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1. Introduction 

Numerical models play a main role in the earth sciences, filling in the gap between 
experimental and theoretical approach. Nowadays, the computational approach is widely 
recognized as the complement to the scientific analysis. Meanwhile, the huge amount of 
observed/modelled data, and the need to store, process, and refine them, often makes the 
use of high performance parallel computing the only effective solution to ensure the 
effective usability of numerical applications, as in the field of atmospheric /oceanographic 
science, where the development of the Earth Simulator supercomputer [65] is just the edge. 
Grid Computing [38] is a key technology in all the computational sciences, allowing the use 
of inhomogeneous and geographically spread computational resources, shared across a 
virtual laboratory. Moreover, this technology offers several invaluable tools in ensuring 
security, performance, and availability of the applications. A large amount of simulation 
models have been successfully developed in the past, but a lot of them are poorly 
engineered and have been designed following a monolithic programming approach, 
unsuitable for a distributed computing environment or to be accelerated by GPGPUs [53]. 
The use of the grid computing technologies is often limited to computer science specialists, 
because of the complexity of grid itself and of its middleware. Another source of complexity 
resides on the use of coupled models, as, for example, in the case of atmosphere/sea-
wave/ocean dynamics. The grid enabling approach could be hampered by the grid software 
and hardware infrastructure complexity. In this context, the build-up of a grid-aware virtual 
laboratory for environmental applications is a topical challenge for computer scientists. 
The term “e-Science” is usually referred to computationally enhanced science. With the rise 
of cloud computing technology and on-demand resource allocation, the meaning of e-
Science could straightforwardly change to elastic-Science. The aim of our virtual laboratory 
is to bridge the gap between the technology push of the high performance cloud computing 
and the pull of a wide range of scientific experimental applications. It provides generic 
functionalities supporting a wide class of specific e-Science application environments and 
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set up an experimental infrastructure for the evaluation of scientific ideas. Our Virtual 
Laboratory has the ambitious goal to spread elastic and virtually unlimited computing 
power to scientists belonging to different e-science communities in a transparent and 
straightforward fashion. 
The rest of the chapter is organized as follows: section 2 describes the design and 
implementation of the application orchestration component. Section 3 is dedicated to the 
GPU virtualization technique, to the description of key design choices and of some 
benchmark results, which demonstrate the light impact of our software stack on overall 
performance; in that section, we also discuss about some high performance cloud 
computing scenarios depicted by recent gVirtuS enhancements. The need of a high 
performance file system distributed among virtual machines instances is the main 
motivation of the section 4; we discuss the design and the implementation of a virtual 
distributed file system mainly targeted to achieve high performance in dealing with HDF 
and NetCDF data archives. Our attention on those hierarchical self describing data formats 
is due to their extensive use in computational environmental science. Hence, section 5 sums 
up the virtual laboratory software ecosystem and  describes the testbed application we have 
used in order to trim up the implemented features.  Finally, the conclusions and future 
direction in this field are reported in section 6, where the principal guidelines for improving 
the usability and the availability of the described software components are drown.   

2. Contextualization and application orchestration 

Recently, a multi-disciplinary effort in virtually all science fields led domain specific 
scientists and computer scientists to work together in order to obtain from the models the 
best simulation results in the most efficient and reliable way as demonstrated by the tight 
coupling of computer science and environmental science in data intensive applications [61]. 
The growth of the many-core technologies could seem to make obsolete one of the traditional 
goals of the grid computing technology, i.e. the provision of high performance computing 
capabilities when local resources are not enough. We feel that this point is not correct and that 
the increase of computing power will continue to follow the increase of the need for it and 
vice-versa. This means that large scale computing problems can be managed by aggregating 
and federating many big computing resources and that grid computing can be the underlying 
technology for resource federation through a virtual organization approach [42]. 
Currently, the availability of computing and storage resources is a bottleneck in making 
progress in many fields of science. This suggests that the computing grids have to be elastic, in 
the meaning of the ability to allocate, for the needed amount of time, as much computing 
power as needed by the experiment. The cloud computing technology, which is based on 
hardware virtualization and many-core technologies, provides a suitable environment to 
achieve such goals. Grid and cloud computing are strictly related and, in many computer 
science aspects, share some visions and issues, but while the first focuses on aggregation and 
federation, the last enables the dynamical hosting of computing and storage resources. In this 
scenario, one can have “clouds on grids” if the virtualization and the dynamical resource 
provision is managed by a grid middleware. Otherwise, when grid-computing resources are 
partially (or totally) dynamically allocated on the cloud, one can have “grids on clouds” [24]. 
Virtual clusters instanced on cloud infrastructures, aggregated using grid computing 
middleware and leveraging on virtual organizations, suffer from poor message passing 
performance between virtual machine instances running on the same real machine [74]. 
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Another source of computing power limitation is the impossibility to access hardware 
specific accelerating devices as GPUs in a fully transparent way [47]. 
For these reasons, the development of a grid/cloud-aware virtual laboratory for 
environmental applications is an interesting and a well-know challenge for computer 
scientists. 

2.1 The grid and cloud enabling approaches 

Making an application capable of working on a grid is a complex process called “grid-
enabling”. This process could be hampered by the grid software and hardware 
infrastructure complexity, but, above all, it is strictly related to the application that has to be 
grid-enabled. Applications characterized by an intrinsic parallelism, where the spatially 
decomposed domain can be processed without any interaction among computing threads 
appear to be perfectly suitable for the grid. This is the case, for instance, of parameter sweep 
based algorithms, very common in computational high-energy physics. Apparently, all 
parallel applications, which rely on tightly coupled concurrent processes, seem to be  
unsuitable for grid enabling. Numerical models based on systems of differential equations 
solved by finite difference or finite elements methods belong to this application class. In the 
world of parallel computing, these applications can achieve high performance thanks to 
message passing libraries as PVM [67] and, mainly, MPI [46]. In order to migrate MPI 
concepts in the grid world, MPICH-G2 [52] permits distributed cluster nodes to be 
aggregated as a single supercomputing resource. Even though this approach is limited by 
the connection bandwidth among computing nodes, nevertheless it has been successfully 
used on production environments deployed on Teragrid [35]. 

2.1.1 The grid-enabling 

In the grid lingo, the job is the processing unit in term of piece of software to be executed 
and producing a result. A grid-enabled application has to be rearranged as a job or pool of 
jobs, and, moreover, has to be executed in a shared environment, as a guest on a remote 
machine, ensuring the management of data staging. First generation grid middleware, such 
as Condor [68] and Globus 1.x and 2.x [39], considered the job as an executable, with specific 
computing needs, which is dynamically deployed on a target computing element matching 
the job needs. Typically, data needed by the job are staged-in on the working machine and 
then the results staged-out. The user must know the requirements of the application in 
terms of CPU, memory, disk, and architecture. With the rise of web services technology, the 
next generation of middleware, such as Globus 3.x [40] and Globus 4.x [41], moved towards 
a different concept of grid enabled application, i.e. the application must be functionally 
decomposed and each component has to be exposed to the grid leveraging on a wrapping 
web service. In this case, the user should search for a computing element offering the 
needed component and low level details about application’s needs are hidden to the user. 
The application is not deployed on-the-fly and can be managed in a safe, secure, and 
consistent way, and the main effort for grid enabling consists in designing, developing and 
implementing a suitable web service interface. The complexity introduced by the web 
service infrastructure and the latency related to that technology is drown back by the 
flexibility and the semantic coherence of an application made by components interconnected 
through web services. The fast development of the web service technology, the poor 
performance in job submission and the complexity in programming and management called 
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for the last generation of grid middleware Globus 5.x and gLite. Web service technology has 
been decoupled from authentication, job submission and data management and it is 
available as a separate tier. A job is executed remotely, using a submission interface, which 
avoids on-fly deployment.  
In our proposed grid infrastructure, we have used the middleware Globus Toolkit version 
2.x, 4.x, 5.x (GT2/GT4/GT5), developed within the Globus Alliance and the Open Grid 
Forum (OGF) with a wide support of institutions belonging to the academia, the 
government and the business area. The GT4 has been chosen because it exposes its features 
via web services, using common W3C standards as the Web Service Description Language 
(WSDL), the Standard Object Access Protocol (SOAP), and the Hyper Text Transfer Protocol 
(HTTP). More complex features, i.e. service persistence, state and stateless behaviour, event 
notification, data element management and index services tools, are implemented in a way 
compliant to that standard. GT4 also supports the GridFTP protocol, an FTP enhanced 
version, and capable of massive parallel striping and reliable file transfer. Recently, we 
smoothly migrated under GT5 and explored the interoperability with the EGEE/gLite 
world. 
The application package is the key component of our implementation and is the blueprint of 
the job execution environment. A framework approach can be used to abstract different 
application model configurations, by exploiting an object-oriented programming-like 
methodology. Each application runs in a private custom environment, so that several 
instances of the same software can be concurrently executed. This approach is based on a 
repository in which application packages are stored and from where they can be retrieved as 
instance templates to support a deployment on-the-fly. 
A job launcher, invoked as a grid job on a remote machine or locally as well, sets up the 
virtual private environment and performs the needed stage-in and stage-out operations on 
the data files. The launching script can be statically installed on the target machine, 
automatically deployed from the local repository or even staged-in: it represents the job 
executable file to be run on the target computing-element. This script unpacks the 
application package, downloaded from a repository or copied from a local directory, 
unpacks and inflates input data, runs the actual application executable and, finally, deflates 
results. The framework produces logs based on a XML schema that allows a straightforward 
parsing. 
The resource specification is performed by a description XML file, following the Job 
Submission Description Language schema [23]. The submitted job is described by specifying 
the executable path, the current working directory, the files to be staged-in before the 
execution and staged-out after the job run. All files are named using full-qualified URLs, 
with protocol details from the target machine. In order to simplify the process of grid 
enabling and then the application execution as a job, we implemented a custom resource 
specification pre-processor for the definition of jobs, which relies on an advanced method of 
labelling and placeholders parsing and evaluation, macro based code explosion and late 
binding capabilities. 

2.1.2 The cloud-enabling 

While the grid-enabling process is well defined, the concept of cloud enabling is still under 
drawing. NIST defines cloud computing as a pay-per-use model for enabling available, 
convenient, on-demand network access to a shared pool of configurable computing 
resources that can be provisioned and released with minimal management effort or service 
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provider interaction [55]. Within the cloud paradigm, server time and network storage can 
be provisioned to the user in an on-demand self-service fashion without requiring human 
interaction. Resources are made available over the network and ubiquitously accessed 
through standard mechanisms such as thin or thick client platforms. According to current 
demand, computing resources (both physical and virtual) are dynamically assigned and 
reassigned to serve all users that generally have no control or knowledge over the exact 
location of the provided resources. The computing resources can be elastically provisioned 
to scale up and released to scale down: the set of resources appears to be infinite (infinitive 
computing) [25]. 
Any kind of software, including operating systems and applications can be deployed and 
then run on the best matching computing resource that is provided for rent to the user. The 
user doesn’t manage the underlying cloud infrastructure, but has control over operating 
systems, storage and applications. This is the so-called Infrastructure as a Service (IaaS) and 
could be considered as the lowest level in a cloud oriented infrastructure stack [33]. The next 
level is the Platform as a Service (PaaS, where the user has control over the deployed 
applications and possibly the application hosting environment [71]. The highest level of the 
stack is the Software as a Service (SaaS): one can use the provider’s applications running on 
a cloud infrastructure from various client devices through a client interface such as a Web 
browser (e.g., web-based email). The user can modify only some application configuration 
parameters, but doesn’t manage or control the underlying cloud infrastructure [54].  
If the cloud infrastructure is owned by a single organization and is used only inside that 
organization, then it is a “private cloud”. A cloud is a “community cloud” when the 
infrastructure is shared by several organizations. In e-science applications, “hybrid clouds” 
are becoming popular.  
In our context, resources include storage, processing, memory, network bandwidth, and 
virtual machines. Since a virtual laboratory is designed to serve the world of computational 
science, a hybrid cloud solution appears to be the most suitable grid deployment. Cloud-
enabled software has to take full advantage of the cloud paradigm by being service oriented 
with a focus on statelessness, low coupling, modularity, and semantic interoperability or 
encapsulated in a virtual machine image and executed as a virtual machine instance. 
Experience in grid enabling application may be useful in order to design and implement cloud 
enabling guidelines, especially concerning the virtual laboratory software components. An 
object-oriented approach, yet followed in grid enabling, may be replicated in this more 
complex scenario. The process could be divided in two main steps. First, the application 
package is deployed in a virtual machine image and then, once the virtual machine is 
instanced, the application performs its lifecycle. The deployment of an application on a virtual 
machine image could be a complex task if the main goal is the cloud infrastructure best 
resource allocation. We have developed a software tool specifically designed to help and 
partially automate the creation of application appliances. Our Virtual Machine Compiler 
(VMc) produces a XML description of the needed virtual machine in order to run a generic 
piece of software in a virtualized environment with minimal resources for achieving a 
required performance. Once installed and configured by the user, the application is executed 
in a full featured virtual machine under the control of the VMc, that evaluates the disk and 
memory needs and, above all, the needed services and libraries. The application lifecycle is 
managed by an abstract framework in which the user can implement software components 
performing specific actions, such as answering to events fired when the virtual machine is up 
and running, or before the application is going to be executed (in order to implement data 
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staging-in), or during the application run (for example for progress status notification), or even 
when the application finished (for the staging-out of the results) and the virtual machine 
instance is ready to be shouted down. The VMc output is a XML file which contains the 
software and hardware requirements needed by the application. This output can be converted 
to platform-specific installation/configuration file (as the Fedora/RedHat/CentOS kickstart 
file). The VMc output will be used in the virtual machine image creation using commonly 
available open source software packages. Finally, the application environment is cloned on the 
virtual machine image and made ready to be executed within a software appliance. This 
process is far from being completely automatic, but, once performed successfully, it is no more 
in charge to the user. The computational scientist has just to instantiate the virtual machine 
and wait for results. In case of distributed memory parallel programs, the tool helps to 
automatically set up two virtual machine images, one for the head node and the other for the 
computing node, and all the other needed features, such as the shared file system, user 
authentication and message passing interface libraries.   

2.2 Application orchestration 

In many scientific applications, the final result is obtained by assembling different 
components executed as jobs on remote machines as workflows [70]. Each component could 
be related to its previous/next component as data producer or data consumer, defining a so-
called computational pipeline, with one job for one component. 
For example, let us consider this simple application: 
1. A regional-scale atmospheric model waits until data can be downloaded from a 

specified service. 
2. It acquires the boundary and initial conditions from a global-scale forecast, and runs for 

a specified time period. 
3. When data are ready to be processed, another job, which simulates an ocean circulation 

model, uses atmospheric data as boundary conditions. 
4. When this second job finishes its computing task, the produced data are consumed by 

another job which simulates the wind driven sea wave propagation and forecasts the 
wave height/period and their direction fields. 

5. At last, the user retrieves all pipelined outputs produced by all models. 
This scientific application could be implemented via shell scripts and middleware specific 
job submission tools, specifying the target machine in the script. 
The Globus Toolkit grid middleware provides job submission tools via web services (4.x), 
pre-web services (2.x) and web services-independent (5.x) infrastructure without any 
support for job flow scheduling and resource broking. Other grid technologies offer a full 
support of direct acyclic graph job workflow with conditional branches, recovery feature 
and graphic user interfaces. Our custom software solution provides domain scientists with a 
full configurable grid and cloud-computing tool, which minimizes the impact of the 
computing infrastructure. 
In a hybrid grid/cloud infrastructure scenario, the shell script instantiates virtual machines, 
without concerning about where to execute the computation but the needed computing 
resources.  
This approach, though operatively correct, presents many disadvantages. The user must 
know many details about the script programming language, the job submission,  the system 
environment setup, and, if the computing resources are virtualized, even about  the virtual 
machine lifecycle and the interaction with instances. The developed code is tightly coupled 

www.intechopen.com



A GPU Accelerated High Performance Cloud Computing Infrastructure  
for Grid Computing Based Virtual Environmental Laboratory   

 

127 

to its application and any change to the job behaviour or model configuration affects the 
entire application. In case of complex job fluxes, like in a concurrent ramification context, for 
example when a weather simulation model forces both wave propagation and oceanic 
circulation models, the control code may grow in complexity and data 
consuming/production relationships could be hard to implement, since several 
synchronization issues arise. Moreover, this kind of approach is potentially insecure because 
the user must be logged into the system to run a script, and this scenario is not applicable in 
the case of an interactive application on a web portal. 

2.2.1 Orchestration components design and implementation 
The orchestration component design has been driven by the goal of disclosing to the final 
user the power of a hybrid grid/cloud infrastructure and hiding technical details.  
The virtual laboratory main component is the Processing Unit (PU). The PU may be seen as 
a black box feed by input data, performing a computation task and producing output data. 
In a grid-computing environment, the PU could be considered as a job submitted to a grid 
machine matching the computational needs. In a dynamical infrastructure as a service 
cloud, the PU can be totally embedded in a virtual machine image and deployed to be 
executed using the requested computing resources. To the user of the virtual laboratory, the 
view has completely changed: the cloud elasticity permits to consider computing resources 
as potentially infinite. In our architecture stack, the PU represents the highest level of 
interaction component and leverages on the cloud management software components.  

2.2.2 JaClouX, a cloud independent Java API 

Different cloud infrastructure systems, such as Amazon AWS, Open Nebula, Open Stack, 
Eucalyptus, etc, offer similar services through different web service interfaces, so a cloud-
aware component is needed in order to manage virtual machine instances on different 
clouds. JaClouX (Java bindings for Cloud eXtensions) [9] is a unified application program 
interface to the cloud written in Java and it represents a fundamental change in the way 
clouds are managed, breaking the barriers among proprietary, closed clouds and open 
scientific clouds. JaClouX is our cloud management component; it is independent of the 
underlying cloud software and interacts with other components as Images, Instances, 
Locations, and Sizes. Moreover, JaClouX is cloud-aware thanks to a plug in architecture. The 
support to any cloud software can be added by just implementing a new Driver component. 
Respect to other similar APIs, such as libcloud [13] and JClouds [8], JaClouX provides some 
enhanced specific features for storage and high performance computing.  
While most cloud software manage virtual machine images and instances in a quite similar 
way, the storage and other high level services turn out to be different among the various 
cloud solutions. For example, AWS offers the Simple Storage Service (S3) implemented in 
Eucalyptus as Walrus. The Eucalyptus storage controller provides a service similar to the 
AWS Elastic Block Storage (EBS). The OpenNebula stack does not provide S3-like services, 
but leverages on shared network file systems on which the virtual machine instances are 
attached. JaClouX’s Driver component provides an abstraction of both S3 and EBS using the 
Simple Storage Component (SSC) and the Elastic Block Component (EBC). The Driver 
component can provide the missing cloud features by software emulation. 
The Virtual Computing Cluster (VCC) component permits the dynamical creation of high 
performance computing cluster on-demand. A VCC is defined specifying the virtual 
machine image for the head and the compute nodes and the number of working nodes 
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instances. VCC manages the user authentication and the execution authorization in a 
coherent fashion deploying automatically, if needed, the grid security infrastructure 
components. The virtual network file system permits to the head node user to execute on 
working nodes using secure shell and perform some other operation in the distributed 
memory parallel programming ecosystem. VCC takes in charge file system related issues 
abstracting the low level implementation especially regarding the distributed parallel file 
system. Last but not the least, VCC interacts with the cloud scheduler, where possible, in 
order to locate the virtual computing nodes in the most effective and high performance way: 
i. e. groups of computing nodes belonging to the same virtual cluster can be allocated on the 
same real machine, so MPI optimization for virtual networks can be used in the best way; in 
a similar way, virtual working nodes needing for GPGPU acceleration support are spawn on 
the real hardware achieving the best possible computing effort. 
 

 

Fig. 1. The Virtual Laboratory big picture. On the right the component stack schema. In the 
centre area the component interactions/dependences diagram. On the right the main 
technologies used each application tier.  

2.2.3 Managing the application workflow 

The automation of scientific processes in which tasks are structured based on their control 
and data dependencies are defined as scientific workflows. Scientific applications on Grids 
gain several advantages following the workflow paradigm. The ability to build dynamic 
applications, which orchestrate distributed resources using resources that are located in a 
particular domain, accelerates the advance in knowledge in many scientific fields. The 
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workflows permit to increase the throughput or reduce execution costs spanning the 
execution of scientific software on multiple administrative domains to obtain specific 
processing capabilities. The highest advantage in the workflow technology application in e-
Science is in the integration of multiple teams involved in management of different parts of 
the experiment promoting inter and cross organization collaborations [48]. With the advent 
of the cloud technology applied to computational sciences the potential importance of 
scientific workflows increased: the scientist is in the power of allocate all the needed 
computing power doesn’t caring about the effective availability.  
In order to enhance flexibility and to minimize the impact on the grid configuration, we 
have implemented a software component for scientific workflow management. The Job 
Flow Manager (JFM) component is an evolution of the previously developed Job Flow 
Scheduler [26] improved with the cloud computing and the on demand virtual computing 
cluster support. The JFM component plays a key role in the grid application orchestration. 
Using this tool the entire complex, multi branch, grid application can be configured through 
a XML file. JFM takes care of submitting jobs to computing nodes without concerning 
whether the target machine is a real computing resource or a virtual computing node 
dynamically allocated on demand on a cloud. The JFM have been designed in a modular 
fashion and does not depend on the actual grid middleware or cloud ecosystem. 
The main JFM role is the submission of jobs or virtual machine instances creation to the 
propter computing resource abstracting the Processing Unit in our virtual laboratory 
component stack. The Submitter Component (SC) is a piece of software dealing with the 
grid middleware and/or with the cloud infrastructure interface. As previously stated, the 
jobs are formally described with an extension of the JSDL, providing syntactic and semantic 
tools for job description in terms of virtual machines instances. The user may create virtual 
computing resources and instantiate them when needed. We defined a XML schema, called 
Job Flow Definition Language [59] so one can define virtual laboratory experiments as XML 
files. Thanks to the interaction between the JFM and the SC components, the submitted job 
could face as a classical grid job wrapped an executable on a remote machine or an 
application appliance to instantiate, run and destroy on a cloud computing provided 
resource. The SC is the software interface connecting the PU with the computing resource. 
We have designed the Submitter component abstracting virtually any kind of remote 
execution technology including HPC, grid or cloud (via JaClouX). 
In the virtual laboratory an experiment is an aggregated of Processing Units, each of them, 
connected with the others in a direct acyclic graph, draws the computing steps as the nodes 
of the experiment graph. 
The Virtual Lab and the Job components (VLC, JC) represent our playground for scientific 
workflows form an higher point of view and interacts with the user interface (VLC) and 
with Submitter component (JC). In particular, the Job component takes in charge the list of 
the jobs to be completed before the actual processing unit is executed and the list of jobs to 
be submitted when the PU work eventually ends up. 
Finally, VLC provides a friendly user interface through a desktop client, a mobile app, an 
interactive or batch console or even a web application (Figure 1).     

3. GPGPU virtualization 

Recently, scientific computing has experienced on general purpose graphics processing 
units using massive multi core processors available on graphics devices in order to 
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accelerate data parallel computing tasks. One of the most successful GPU based acceleration 
system is provided by nVIDIA and relies on the CUDA programming paradigm and tools 
[16]. Currently, in the world of high performance computing clouds, virtualization does not 
allow the use of accelerators as CUDA based GPUs in a transparent way. This happens 
because of the communication between virtual and real machines, of the communication 
between guest and host on the real machine side, and of the issues related to the vendor 
specific interface (on the virtual machine side). The use of the GPGPUs massive parallel 
architecture in scientific computing is still relegated to HPC clusters. A serious limitations 
exist on the overall potential performances of an on-demand instanced high performances 
computing cluster and, in general, on the use of cloud computing infrastructure as an high 
performance computing system based on elastically allocated resources.  

3.1 gVirtus architecture and design 
gVirtuS (GPU Virtualization Service) is our result in GPGPUs transparent virtualization 
targeting mainly the use of nVIDIA CUDA based accelerator boards through virtual 
machines instanced to accelerate scientific computations [45]. 
The basic virtualization idea is based on a split driver approach [37] in which a front-end is 
deployed on the virtual machine image and a back-end is hosted on the real machine. The 
communication technology between the front and the back-ends is a key component in 
order to achieve high performances. The front-end and the back-end layers implement the 
uncoupling between the hypervisor (which has in charge the control of the acceleration 
device) and the communication layer. A key property of the proposed system is its ability to 
execute CUDA kernels with an overall performance similar to that obtained by real 
machines with direct access to accelerators. This has been achieved by developing a 
component that provides a high performance communication between virtual machines and 
their host, and implements an efficient data transfer between the guest VM’s application, 
which use the kernel, and the GPU, which runs it. 
On the front-end side, the component packs the API invocation, recovers the result values 
and automatically translates host and device memory pointers. This approach permits to 
enforce the isolation overcoming some hardware-related specific limitations. On the front-
end a CUDA library stub imitates the real CUDA library implementation interacting with 
the back-end in a transparent way. This architectural scheme makes evident an important 
design choice: the GPU virtualization is independent of the hypervisor. 
The approach can naturally be extended to a wide range of devices designed to work in a 
non-virtualized environment, but the overhead introduced by the system can be prohibitive 
for HPC applications without an efficient and reliable high performance communication 
system between guest and host machines. Due to the potentially large size of the 
input/output data of a CUDA kernel, this is particularly relevant for the GPU accelerators 
that span many pages of contiguous memory. Our effort was mainly aimed at delivering a 
GPU virtualization suitable for the performance requirements of current HPC scientific 
applications and to develop CUDA API as much as possible hypervisor and communicator 
independent, but the hypervisor proprietary virtual/real machine communication 
technology affects deeply the over all performances. 
In the world of virtualization and cloud computing some hypervisors reached the status of 
standard de facto: 

 Xen [21] is a hypervisor that runs directly on the top of the hardware through a custom 
Linux kernel. Xen provides a communication library between guest and host machines, 
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called XenLoop, which implements a low latency and wide bandwidth TCP/IP and 
UDP connection both among virtual machines running on the same host and virtual 
machine and host machines. XenLoop can reduce latency up to a factor of 5 and can 
increase efficiency up to a factor of 6. Moreover, it is application transparent and 
implements an automatic discovery of the supported virtual machines [73]. We 
excluded Xen from our test-bed because there is no official support of nVIDIA driver 
for this hypervisor. 

 VMWare [19] is a commercial hypervisor running at the application level. VMWare 
provides a high performance communication channel between guest and host 
machines, called VMCI (Virtual Machine Communication Interface), leveraging on a 
shared memory approach. VMWare offers a datagram API to exchange small messages, 
a shared memory API to share data, an access control API to control which resources a 
virtual machine can access and a discovery service for publishing and retrieving 
resources [20]. 

 KVM (Kernel-based virtual machine) [10] is a Linux loadable kernel module now 
embedded as a standard component in most of Linux distributions, with a full 
virtualization support. KVM offers a high performance guest/host communication 
component called vmChannel. This component exposes a set of fully emulated inter 
virtual machines and virtual/real machine serial ports and network sockets, based on a 
shared memory approach. Unfortunately, most of the promising vmChannel features 
are not yet fully implemented [11]. 

The use of the TCP/IP stack to permit the communication between virtual machines and a 
real machine is common feature in virtualization. This approach is not only hypervisor 
independent, but deployment independent too: the virtual resource consumer and the real 
producer can be on physical different computing elements. This is a cool feature, especially 
if in the field of cloud computing, but the introduced overhead is unacceptable for HPC 
applications. Nevertheless the use of TCP/IP could be interesting in some deployment 
scenarios where the size of the computing problem, the network performances and, above 
all, the GPU acceleration justify the general overhead. 
In order to be hypervisor and communication technology independent, we designed a fully 
pluggable. It is an independent communication channel and allows the communicator 
change through a simple configuration file. Moreover, if a new kind of communicator is 
implemented, it can be plugged in without any change in the front-end and the back-end 
layer. 
CUDA accelerated applications interact with the front-end CUDA library in a standardized 
manner. The CUDA library instead of dealing directly with the real nVIDIA hardware 
interacts with our GPU virtualization front-end. The front-end, using the communicator 
component, packs the library function invocation and sends it to the back-end. The back-end 
deals with the real nVIDIA hardware using the CUDA driver; it unpacks the library 
function invocation and suitably maps memory pointers. Then it executes the CUDA 
operation, retrieves the results and sends them to the front-end using the communicator. 
Finally, the front-end interacts with the CUDA library by terminating the GPU operation 
and providing results to the calling program. Any accesses to the GPU is routed via the 
front-end/back-end layers under control of a management component, and data are moved 
from GPU to guest VM application, and vice versa. 
This design is hypervisor independent, communicator independent and even accelerator 
independent, since the same approach could be followed to implement different kinds of 
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virtualization. The platform is designed to emulate future heterogeneous many-core chips 
comprised of both general and special purpose processors (Figure 2). 
 

 

Fig. 2. The gVirtuS schema. In the single node deployment scenario the CUDA application 
can interact with the back-end with, or without, the hypervisor interaction. If the back-end is 
on a different computing node (cluster deployment scenario), then the application can be 
accelerated by GPGPUs devices physically installed on different machines. The actual 
performances (and benefits) depend of the application, the problem size and the network 
bandwidth. 

3.2 gVirtus implementation 

The implementation, in C++, is related to an x86-based multi-core hardware platform with 
multiple accelerators attached via PCIe devices, running Linux as both host and guest 
operating system. According to the underlying idea of high performance cloud computing 
applications, we implemented the virtual accelerator in a hypervisor independent fashion 
and in a fully configurable way. In particular, we focused on VMware and KVM 
hypervisors. The GPU is attached to the host system and must run its drivers at a privileged 
level that can directly access the hardware. Memory management and communication 
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methods for efficient sharing of the GPU by multiple guest VMs, have to be implemented at 
the same run level. 
We implemented a wrapper stub CUDA library with the same interface of the nVIDIA 
CUDA library. Our library performs some processing and passes parameters to the lower 
level components. The library currently implements all function calls synchronously and is 
able to manage multiple application threads. Since the source code of both library and 
driver are strictly closed, the wrapper library running in the guest virtual machine 
intercepts CUDA calls made by an application, collects arguments, packs them into a CUDA 
call packet, and finally sends the packet to the front end. The front-end driver manages the 
connections between the guest virtual machine and the host machine. It uses the services 
offered by the communicator component to establish event-based channels through both 
sides, receiving call packets from the wrap CUDA library, sending these requests to the back 
end for execution over a shared call buffer and relaying responses back to the wrap CUDA 
library.  
We designed and implemented a component to achieve a high performance communicator 
working with the KVM hypervisor: vmSocket. This component exposes Unix Sockets on 
virtual machine instances thanks to a QEMU device connected to the virtual PCI bus. The 
device performs register based I/O operations using dynamically allocated memory buffers.  
We focused on concentrating most components on the guest machine side, in order to make 
reusable as many components as possible. On the host side, the back end mediates all 
accesses to the GPU and it is responsible for executing the CUDA calls received from the 
front end and for returning the computed results. Once a call has been executed, it notifies 
the guest and passes the results through the connector component. The back end has been 
implemented as a user-level module to avoid the additional runtime overhead of multiple 
accesses to the user space CUDA memory. This component converts the call packets 
received from the front end into CUDA function calls; notice that it is the wrap CUDA 
library host side counterpart. Finally, the nVIDIA CUDA library and the driver interact with 
the real device. 
GPU based high performance computing applications usually require massive transfer of 
data between host (CPU) and device (GPU) memory. In a non-virtualized environment, a 
memory copy operation invoked by a CUDA application copies data between host memory 
and GPU memory, managed by the nVIDIA driver. This can be avoided by making a call to 
the CUDA API enabling the allocation of host-mapped GPU memory, and implies zero-copy 
of data. In a virtualized environment the virtual machine isolation adds another layer 
between the CUDA application working in the guest memory and the CUDA device. 
In our implementation there is no mapping between guest memory and device memory 
because the gVirtuS backend acts in behalf of the guest running virtual machine, then device 
memory pointers are valid in the host real machine and in the guest as well. In this way the 
front end and the back end sides interacts in a effective and efficient way because the 
memory device pointers are never de-referenced on the host side of the CUDA enabled 
software (with gVirtuS the host side is the guest virtual machine side): CUDA kernels are 
executed on our backend side where the pointers are fully consistent. Exists a sort of 
pointers mapping between backend and frontend sides managed by the backend due to 
support the execution of CUDA function via the vmSocket channel. When a CUDA function 
have to be invoked on the device, the stub CUDA library interact with the front end. The 
front end prepares a package containing the name of the function to be invoked and the 
related parameters. The front end/back end communication handles three kinds of 
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parameters: automatic scalar variables, host memory pointers and device memory pointers. 
The serialization function packs the scalar variables without any modification, uses the 
value pointed by the pointer for each host memory pointer and considers as unsigned 64 
bits long integer each device memory pointer. The de-serialization function works in an 
analogue, but opposite way when the communication is from the backend to the frontend. 
Sharing memory between virtual and real machines could be a strange feature in the world 
of cloud computing where the isolation among VM instances and computing resource is a 
primary goal. Nevertheless in the high performance cloud computing context this feature 
could be extremely limiting: using shared memory a MPI communication channel could 
implement transparently a latency free network among virtual computing nodes without 
any change to the distributed memory parallel software. In order to achieve better 
performances in our GPU virtualization we designed and implemented the VMShm 
component. VMShm ensures high performance memory block copying between guest and 
host system using an implementation approach similar to vmSocket via the PCI-e virtual 
driver. 
We compared and contrasted many hypervisor/communicator configurations (VMWare: 
VMCI/tcp, KVM-QEMU: vmSocket/tcp) and, using standard CUDA SDK benchmark 
programs, demonstrated our GPU virtualization (KVM-QEMU with vmSocke) achieves 
performances not so much different than the GPU with no virtualization [45].  

3.3 Cloud deployment 

As mentioned above, we have designed and implemented the gVirtuS GPU virtualization 
system with the primary goal of using GPUs in a private computing cloud for high 
performance scientific computing. We have set up a department prototypal cloud 
computing system leveraging on the Eucalyptus open source software. Eucalyptus, 
developed at the University of Santa Barbara in California [], implements an Infrastructure 
as a Service (IaaS), as it is commonly referred to. The system gives users the ability to run 
and control entire virtual machine instances deployed across a variety of physical resources 
in the same way the Amazon Web Service infrastructure works [1]. Eucalyptus enables users 
familiar with existing Grid and HPC systems to explore new cloud computing 
functionalities while maintaining access to existing, familiar application development 
software and Grid middleware. In particular we were interested in setting up high 
performance computing clusters on-demand, leasing the resources upon an existing 
infrastructure [72]. In our test aimed at assessing the performance of gVirtuS in a high 
performance computing cloud system, we have used an Intel based 12 computing nodes 
cluster, where each node is equipped with a quad core 64 bit CPU and an nVIDIA GeForce 
GT 9400 video card with 16 CUDA cores and a memory of 1 Gbyte. 
We carried out an experiment focused on the gVirtuS behaviour in a private cloud, where 
the GPUs are seen as virtual computing nodes building a virtual cluster dynamically 
deployed on a private cloud [66]. We developed an ad-hoc benchmark software 
implementing a matrix multiplication algorithms. This software uses a classic memory 
distributed parallel approach. The first matrix is distributed by rows; the second one by 
columns, and each process have to perform a local matrix multiplication. MPICH 2[] is 
message-passing interface among processes, whereas each process uses the CUDA library to 
perform the local matrix multiplication.  
The evaluation process results show that the gVirtuS GPU virtualization and the related 
sharing system allow an effective exploitation of the computing power of the GPUs [45]. We 
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note that without such component the GPUs could not be seen by the virtual machine and it 
would be not possible to run this experiment on a public or private cloud hosting an 
dynamic (on demand) virtual cluster using, for example, JaClouX features. 

4. High performance parallel I/O 

The needs of scientific applications have driven a continuous increase in scale and capability 
of leading parallel systems [7]. However, the improvement in rates of computation has not 
been matched by an increase in I/O capabilities. For example, earlier supercomputers 
maintained a ratio of 1GBps of parallel I/O bandwidth for every TFLOP, whereas in current 
systems 1GBps for every 10 TFLOPS [22] is the norm. This increased disparity makes it even 
more critical that the I/O subsystem is used in the most efficient manner. Scalable I/O has 
been already identified as a critical issue for PFLOP systems. Future exascale systems 
forecasted for 2018-2020 will presumably have O(1B) cores and will be hierarchical in both 
platform and algorithms [17]. This hierarchy will imply a longer path in moving data from 
cores to storage and vice-versa, resulting in even higher I/O latencies, relative to the rates of 
computation and communication in the system. The GPGPU-based systems introduce an 
additional level into this hierarchy, making a high-performance low-latency solution for file 
accesses even more necessary.  
An additional contribution of this chapter is to extend our previous work on designing and 
implementing multiple level parallel I/O architectures for clusters [50] and supercomputers 
[51] to virtualized GPGPU-based cloud architecture in order to improve the file access 
performance (I/O latency and throughput) of parallel applications.    
Our proposed solution is based on a multi-tier hierarchy as depicted in Figure 3, the parallel 
I/O architecture is organized on six tiers: application, application I/O forwarding, client-
side cache, aggregator I/O forwarding, I/O node-side cache and storage. In the figure we 
show the components of the parallel I/O architecture and on the margins, we depict how 
the logical components map on physical nodes. 
 

 

Fig. 3. Parallel I/O architecture organized on six logical tiers: application, application I/O 
forwarding, client-side cache, aggregator I/O forwarding, I/O node-side cache and storage. 
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4.1 Application tier. 

From a parallel I/O perspective applications run on virtual machines and access the file 
systems through file interfaces such as MPI-IO or POSIX. As described in section, the CUDA 
calls of the applications running on virtual machines are intercepted in forwarded in zero-
copy fashion to the guest machine where they are processed by the CUDA run time. The 
transfers between main memory and GPGPU memory as well as GPGPU processing can be 
completely overlapped by completely overlapped with the service of file system calls.   

4.2 Application I/O forwarding tier.  

Application I/O forwarding tier resides on all application nodes and has the goal of 
forwarding the file accesses to the next tier through the compute nodes interconnect 
network. The forwarding is done on-demand, when the application issues the file access. 
This forwarding tier leverages VMSocket and VMShm in order to achieve high performance 
in intra virtual machines interactions. 

4.3 Client-side file cache management tier.  

The client-side file cache module resides on the memory of virtual machines and has the role 
of aggregating small file access requests from several application processes running on 
virtual machines and performing the file access on behalf of them.  The application accesses 
the client-side cache through the application I/O forwarding tier. i.e. through VMSocket. 
The objective of client-side file cache module is to provide the management of a file cache 
close to the applications and to offer efficient transfer methods between the applications and 
I/O subsystem. The main tasks of the module are buffer management and asynchronous 
data staging, including write-back and prefetching modules. This module is generic, is 
network- and file system-independent and is common for both cluster and supercomputer 
architectures. The client-side cache management tier absorbs the writes of the applications 
and hides the latency of accessing the I/O nodes over interconnect networks.  

4.4 Aggregator I/O forwarding tier.  

Aggregator I/O forwarding tier resides on all virtual machines and has the goal of 
forwarding accesses at file block granularity to the I/O nodes through vmSocket library. 
The communication with the compute nodes are decoupled from the file system access, 
allowing for a full overlap of the two operations.  

4.5 I/O node-side file cache management tier.  

The I/O node-side file cache management tier resides on all I/O nodes.  The I/O nodes can 
run either on virtual machines or on a real machine. Running I/O nodes on virtual machines 
bring benefit when the load is highly variable and starting or shutting down virtual 
machines can contribute to adapt the cost of operation of the infrastructure. The objective of 
I/O node-side file cache module is to provide the management of a file cache close to the 
storage and offer efficient transfer methods between virtual machines and the storage 
system.  The I/O node-side file cache management tier absorbs the blocks transferred 
asynchronously from the client-side cache through the aggregator I/O forwarding client, 
and hides the transfers between the I/O nodes and file systems.  An I/O thread is 
responsible for asynchronously accessing the file systems by enforcing write-back and 
prefetching policies. 
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4.6 Storage system tier.  

The file system components run on dedicated file servers connected to storage nodes 
through the storage interconnection network. The storage system provides the persistent 
storage service and can be any file system providing a VFS (virtual file system) interface. 
The I/O node-side file cache management tier provides an agile and elastic proxy layer that 
allows the performance of the file systems to scale up with the load generated by the 
applications.   

4.7 Data staging. 

The architecture presented in the previous sections scales both with the computation and 
I/O requirements of the applications but at the cost of a hierarchical organization of file 
caches. In order to make an efficient use of hierarchy of file caches our solution employs a 
multiple level data staging. The first file level caching is deployed on virtual machines of the 
applications and have the role improving the performance of the accesses to the file systems 
by overlapping the GPGPU and processor cores computation with I/O transfers between 
computational virtual machines and I/O nodes. The I/O servers manage the second level of 
distributed caching at I/O nodes. File blocks are mapped to I/O servers and each server is 
responsible for transferring its blocks to and from the persistent storage. In order to hide the 
latency of file accesses, data staging acts in coordination both on virtual machines and on 
I/O nodes. The data staging consists of two flows corresponding to the write and read 
operations.  

4.7.1 Multiple-level write-back.   

After a file write is issued on a virtual machine, data are pipelined from compute nodes 

through the I/O nodes to the file systems. The application I/O forwarding tier transfers the 

application write request to the client-side cache management tier. The cached file blocks are 

marked dirty, the application is acknowledged the successful transfer and is allowed to 

continue. The responsibility of flushing the data from client-side cache to I/O node over the 

I/O network belongs to a write-back module on a virtual machine. On the I/O node a write-

back module is in charge of caching the file blocks received from the compute nodes and 

flushing them to the file system over the storage network. The write-back policies are based 

on a high/low water-mark for dirty blocks. The high and low water marks are percentages 

of dirty blocks. The flushing of dirty blocks is activated when a high water mark of blocks is 

reached. Once activated the flushing continues until the number of dirty blocks falls below a 

low water mark. Blocks are chosen to be flushed in the Least Recently Modified (LRM) 

order.  In order to efficiently hide the latency, coordination along the pipeline is necessary. 

In a previous work we made an extensive evaluation of coordination strategies for Blue 

Gene supercomputers [51]. The evaluation of this coordination for GPGPU clouds is subject 

of current research.  

4.7.2 Multi-level prefetching.  

The file read pipeline involves transfers from storage through storage nodes and I/O nodes 
toward the compute nodes.  Our prefetching solution for GPGPU clouds proposes two 
prefetching modules on the computing virtual machines and I/O nodes, each of which 
enforcing its own prefetching policy. The prefetching mechanism is leveraged in both cases 
by an I/O thread.  
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Our prefeching solution leverages the characteristics of the stream processing model of the 
GPGPU applications [32]. In GPGPU applications the kernel operations define 
unambiguously both the input and output data. We exploit this information for issuing 
early prefetching requests on the computing virtual machines. This approach activates the 
prefetching pipeline in our architecture and allows the overlapping of GPGPU computing 
and prefetching for future computations.  The evaluation of this solution is subject of current 
research.  

5. The virtual laboratory 

A domain scientist can use the Virtual Laboratory through a desktop, web or command line 
client application. An experiment is designed by connecting processing units in a data 
producer/consumer schema represented as a direct acyclic graph. The scientist can 
configure and run his experiment selecting and assembling each component from a palette 
or submitting a JFDL file to the Virtual Laboratory Engine. 
Our virtual laboratory is specialized (but not limited to) environmental modelling 
experiments and applications. Starting in 2003, we run operationally a weather and marine 
forecast grid application integrating weather, sea wave propagation, ocean circulation and 
air quality models and offering products, focused on the Bay of Naples (Italy) reaching a 
nested ground resolution of about one kilometre. Common citizens, via a web portal 
interface or smart-phones apps, consume the application products. We have used this 
application as test bed to evolve our laboratory till the actual state of the art of a fully elastic-
Science approach. 
Relying on our grid-enabled components, we implemented real world applications based on 
the close integration between environmental models, environmental data acquisition 
instruments and data distribution systems glued by the hybrid grid/cloud computing 
technology.  

5.1 Laboratory’s virtual components 

The virtual laboratory is designed in order to provide computing support to any kind of 
experiment deployable as a scientific workflow. Our packaged framework for grid enabling 
legacy software components simplifies the process of including additional grid components. 
In the current implementation, the processing units black-boxing the computing models are 
based on the cloud-enabling scheme. In this way, distributed memory parallel models, i.e. 
weather models, are executed on a dynamically created computing cluster or on a real HPC 
cluster as well, just changing an experiment parameter. As previously stated, we focused 
our interest in environmental modelling, grid and cloud enabling the needed components 
for all around coupled forecasts, simulations and scenario analysis: weather, air quality, 
ocean currents and sea waves models. Over the last decade, we implemented several 
environmental models. Some of them are currently used in our virtual laboratory 
production; others have been substituted with more up to date components. 

5.2 Weather simulation components 

Weather models are the main driver in this kind of experiments and applications, so we grid 
enabled the MM5 (Mesoscale Model 5) [56] and the WRF (Weather and Research Forecasting 
model) [57], the latter beingcurrently our first source of operational weather forecasts. It is a 
mesoscale numerical weather prediction system designed to serve both operational 
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forecasting and atmospheric research needs. It features multiple dynamical cores, a 3-
dimensional variational data assimilation system, and a software architecture allowing for 
computational parallelism and system extensibility. WRF provides to operational 
forecasting a model that is flexible and efficient computationally, while offering the 
advances in physics, numerical solution of equation and data assimilation contributed by 
the research community. WRF allows researchers the ability to conduct simulations 
reflecting either real data or idealized configurations. WRF is suitable for a broad spectrum 
of applications across scales ranging from meters to thousands of kilometres. WRF is 
modular and its components could be parted in pre-processing, computing and post-
processing units. 
We grid enabled WRF in order to run each model anywhere on the grid and/or even on the 
cloud. The components available on our virtual laboratory wrap the Geogrid for terrain 
preparation, the Ungrib for initial and boundary condition processing and the Metgrid for 
initial data interpolation over spatial domains. This components could be run on serial or 
parallel target computing elements, while the Real component, for input data preparation, 
and the Wrf component, i.e. the model itself, have to be run on parallel computing elements. 
In particular, Wrf (version 3.2 and beyond) could be executed using a GPU equipped 
parallel computing cluster  dynamically instanced on a cloud resource supporting a gVirtuS 
based GPGPU virtualization. The post-processing components wrap over standard ARW-
POST features and custom developed coupling software.  

5.3 Air quality components 

Air quality models permit to produce air pollution forecasts maps  and have to be fed by 
emission models of primary chemical pollutants. Currently, we use CHIMERE [29] which 
integrates both models. It is a multi-scale model primarily designed to produce forecasts of 
the concentration of ozone, aerosols and other pollutants. The model performs long-term 
simulations, entire seasons or years, for emission control scenarios and what-if hypothesis 
studies. CHIMERE runs over meso to urban scale making possible advanced simulation 
analysis thanks to many different options. It is a powerful research tool for testing 
parameterization hypotheses. 
The CHIMERE grid enabling process deals with the LAM management in order to deploy, 
boot and destroy computing nodes. The cloud enabled version of CHIMERE makes 
straightforward the model execution as a virtual laboratory processing unit instance: the 
HPC cluster, dynamically created and managed, hides the whole distributed memory 
message passing interface environment using pre-configured ad hoc virtual machine images. 
Moreover, the virtual laboratory offers tools for WRF/CHIMERE coupling in the data 
components suite. 
In the past, we developed the PNAM (Parallel Naples Airsheld Model) [28], we  integrated 
the STdEM Spatio-temporal distribution Emission Model [27] and grid enabled CAMx 
(Comprehensive Air quality Model with eXtension)[2]. 

5.3 Marine components 

Currently, the ocean modeling components of our virtual laboratory  primarily consist of the 
WW3 (WaveWatch III) [69] sea-wave propagation model. WW3 is a third generation wave 
model developed at NOAA/NCEP as an evolution of the WAM model [34]. It differs from 
its predecessors in many important points such as the governing equations, the model 
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structure, the numerical methods and the physical parameterizations. It is a wave-modelling 
framework, which allows for easy development of additional physical and numerical 
approaches. WW3 solves the random phase spectral action density balance equation for 
wave-number direction spectra. The implicit assumption of this equation is that properties 
of medium (water depth and current) as well as the wave field itself vary on time and space 
scales that are much larger than the variation scales of a single wave. Some source term 
options for extremely shallow water (surf zone) have been included, as well as wetting and 
drying of grid points. Whereas the surf-zone physics implemented so far are still fairly 
rudimentary the wave model can now be applied to arbitrary shallow water. 
Our WW3 grid enabling process involved the development of several pre-processing and 
post-processing components especially related to the model coupling and the offline nesting 
implementation. We developed from scratch the specific components for the domain setup 
(CreateDomain), a sort o Geogrid equivalent for WW3, GrADS2WW3 for weather model 
coupling (it works with both MM5 and WRF) and the Configuration Helper component that 
simplifies the model setup. 
Previously, for shallow water simulation, we grid-enabled the SWAN [31] in order to be 
coupled with WW3 and to obtain a more reliable simulation of the  waves in the surf zone.  
In our virtual laboratory we made available to environmental scientists two ocean dynamics 
models: the ROMS[63], Regional Ocean Model System, and the POM [30] (Princeton Ocean 
Model). The first is very well engineered, modular, suitable for an implementation on 
parallel distributed memory machines, and supports nesting features in order to increase 
the domain resolution over specified areas. POM is a simple-to-run but powerful model, 
able to simulate a wide-range of problems: circulation and mixing processes in rivers, 
estuaries, shelf and slope, lakes, semi-enclosed seas and open and global ocean.  The model 
is a sigma coordinate, free surface ocean model with embedded turbulence and wave sub-
models, and wet-dry capability. We enhanced it in a parallel version with nesting 
capabilities (POMpn) [44]. 
The POM grid enabling process required a complete revision of the code in order to 
implement user provided cases. In particular, we had to implement the components needed 
to set up spatial domains, initial and boundary conditions. An interface to a seasonal 
database has also been implemented to support open basins real case simulations.  

5.4 Data components  

Our virtual laboratory provides several processing unit components for data acquisition. 
The NCEPDataProvider retrieves real time weather forecast initial and boundary conditions 
from NOAA NCEP [14], thanks to a daemon component, completely decoupled from the 
grid; the ECMWFDataProvider [3] performs an on-demand download, from the ECMWF 
repository, of historical data for scenario and what-if analyses; the DSADataProvider 
performs an on-demand download of processed data. Weather stations, cams, ocean surface 
current radars and wind profilers are interfaced to laboratory components using the 
Abstract Instrument Framework and the grid enabled Instrument Service [58]. A data sink 
component has been developed to store and provide to users environmental 
multidimensional data [60]. 
Currently, we are working on a MET [49] grid-enabled version in order to provide a 
standard tool for model evaluation. 
The virtual laboratory includes some data visualization tools as grid-enabled wraps on 
standard world spread software as GrADS [6], Vapor[18] and Ferret[4]. 
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5.5 Operational grid application  

We have used the Virtual Laboratory components to develop a grid application for 
producing weather and marine forecasts in both operational and on-demand mode, where 
several simulation models, data acquisition, conversion, and visualization software are 
coupled. The application workflow is simple: the starting event is produced either by an on-
demand user request or by an initialization data availability signal, in an operational 
environment; then, the weather forecast model is initialized, and the output data is rendered 
by a presentation software and concurrently consumed by other models, such as ocean 
dynamics, sea wave propagation or air quality models; then each application branch 
proceeds on separate thread (Figure 4). 
 

 

Fig. 4. a Weather Component (WRF Processing Unit) output (left) and the application 
workflow schema (on the right). 

6. Conclusions 

In this chapter we have described some of our recent results in the field of grid, cloud, and 
GPU computing research. We claim that our virtual laboratory for earth observation and 
computational environmental sciences based on hybrid grid/cloud computing technology 
can be a useful tool in both research and operational applications, and we have shown how 
to  develop a complex grid application dedicated to operational weather, marine and air 
quality forecasts on nested spatial domains.  
The virtual laboratory is an elastic-Science environment. It provides GPGPU acceleration 
thanks to a GPU virtualization and sharing service. This service is realized by the gVirtuS 
component. It enables a virtual machine instance, running in a high performance computing 
cloud, to properly exploit the computing power of the nVIDIA CUDA system. In discussing 
the architecture of our framework, the adopted design and implementation solutions, and 
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the key communication component, we stressed the main features of gVirtuS: the 
hypervisor independence, the fully transparent behaviour and, last but not the least, its 
overall performance. We have reported elsewhere [45] the results of an extensive test 
process to assess how gVirtuS performs in different and realistic setups. gVirtuS leverages 
on our previous works on high performance computing grids, and our interest in the 
apparently poor performing TCP communicator is related to other more complex 
deployment schemes. For example, a private cloud could be set up on a massive multi-core 
cluster, hosting general-purpose virtual machine instances and GPU powered computing 
elements for compute-intensive scientific applications. 
Another important issue we have addressed in this paper is a scalable parallel I/O system 
for data intensive GPGPU applications. We have designed a scalable parallel I/O 
architecture based on a hierarchy of caches deployed on the computing virtual machines 
and on the I/O system backend, close to the storage. In order to hide the latency of file 
accesses inherent in a hierarchical architecture, we proposed a multiple level data staging 
strategy. The multiple level I/O pipelining in a data staging approach maps suitably to the 
characteristics of stream computing model, which exposes the inputs and outputs of the 
kernel computation, an important piece of information that can be leveraged by parallel I/O 
scheduling strategies. 
Several scientists for different kinds of one-shot or operational applications currently use the 
Virtual Laboratory environment we designed and implemented. The weather forecast 
application we described in this chapter, deployed in its first version in 2003, runs in 
operational mode with a few maintenance operations, except components or grid/cloud 
middleware upgrades. All performed results are interactively published at a web portal 
http://dsa.uniparthenope.it/meteo (the actual URL could change: a redirect to elsewhere 
could be expected) and used by several scientists, local institutions and common users. 
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