disc, with its center 
uniformly distributed in the simulated area. For each set of fractures, the geometrical 
parameters of any one are sampled by Monte-Carlo method until enough fractures are 
included in the simulated area. Then, a calibration procedure is invoked to check whether the 
generated model satisfies the distribution mode of the real fracture network. If doesn’t, the 
fracture network will be regenerated until one matches the distribution mode. With the 
generated fracture network, the actual connectivity can be computed by spatial operation on 
the fractures. But for calibrated fracture network, a more convenient approximate approach to 
determine the connectivity of the fracture network, as it is adopted here, is to directly produce 
ξij in Eq. (42) with the Monte-Carlo method and the characteristics presented in Table 3, then 

Wij is derived from Eq. (42) with iξ , the maximum number of fractures cut by the ith set of 

fractures. Field measurements are used to estimate iξ , with 1ξ =11, 2ξ =8 and 3ξ = 4ξ =6 for 

the four sets of fractures, respectively. Fig. 16 illustrates a simulated fracture network with size 
of 20×20×20 m.  
On the basis of the fracture network generated above, we compute the hydraulic conductivity 
tensor for the simulated cubic volume of rock mass with size of 20×20×20 m using the method 
given by Snow (1969) and the method presented in Section 4.2, respectively. To show the 
coupling effect of stress/deformation on hydraulic properties, we consider two scenarios for 
examination. In the first scenario, we consider the fracture network located in the shallow 
depth away from the bank slope, where the impact of the in-situ stress is negligible. While in 
the second scenario, the fracture network is situated in larger depth, and a typical stress state 
with σx=σz=10 MPa and σy=20 MPa is associated with it. Based on laboratory test results, the 
shear modulus of the fractures is estimated as μ=2 MPa, and then by taking the Poisson’s ratio 
as ν=0.25, the Lame’s constant is derived with λ=2 MPa. The kinematic viscosity of 
underground water is set to be νw=1.14×10−6 m2/s and the frictional angle-like parameter and 
the normal stress-like parameter are taken as ϕ=0.4363 and s=σn/20.  
 

x

y

z

(a) 
x

y

z

 
(b) 

Fig. 16. A three dimensional fracture network with size of 20×20×20 m generated by using 
the Monte-Carlo method for the rock mass in the Laxiwa Hydropower Project: (a) fracture 
network and (b) traces of the fractures on the surfaces of the simulated area 
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The predicted hydraulic conductivity tensor for the examined rock mass is listed in Table 4. 
From Table 4, one observes that for shallow rock mass (where the effect of in-situ stress is 
not considered), the Snow’s method and the method presented in Section 4.2 predict similar 
results and the predicted hydraulic conductivity is in the magnitude of 10−5 cm/s and close 
to in-situ hydraulic observations, but the anisotropy in hydraulic conductivity manifests due 
to non-uniform distribution of fractures. Compared with the hydraulic conductivity of the 
shallow rock mass, the predicted hydraulic conductivity for the rock mass in larger depth 
with the same fracture network decreases in 2 orders of magnitude due to the closure of the 
fractures applied by the in-situ stresses, but the anisotropic property of the hydraulic 
conductivity remains, which suggests that the occurrence of the fractures has a significant 
impact on permeability. Taking into consideration the applied stress level, the reduction of 
hydraulic conductivity in orders of magnitude is very close to the results achieved in Min et 
al. (2004) through a discrete element method, and generally agrees with the in-situ hydraulic 
observations. 
 

Snow’s model (for shallow rock mass) 

  4.78E−05 −4.76E−07 −1.71E−05 

−4.76E−07   7.49E−05 −1.41E−05 

−1.71E−05 −1.41E−05   4.08E−05 

The proposed model (for shallow rock mass) 

  1.93E−05 −1.75E−07 −6.39E−06 

−1.75E−07   2.99E−05 −5.81E−06 

−6.39E−06 −5.81E-06   1.64E−05 

The proposed model (for deep rock mass) 

  9.06E−08 −4.81E−09 −6.10E−08 

−4.81E−09   1.85E−07 −1.92E−08 

−6.10E−08 −1.92E−08   1.10E−07 

Table 4. Predicted hydraulic conductivity tensor of the rock mass at the construction site of 
the Laxiwa dam (cm/s) 

Now, we take for example the rock mass in shallow depth to estimate the REV size of the 
rock mass. For this purpose, the scale of the rock mass is increased gradually from 3×3×3 m 
to 40×40×40 m with an increment of 1 m in each dimension. In each step, a fracture network 
with prescribed size is generated by using the Monte-Carlo method described above, and it 
is worth noting that this method is somewhat different from the method used by Min & Jing 
(2003) and Long et al. (1982). For each fracture network, the hydraulic conductivity tensor is 
calculated from Eq. (47) and then the principal hydraulic conductivities are further obtained 
from the hydraulic conductivity tensor. The relationship between the computed principal 
hydraulic conductivities and the sizes of the rock mass is illustrated in Fig. 17. As we can see 
from Fig. 17, when the block size of the rock mass is smaller than 18×18×18 m, the 
population of fractures is not dense enough and the principal hydraulic conductivities 
fluctuate dramatically. On the other hand, as the size scales up to about 20×20×20 m, the 
examined rock mass has included enough fractures and the computed principal hydraulic 
conductivities approach a rather steady state, with k1, k2, k3 estimated to be 2.41×10−5 cm/s, 
3.59×10−5 cm/s, 1.08×10−5 cm/s, respectively. This suggests that the REV does exist in the 
rock mass and the rock mass can be regarded as an equivalent continuum medium as long 
as its size is no less than, e.g., 20×20×20 m or 8000 m3. 
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Fig. 17. Hydraulic conductivity versus the volume size of the fractured rock mass 

5. Strain-dependent hydraulic conductivity tensor of fractured rocks 

On the basis of the strain-dependent model presented in Section 3 for rock fractures, this 
section formulates the strain-dependent hydraulic conductivity tensor for fractured rock 
masses cut by one or multiple sets of parallel fractures. The major difference between the 
model in this section and the stress-dependent model presented in Section 4 is that the 
former is capable of describing influence of the post-peak mechanical behaviours on the 
hydraulic properties of the rock masses, and is suited for modelling the coupled processes in 
rock masses at high stress level and in drastic engineering disturbance condition. 

5.1 An equivalent elasto-plastic constitutive model for fractured rocks 

Consider a fractured rock mass cut by n sets of planar and parallel fractures of constant 
apertures with various orientations, scales and densities. The global response of the 
fractured rock mass under loading comes both from weak fractures and from stronger rock 
matrix. Based on this observation, an equivalent elasto-plastic constitutive model can be 
formulated by imposing assumptions on the interaction between fractures and rock matrix. 

The coordinate systems are defined in the same way with those defined in Section 4.1 (see 

Fig. 13). Denote the unit vector along Xi-axis of the global frame as ei (i=1, 2, 3) and the unit 

vector along f
ix  -axis of the fth local frame as f

ie  (i=1, 2, 3). Then, a second order tensor, lf, 

can be defined for transforming physical quantities between the frames, with the 

components in the form of 

 f f
jij il = ⋅e e  (53) 

Regarding the fractured rock mass as a continuous medium at the macroscopic scale, it is 
rational to assume that the global strain increment of the fractured rock mass is composed of 
the strain increments of rock matrix and fractures (Pande & Xiong, 1982; Chen & Egger, 
1999), i.e. 
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 R F

F

d d d= +∑┝ ┝ ┝   (54) 

where dε, dεR and dεF are the total incremental strain tensor, the incremental strain tensor of 

rock matrix and the incremental strain tensor of fth set of fractures measured in the global 

coordinate system, respectively. Note that a variable with a superscript in upper case (i.e. R 

or F) means that it is measured in the X1X2X3 system, while a variable with a superscript in 

lower case (i.e. f) is measured in 1 2 3
f f fx x x  system, respectively. Unless otherwise specified, 

the superscripts F and f are not summing indices. 
On the other hand, traction continuity has to be ensured across the fracture interfaces. In the 

global coordinate system, this condition can be strictly represented by (Pande & Xiong, 1982; 

Chen & Egger, 1999) 

 R Fd d d′ ′= =σ σ σ   (55) 

where dσ′, dσ′R and dσ′F are the effective incremental stress tensor of the fractured rock 
mass, the effective incremental stress tensor of rock matrix and the effective incremental 

stress tensor of fth set of fractures, respectively. The effective stress tensor σ′ is defined as 

 pα′ = +σ σ ├   (56) 

where σ is the total stress tensor (positive for tension), p is the pore water pressure (positive 

for compressive pressure), and α (α≤1) is an effective stress parameter. 

Combining the plastic potential flow theory and the consistency conditions of rock matrix 

and fractures, an equivalent elasto-plastic constitutive model can be derived from Eqs. (54) 

and (55): 

 epd :d ′=┝ S σ    (57) 

with 

 ep R,ep F,ep1 1

F

( ) ( )− −= +∑S C C   (58) 

where Sep is the equivalent elasto-plastic compliance tensor of the fractured rock mass. 
CR,ep in Eq. (58) is the elasto-plastic modulus tensor of rock matrix. Neglecting the 

degradation of rock strength in the volume close to fracture intersections, CR,ep can be 

written as 

 

R RR R

R,ep R

RR R
R

Q F
: :

F Q
: : H

∂ ∂
⊗

′ ′∂ ∂= −
∂ ∂

+
′ ′∂ ∂

C C
σ σC C

C
σ σ

  (59) 

where CR is the fourth-order elastic modulus tensor of rock matrix, which can be 

represented in terms of the Lame’s constants λ and μ: 

 R ( )= + +ij klijkl ik jl il jkC ┣├ ├ ├ ├ ├ ├μ   (60) 
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FR, QR and HR in Eq. (59) are the yield function, the plastic potential function and the 

hardening modulus of rock matrix, respectively. A non-associative flow rule with elastic-

perfectly plasticity (i.e. HR=0) is adopted for better modeling dilatant behavior of rock 

matrix by virtue of, for example, the Druker-Prager criterion with its cone fully inscribed by 

the Mohr-Coulomb hexagon, defined by functions 

 R 1 2 0F ┙I J ┢′= + − =   (61) 

 R 1 2Q I Jβ ′= +   (62) 

with 

 2
R Rsin / 3(3 sin )= +α ϕ ϕ   (63) 

 2
R R R3 cos / 3(3 sin )= +cκ ϕ ϕ   (64) 

 2sin / 3(3 sin )= +R Rβ ψ ψ   (65) 

where cR and ϕR are the cohesion and the friction angle of rock matrix, respectively. 1I′  and 

J2 are the first invariant of the effective stress and the second invariant of the deviatoric 

stress of rock matrix, respectively. ψR is the mobilized dilatancy angle of rock matrix.  
It should be noted here that in the literature, Drucker-Prager criterion has been used by 

many authors to model the elasto-plastic behaviour of intact rock matrix, see Pande & Xiong 

(1982) and Chen & Egger (1999) for example. Although a modified Drucker-Prager yield 

function may be more suitable for this formulation in order to model plastic deformation 

properties of intact rock such as pressure dependency, strain hardening, transition from 

compressibility to dilatancy and stress path dependency (Chiarelli et al., 2003), the criterion 

given above may keep the formulation compact and does not lose generality. Other yield 

functions, such as the modified Drucker-Prager criterion (Chiarelli et al., 2003) or the 

modified Hoek-Brown criterion (Hoek et al., 1992), can also be integrated into the 

formulation without major mathematical difficulties. 

With the researches conducted by Yuan & Harrison (2004) and Alejano & Alonso (2005), the 

decaying process of the rock dilatancy angle in line with plasticity can be described by the 

following negative exponential expression through the equivalent plastic strain of rock 

matrix, p
Rε  (Lai, 2002): 

   peak p
R RR Rexp( )rψ ψ ε= −   (66) 

where rR≥0 is a parameter for modelling the decaying process of the dilatancy angle,  and 
peak
Rψ  is the peak dilatancy angle of rock matrix and the following expression has been 

proposed by recovering the shape of the peak dilatancy angle of fractures given by Barton & 

Bandis (1982) and by assuming peak
RRψ ϕ=  for null confinement pressures (Alejano & 

Alonso, 2005): 
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 peak R c
10R

10 c 3

log
1 log 0 1.

ϕ σψ
σ σ

=
′+ − +

  (67) 

where σc is the unconfined compressive strength for intact rock. By Eqs. (66) and (67), the 
dependencies of rock dilatancy on plasticity, confining stress and scale are produced.  

The equivalent plastic strain pε  is computed by the following: 

 p p p p2
d d d

3
:ε ε= =∫ ∫ ┝ ┝   (68) 

Similarly, CF,ep in Eq. (58) is the elasto-plastic modulus tensor of fth set of fractures 

measured in the X1X2X3 system, which can be calculated from its corresponding elasto-

plastic modulus tensor measured in the 1 2 3
f f f

x x x  system, Cf,ep, with the assumption of small 

strain and by imposing the following tensor transformation: 

 F,ep ,epf f f f f
mnopmi njijkl ok plC l l l l C=   (69) 

with 

 ,ep

f ff f

f f

f ff
f

Q F
: :

F Q
: : H

∂ ∂
⊗

′ ′∂ ∂= − ∂ ∂
+

′ ′∂ ∂

C C
σ σC C

C
σ σ

   (70) 

where Cf is the fourth-order tangential elastic modulus tensor of the fth set of fractures, with 

n3333
f

f fC s k= , s2323 3131
f f

f fC C s k= = , and with all other elements equal to zero. The symbols 

knf, ksf and sf are the normal stiffness, the tangential stiffness and the spacing of the fth set of 

fractures, respectively. The expressions for the elements in Cf mean that the strain of 

fractures is evaluated over the fracture spacing, not over the fracture aperture, thus enabling 

the proposed model to consider the post-sliding plasticity of fractures and nonlinear 

variations of knf and ksf with dilatancy caused by shear loading, without violating the small 

strain assumption. 
Ff, Qf and Hf in Eq. (70) are the yield function, the plastic potential function and the 
hardening modulus of the fth set of fractures, respectively. The elasto-plastic behaviour of 
the fractures is treated in a similar fashion as that for the rock matrix, with a non-associative 
Mohr-Coulomb criterion: 

 2 2 tan 0f zxf zyf zf f fF τ cτ σ ϕ′= + + − =   (71) 

 2 2 tanf zxf zyf zf fQ τ τ σ ψ′= + +   (72) 

where zfσ ′ , τzxf and τzyf are the effective normal stress and the shear stresses on the fracture 

surfaces, respectively. cf, ϕf and ψf are the cohesion, the friction angle and the mobilized 

dilatancy angle of the fth set of fractures, respectively. Similar to Eq. (66), ψf is also a 

shrinking function of the equivalent plastic strain of fractures p
fε , and depends on normal 

stress and scale as well, in the following form: 
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 peak pexp( )f ff frψ ψ ε= −   (73) 

where rf is the decaying parameter and peak
fψ  is the peak dilatancy angle of the fth set of 

fractures, respectively, with the latter calculated by Eq. (26).  

Thus at any loading step, as long as the stress increment of the equivalent rock mass, dσ′, is 
obtained, the local strain pertinent to fth set of fractures can be derived as follows: 

 F,epF 1d ( ) :d− ′=┝ C σ   (74) 

and 

 Fd d=┝ ┝f f f
mnij im jnl l    (75) 

The separation of the incremental strain of fractures from that of the rock mass through the 

proposed equivalent constitutive model plays a significant role in the present study. It 

enables the formulation of strain-dependent hydraulic conductivity that accounts for the 

mobilized dilatancy behaviour, which will be demonstrated in the following section. 

5.2 Strain-dependent hydraulic conductivity tensor for fractured rocks 

Consider a domain of flow that has been discretized into several sub-domains according to 

rock quality classification. Suppose that each sub-domain contains n sets of fractures, with 

average initial aperture bf0 and spacing sf for the fth set of fractures. Starting from Eq. (22) 

and using the averaging concept for the hydraulic conductivity over the whole sub-domain, 

the equivalent initial hydraulic conductivity of the fth set of fractures, kf0, in the examined 

sub-domain can be represented as (Castillo, 1972; Liu et al., 1999) 

 

3
0

0
f

f
f

gb
k

s
ς
ν

=   (76) 

where ς, as pointed out before, is a dimensionless constant introduced to penalize the real 

water conducting capacity of natural fractures with rough walls, finite scales, asperity areas 

and filling materials. The validity of using a constant value of ς has been examined by Zhou 

et al. (2006). 

Assuming that the change in spacing sf during modeling is negligible, under normal and 
shear stress loadings we have 

 

3 3
0( )f f f

f
f f

gb g b b
k

s s

Δ
ς ς
ν ν

+
= =   (77) 

where Δbf and kf are the increment of the aperture and the equivalent hydraulic conductivity 
of the fth set of fractures under loading, respectively. Suppose that strain localization (Lai, 
2002; Vajdova, 2003) is not dominantly exhibited in the concerned fractures, it is 
approximately valid that 

 f f zfb sΔ Δε=   (78) 
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where Δεzf is the increment of the normal strain of the fth set of fractures, which can be 
directly obtained from Eq. (75). 
Substituting Eq. (78) into Eq. (77) then yields 
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f f zf
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s
k k

b
Δε

⎛ ⎞
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⎜ ⎟
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  (79) 

Following the theory proposed by Snow (1969), a strain-dependent equivalent hydraulic 
conductivity tensor for fractured rock masses with n sets of fractures is represented by 

 

3

0
0

( ) 1 ( )
f

f f f f zf f f
ff f

s
k k

b
Δε

⎛ ⎞
⎜ ⎟= − ⊗ = + − ⊗
⎜ ⎟
⎝ ⎠

∑ ∑K ├ n n ├ n n   (80) 

where K is the equivalent hydraulic conductivity tensor of the examined rock mass, and nf is 
the unit vector normal to the fth set of fractures. 
The following significant implications can be observed from the formulation of K in Eq. (80): 

1. K is a cubic function of Δεzf, and any variation in εzf under loading will trigger the 

change in K, even in orders of magnitude. This exactly accounts for the coupling effect 

of mechanical loading (strain/stress) on hydraulic properties. 

2. K depends on incremental strains, rather than on stresses, which makes it possible to 

integrate various material nonlinearities in hydro-mechanical coupling analysis. 

3. In addition to cubic relation, the influence of Δεzf on K is amplified by sf /bf0, indicating 

that K can be rather sensitive to bf0 and sf. Therefore, techniques for estimating bf0 and sf 

need to be carefully developed, on the basis of laboratory or in-situ hydraulic test data. 

4. The orientations of fractures possibly render K highly anisotropic, even if K is initially 

assumed isotropic, as has been systematically examined, e.g. by Liu et al. (1999). 

5. When implemented in a FEM code, a different K can be associated to each geological 

sub-domain or even to each element, as long as kf0, bf0 and sf for the sub-domains or 

elements can be estimated in advance. 

6. As a nature of the homogenized equivalent continuum approach, the size effect of 

fractures, especially the size-dependency of aperture, is not fully considered in the 

formulation of K for simplicity, even though it can be reflected to some degree through 

ς and scaled JRC and JCS values. The connectivity and the intersection effect of 

fractures, on the other hand, may have a more significant influence on K, but similarly, 

they cannot be properly considered in the equivalent continua without explicit 

representation of fractures. A rough remedy is to process the fracture system in such a 

way that only the connected fracture populations are included for conducting analyses. 

To determine K of a fractured rock under any loading paths, a coupled hydro-mechanical 

process has to be invoked. With the assumption of incompressible rock matrix and fluid 

(e.g. groundwater), the governing equations for the coupled process of saturated fluid flow 

and deformation are given below as balance equation, geometric equation and fluid flow 

equation, respectively: 

 , 0ij j ,i ip fσ α′ − + =   (81) 
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  (83) 

where fi and ui are the components of the body force and displacement in the ith direction, 
h=p/γw+z the water head, z the vertical coordinate, γw the unit weight of water, and εv the 
volume strain of the rock mass. 
In the coupled process given above, mechanical loading or disturbance to the rock mass 
results in change in flow properties and flow behaviour through Eqs. (80) and (83), while the 
change in flow behavior leads to change in mechanical response of the rock mass through 
Eq. (81). When the coupled process reaches a stable state, the solution to K is also available. 
Now we briefly discuss how to determine kf0, bf0 and sf in Eq. (80) based on laboratory or in-
situ hydraulic test or site investigation data. Obviously, the initial hydraulic conductivity, 
kf0, can be determined by in-situ hydraulic tests. Suppose the initial hydraulic conductivity 
tensor, K0, is known through in-situ hydraulic test, as suggested by Hsieh & Neuman (1985), 
then K0 can be rewritten, from Eq. (80), in the following form: 

 0 0( )f f f
f

k= − ⊗∑K ├ n n   (84) 

By optimizing Eq. (84), kf0 (f=1, …, n) can be estimated if the number of the sets of critically 
oriented fractures, n, is less than or equal to 6 (i.e. the number of the independent 
components of K0), regardless K0 is assumed to be isotropic or anisotropic. 
The average spacing of the fth set of fractures, sf, can be roughly estimated from the statistics 
of drill holes or scanlines. An alterative, however, is to use RQD (Rock Quality Designation) 
for determining sf, as suggested by Liu et al. (1999), when the value of RQD for a specific 
rock mass is known a priori. 
After the initial hydraulic conductivity, kf0, and the average spacing, sf, of the fractures are 
determined, the mean initial aperture of the fractures, bf0, is ready to be back-calculated from 
Eq. (76). 

5.3 Validation of the proposed model 
5.3.1 Hydraulic conductivity of the surrounding rock of a circular tunnel in the Stripa 
mine 

Here we compare the proposed method with results from a previous study as presented by 
Liu el al. (1999) by applying the method to an excavated circular tunnel with a biaxial stress 

field, σx and σz. The physical model is illustrated in Fig. 18, which is actually a manifestation 
of the reality of the Stripa mine in Sweden (Kelsall et al., 1984; Pusch, 1989). The following 
description about the tunnel is directly taken from Liu et al. (1999): 
A Buffer Mass Test was conducted in Stripa Mine over the period 1981-1985 (Kelsall et al., 
1984; Pusch, 1989) to measure the permeability of a large volume of low permeability 
fractured rock mass by monitoring water flow into a 33 m long section of the tunnel, as a 
large scale in-situ experiment for the research and development programs of underground 
geological disposal of nuclear wastes of the participating countries of the Stripa Project. The 
radius of the tunnel is about 2.5 m with two major sets of fractures striking obliquely to the 
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Fig. 18. Sketch of a circular excavation in a biaxial stressed rock mass. 

tunnel axis, as shown in Fig. 18. Fracture frequency measured in holes drilled from the 
tunnel was on average 4.5 fractures/m in inclined holes and 2.9 fractures/m in vertical 
holes. The initial stress field is anisotropic with high horizontal stress component and the 
conductivity of the virgin rock is about 10−10 m/s. The excavation of the test drift produced a 
dramatic increase in axial hydraulic conductivity in a narrow zone adjacent to the periphery 
of the drift. The conductivity increase is estimated to be 3 orders of magnitude. 
The following assumptions are made in the calculations, with some of them similar to those 
in Liu et al. (1999):  
1. Statically uniform aperture and spacing distributions exist before excavation; 
2. Fracture spacing and continuity are not altered by the excavation; 
3. The high obliquity of the two major sets of fractures can be well approximated by two 

orthogonal sets of fractures; 
4. Excavation-induced strain redistribution may be adequately captured by the proposed 

equivalent elasto-plastic constitutive model. 
Some of the parameters are directly taken from Liu et al. (1999), while other unavailable 
parameters are assumed, as listed in Table 5, in which the initial mechanical aperture of the 
fractures is back-calculated from Eq. (76) by taking k0=10−10 m/s. Consistent with Liu et al. 
(1999), the far-field stress components are taken as σx=20 MPa and σz=10 MPa, respectively. 
 

Category Parameter Setting 

Elastic modulus, E 37.5 GPa 

Poisson’s ratio, ν 0.25 

Cohesion, cR 5 MPa 
Intact rock matrix 

Friction angle, ϕR 46° 
Initial mechanical aperture, b0 0.0075 mm 
Spacing, s 0.27 m 
Normal stiffness, kn 200 GPa/m 
Shear stiffness, ks 100 GPa/m 

Dimensionless constant, ς 0.0067 

Cohesion, cf 0.4 MPa 

Fractures 

Friction angle, ϕf 40° 

Table 5. Geometrical and mechanical parameters for a circular tunnel 
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To avoid the difficulty in determining the initial dilatancy angles and the corresponding decay 
parameters of fractures and intact rock matrix, associative flow rule is used in this simulation. 
Again for simplicity, both the normal stiffness and the shear stiffness of the fractures are 
assumed constant during excavation. The finite element mesh of the model is shown in Fig. 19, 
and the FEM program was run to simulate the excavation effect of the tunnel. Fig. 20 shows 
the deformation zone and plastic zone of the rock mass after the tunnel excavation. Fig. 21 
plots the excavation-induced changes in hydraulic conductivities around the circular tunnel, 
which are directly compared with the results presented in Liu et al. (1999). 
 

 

Fig. 19. Finite element mesh for simulation of a tunnel excavation. 

 

(a) 
 

(b) 

Fig. 20. Deformation zone and plastic zone induced by the tunnel excavation: (a) 
deformation zone and (b) plastic zone 
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Fig. 21. Excavation-induced hydraulic conductivity ratios around a circular tunnel in a 
biaxial stressed rock mass, where a is the radius of the tunnel and r is the distance away 

from the tunnel center. θ=0° denotes the horizontal direction while θ=90° the vertical 
direction. 

It can be observed from Fig. 21 that generally tangential conductivities are found to increase 

greatly due to the formation of the excavation disturbed zone around the tunnel, while 

radial conductivities diminish greatly as a result of closure on related fractures. In the 

horizontal direction (i.e. θ=0°), the excavation-induced tangential hydraulic conductivity 

ratios, kθ/k0, predicted by our model are very close to the results presented in Liu et al. 

(1999). For radial hydraulic conductivity ratios, kr/k0, however, deviation occurs in the 

vicinity of the excavation. Such a deviation is also found both for kθ/k0 and for kr/k0 in the 

vertical direction (i.e. θ=90°).  
Clearly, these deviations are largely resulted from the facts that (1) Different strain 

distribution patterns are assumed in the elastic model in Liu et al. (1999) and in our elasto-

plastic model; (2) Different methods are used to compute the strain increments of fractures. 

In Liu et al. (1999), normal strains of fractures were separated from rock matrix through a 

modulus reduction ratio empirically defined as a function of RMR, while in this simulation 

fracture strains were calculated by strain decomposition through an equivalent elasto-plastic 

constitutive model; (3) Radial and tangential fractures were assumed in Liu et al. (1999), 

leading to different background fracture networks; and (4) As mentioned above, some of the 

parameters, such as the shear strength of fractures and rock matrix, the shear stiffness and 

normal stiffness of the fractures, are unavailable in the literature (Kelsall et al., 1984; Pusch, 

1989; Liu et al., 1999) and hence are empirically assumed in the calculations. If these 
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parameters are determined based on in-situ or laboratory experiments, more convincing 

results may be achieved. 

Despite the deviations, the trends of variation of the hydraulic conductivity ratios around 

the tunnel due to excavation are consistent between the two studies, and basically accord 

with the in-situ experimental observations, demonstrating the applicability of the present 

model in this section. 

From Fig. 20, one observes that the excavation-induce deformation zone and plastic zone are 

asymmetric, due to the anisotropic initial stress field. As a result, the predicted hydraulic 

conductivities are highly anisotropic due to strain redistribution, as shown in Fig. 21. In the 

horizontal direction (i.e. θ=0°), the deformation zone extends as far as more than 16 times of 

the tunnel radius and the plastic zone extends 2 times of the tunnel radius, while in the 

vertical direction (i.e. θ=90°), they are, respectively, within 2 and 5 times of the tunnel 

radius. The asymmetry of deformation zone and plastic zone demonstrates why the 

predicted hydraulic conductivities approach k0 more slowly in the horizontal direction than 

in the vertical direction. The changes in hydraulic conductivities resulted from strain 

redistribution in the disturbed rock mass indicate that a different hydraulic conductivity 

tensor should be associated to each geological sub-domain or even each element of the rock 

mass, which is important for hydro-mechanical coupling analyses. 

5.3.2 Hydraulic conductivity of a cubic block of rock mass with three orthogonal sets 
of identical fractures 

In this section, a numerical simulation is conducted to evaluate hydraulic behaviour of a 

cubic block of rock mass containing three orthogonal sets of identical fractures under 

isotropic triaxial compression and shear loading. The primary goal is to investigate the 

change in the hydraulic conductivity of the rock mass with increasing shear load, which is 

obviously not achievable through any elastic models considering only the deformation of 

fractures under normal stresses, e.g. in Liu et al. (1999). 

The underlying rock mass block model for examination, with a size of 10×10×10 m (a scale 

that can represent both the initial mechanical and hydraulic REVs (Min et al., 2004)), is 

assumed to contain three orthogonal sets of identical fractures, as sketched in Fig. 22. The 

spacing, s, of each set of fractures and the initial aperture, b0, of each fracture are assumed to 

be identical, with s=1 m and b0=1 mm. The mechanical properties of each fracture are also 

regarded identical and for simplicity, both the normal stiffness and the shear stiffness of the 

fractures are assumed to be constant during shear loading. All parameters used in this 

simulation are listed in Table 6, and such parameter settings enable us to demonstrate how 

the hydraulic conductivity evolves from initial isotropy to anisotropy in the shearing 

process. 

The examined rock mass block model is divided into 1000 brick elements, and the resultant 

mesh is shown in Fig. 22. The loading condition is as follows. First, triaxial compressive 

stresses are applied on the surfaces of the cubic block, with σx=σy=σz=20 MPa. Then, a 

shearing load , τ, is applied on the upper and lower surfaces of the block model step by step, 

increasing at an increment of 1 MPa until a maximum shear load, 20 MPa, is reached. At 

each step of shear loading, numerical divergence may occur. If numerical divergence does 

occur, the simulation program terminates after 1000 iterations with a modified Newton-

Raphson method. 

www.intechopen.com



Stress/Strain-Dependent Properties of Hydraulic Conductivity for Fractured Rocks 

 

41 

σ x

σ y

σ z

σ y

σ z

σ x

b0

τ

τ

s

s

10m

10m

10m

y

x

z

 

Fig. 22. Sketch of a cubic block of rock mass with three orthogonal sets of identical fractures 

 

Category Parameter Setting 

Elastic modulus, E 6 GPa 

Poisson’s ratio, ν 0.25 

Cohesion, cR 1 MPa 

Friction angle, ϕR 46° 

Peak dilatancy angle, peak
Rψ  35° 

Intact rock matrix 

Decay parameter of dilatancy, rR 100 

Initial mechanical aperture, b0 1 mm 
Spacing, s 1 m 
Normal stiffness, kn 30 GPa/m 
Shear stiffness, ks 10 GPa/m 

Dimensionless constant, ς 0.0067 

Cohesion, cf 0.4 MPa 

Friction angle, ϕf 40° 

Peak dilatancy angle, peak
fψ  26° 

Fractures 

Decay parameter of dilatancy, rf 100 

Table 6. Geometrical and mechanical parameters for a cubic block of fractured rock mass 

Clearly, before the rock mass is loaded, its initial hydraulic properties are isotropic, with 

kx0=ky0=kz0=1.30×10−2 cm/s by Eq. (84). Under the condition of isotropic compression, the 
rock mass remains elastic, the isotropic property of hydraulic conductivity is maintained, 
and the magnitude of the hydraulic conductivity reduces by 2 orders of magnitude due to 

compression of fractures, with kx=ky=kz=4.82×10−4 cm/s by Eq. (80). When shear stress is 
added incrementally on the rock mass block model from 0 to 20 MPa, the proposed method 
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predicts some interesting results, as depicted in Table 7, Figs. 23 and 24, respectively. Table 7 
and Fig. 23 show the major hydraulic conductivities of the rock mass and Fig. 24 shows a 
typical case of mobilized dilatancy angle of a fracture under increasing shear loading. 
As can be observed from Fig. 23, shear load has a substantial impact on the evolution of 

hydraulic conductivity of the rock mass model. Before the shear load reaches 4 MPa, the 

response of the rock mass model remains elastic, and the hydraulic conductivity 

components of the rock mass model are basically identical and do not vary with the shear 

load. When the shear load exceeds 4 MPa, however, hydraulic conductivity of the model 

becomes anisotropic. Due to shear dilation of fractures in the z-direction, the major 

hydraulic conductivities parallel to the direction of shear load in x-y plane, kx and ky, 

increase mildly at first when the shear load is smaller than 8 MPa. Afterwards, they increase 

dramatically, reaching an increase of 3-4 orders of magnitude. They approach a relatively 

stable state after the shear load increases up to 14 MPa. Obviously, the increase of kx and ky is 

resulted from the dilatancy behavior of the fractures related to equivalent plastic strain, as 

shown in Fig. 24, where the mobilized dilatancy angle approaches zero as the shear load 

approaches 14 MPa. When the shear load exceeds 14 MPa, shear dilatancy of the related 

fractures becomes trivial and hence kx and ky become steady. From Table 7 and Fig. 23, we 

can further see that kx and ky are very close to each other in values and they generally have 

the same varying trend with the increasing shear load. 

 
  

τ (MPa) kx (cm/s) ky (cm/s) kz (cm/s) τ (MPa) kx (cm/s) ky (cm/s) kz (cm/s) 

- 0.013016 0.013016 0.013016 10 0.279373 0.279350 0.000020 

0 0.000482 0.000482 0.000482 11 1.088835 1.088816 0.000056 

1 0.000482 0.000482 0.000482 12 2.204162 2.204158 0.000375 

2 0.000482 0.000482 0.000482 13 3.171558 3.171559 0.001374 

3 0.000483 0.000483 0.000482 14 3.676801 3.697449 0.022811 

4 0.000494 0.000486 0.000474 15 3.915193 4.137786 0.224877 

5 0.000543 0.000509 0.000444 16 4.063688 4.696511 0.635383 

6 0.000657 0.000576 0.000372 17 4.243447 5.407600 1.167070 

7 0.000742 0.000643 0.000282 18 4.635512 6.233203 1.600997 

8 0.000704 0.000581 0.000207 19 5.390907 7.316177 1.928768 

9 0.012562 0.012459 0.000106 20 6.462514 8.618240 2.159053 

Table 7. Major hydraulic conductivities of a cubic block of rock mass under isotropic 
compression and increasing shear loading 

With the increase of shear load from 4 to 20 MPa, the change in the major hydraulic 

conductivity vertical to the direction of shear load, kz, is even more interesting. Before the 

shear load reaches 10 MPa, kz decreases significantly with increasing shear load and 

manifests a shear contraction-like behavior. When the shear load further increases, shear 

dilatancy occurs and kz increases drastically, with changes in as high as 4-5 orders of 

magnitude. kz reaches a relatively stable state after the shear load increases up to 17 MPa, 

which is actually a critical loading point that numerical instability may occur. 
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Fig. 23. Major hydraulic conductivities of a cubic block of rock mass with increasing shear 
load. 
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Fig. 24. A typical case of mobilized dilatancy angle of a fracture with increasing shear load. 

6. Conclusions 

In this chapter, mathematical models were developed to estimate the hydraulic conductivity 

tensor for fractured rock masses subjected to mechanical loading or engineering 

disturbance. Emphases are placed on the investigation of the geological characteristics of 

rock masses as well as the coupling between fluid flow and stress/deformation, especially 

the effect of shear dilation or shear contraction on the hydraulic behavior of rock fractures. 

The stress-dependent hydraulic conductivity tensor was formulated by using the 

superposition principle of flow dissipation energy on the basis of the concept of 

representative elementary volume (REV) and the assumption that rock masses can be 
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treated as equivalent continuum media. The deformation behaviours of rock fractures 

subjected to normal and shear loadings are described with an elastic constitutive model, in 

which the pre-peak shear dilation or contraction of the fractures is empirically modelled. 

The validity of using the superposition principle of flow dissipation energy for development 

of the model is supported by the functional equivalence between the current formulation 

and the Snow’s and Oda’s models. This model is best suited for estimation of the hydraulic 

properties of rock masses at low stress level and with overall elastic response, and can be 

used to determine the applicability of the continuum approach to coupling analysis. The 

latter is achieved by performing numerical experiments to test the existence of the REV, and 

if exists, to further estimate the REV by gradually increasing the cubic volume of flow 

region, Vp, to see whether the hydraulic conductivity of the rock mass can eventually 

approach a steady point. The hydraulic properties and the REV size of the fractured rock 

mass at the construction site of the Laxiwa Hydropower Project were evaluated with the 

proposed model, and the calculation results were compared with the predictions of the 

Snow’s model and validated by in-situ hydraulic tests, hence the feasibility of the proposed 

model in rock engineering practices is demonstrated. 

The strain-dependent hydraulic conductivity tensor, on the other hand, was developed for 

disturbed rock masses under excavation or loading. In the model, a non-associative elastic-

perfectly plastic constitutive model was integrated to describe the deformation behaviours 

of the rock masses by characterizing them as equivalent continua containing one or multiple 

sets of parallel fractures. The clear advantages of the formulation are:  

• The proposed hydraulic conductivity tensor is related to strains rather than stresses, 

hence enabling easier hydro-mechanical coupling analysis to include the effect of 

material nonlinearity of fractured rock masses. 

• Beneficial from the equivalent non-associative elastic-perfectly plastic constitutive 

model, the hydraulic conductivity tensor considers the impact of shear dilatancy of 

fractures on fluid flow properties via mobilized dilatancy angles. 

• When reduced to one dimensional case with a single fracture under normal and shear 

loadings, a closed-form solution to the hydraulic conductivity can be obtained, enabling 

validation of the model by laboratory coupled shear-flow tests of rock fractures. 

• The proposed model is easy to be implemented in a FEM code, particularly suitable for 

numerical analysis of coupled hydro-mechanical processes in rock engineering. 

The closed-form solution was validated by an existing coupled shear-flow test, and the 

evaluation results show that the proposed solution can closely describe the hydraulic 

behavior of a hard rock fracture under a wide range of normal and shear loads. The results 

of the simulation conducted to predict the excavation-induced hydraulic conductivities 

around a circular tunnel in a biaxial stress field at the Stripa mine are justified by in-situ 

experimental observations and compared with an existing elastic strain-dependent model, 

which show that engineering disturbance such as underground excavations may 

dramatically alter the hydraulic conductivities of the rock mass surrounding the excavations 

and change the isotropic pattern of the initial hydraulic conductivities. The numerical 

simulation on a cubic block model of a rock mass with three orthogonal sets of identical 

fractures under isotropic triaxial compression and shear loading further demonstrates that 

shear loading may drastically change the hydraulic properties of fractured rocks, in the 

magnitude of as high as 4-5 orders, and lead to high anisotropy of the hydraulic properties.  
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Despite all these efforts, characterizing the hydraulic properties for fractured rock masses 
remains one of the most difficult research topics in rock mechanics. In the proposed models 
presented in this chapter, rock masses are assumed with rather regular distribution patterns 
of fractures, and the existence of a hydraulic conductivity tensor of the rock masses with any 
distribution of fractures is not discussed. The interaction between the fractures in the rock 
masses is also out of the scope of this chapter, and its effect on the hydraulic properties 
remains an open issue. Furthermore, the proposed models are established with a rather 
intuitive upscaling approach, and more rigorous homogenization schemes should be 
developed. All of there issues should be addressed in the future research. 
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