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1. Introduction

Room temperature ionic liquids (RTILs) are comprised of bulky organic cations and
anions (Holbrey & Seddon, 1999; Weingärtner, 2008). Because of the intricate interplay of
various inter- and intramolecular interactions, RTILs have rich dynamical properties and
have found diverse applications. In particular, negligible vapor pressure of RTILs makes
them a green alternative of conventional organic solvent. For understanding of RTIL’s
dynamical behavior at the molecular level, solvation and rotational dynamics have been
studied experimentally (Arzhantsev et al., 2007; 2006; Cang et al., 2003; Funston et al., 2007;
Ingram et al., 2003; Jin et al., 2007; Karmakar & Samanta, 2002a;b; Lang et al., 2006) and
theoretically (Jeong et al., 2007; Kobrak, 2006; 2007; Kobrak & Znamenskiy, 2004; Shim et al.,
2006; 2007; Shim & Kim, 2009). It is found that the ultrafast relaxation in a subpicosecond time
regime contributes substantially to solvation dynamics, disproving the diffusion-controlled
solvation in RTILs. On the other hand, in the long time regime, solvation and rotational
dynamics of RTILs show slow nonexponential relaxations, which is a characteristic of glassy
liquids (Jeong et al., 2008; Shim et al., 2005b).
In this chapter, we particularly focus on the dynamical properties of RTILs as a viscous
liquid (Rodriguez & Brennecke, 2006). High viscosity of RTILs has two different aspects
in nanoscale applications such as solar cells (Noda et al., 2003; Wang et al., 2003) and
capacitors (Tsuda & Hussey, 2007): it is advantageous to preventing the leakage of electrolyte,
but disadvantageous to enhancing transport properties. In order to realize the potential
applications of RTILs, it is necessary to scrutinize the transport process and relaxation
dynamics in RTILs microscopically via molecular dynamics (MD) simulations (Bhargava &
Balasubramanian, 2005; Klähn et al., 2008; Popolo & Voth, 2004; Zhao et al., 2009). One notable
feature observed in simulation studies of RTILs is so called dynamic heterogeneity (Habasaki
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& Ngai, 2008; Hu & Margulis, 2006), which refers to spatially inhomogeneous relaxation
behavior (Ediger, 2000; Richert, 2002) in glassy or supercooled liquids (Debenedetti &
Stillinger, 2001). Dynamic heterogeneity in RTILs has been observed in the fluorescence
spectroscopy experiments (Hu & Margulis, 2006; Samanta, 2006).
In this chapter, we present an overview on our recent MD studies of dynamic
heterogeneity of RTILs employing a coarse-grained model of 1-ethyl-3-methylimidazolium
hexafluorophsphate (EMI+PF6

−) (Jeong et al., 2010; Jeong & Jung, 2010; Kim et al., 2010).
Dynamic heterogeneity has been investigated numerically in various models of supercooled
liquids and glass (Chakrabarti & Bagchi, 2006; Chaudhuri et al., 2007; 2008; Kob et al., 1997;
Lačević et al., 2003; Leonard & Berthier, 2005). Regardless of detailed description in modelling,
observed in common are the nonexponential relaxation, breakdown of Stokes-Einstein
(SE) or Debye-Stokes-Einstein relation, and decoupling of the exchange and persistence
times (Hedges et al., 2007; Jung et al., 2004; 2005). Our model of RTILs has molecular
interactions which are strikingly different from those in supercooled liquids due to the
Coulomb interactions. The dynamical properties mentioned above are also observed similarly
in our model and suggested to be essential features of dynamic heterogeneity in RTILs.
The heterogeneity in RTILs may imply structural heterogeneity in mesoscale such as the
assembled structure of long alkyl chains (Wang et al., 2007; Wang & Voth, 2005). We point
out that the cation in our model employs a united atom description for short alkyl chain.
Thus, locally ordered structures and hydrogen bond networks are not expected to appear in
our simulation results. However, structural influence on inhomogeneous dynamics is still an
intriguing and open question in this simplified model.
This chapter is organized as follows: In Sec. 2, a coarse-grained model of a RTIL is introduced.
In Sec. 3, we present the MD results for glassy dynamics. Various dynamic properties
manifesting dynamic heterogeneity are demonstrated in Sec. 4, while Sec. 5 is devoted to
analyzing the dynamic propensity and Coulomb potential energy. Finally, we conclude in
Sec. 6.

2. A coarse-grained model of ionic liquids

We introduce a coarse-grained models to study the dynamics of RTILs via MD simulations
covering many orders of magnitude in time scale (Jeong et al., 2010). Fast degrees of freedom
which engage the hydrogen atom as well as the vibration of bonds are excluded by employing
the united atom representation. Our coarse-grained model is based on the model studied
by Kim and coworkers (Shim et al., 2005a). To be specific, the methyl group (M1) and the
moieties of the ethyl group (E1, M3) in the cation, EMI+, were represented by united atoms,
using the AMBER force field(Cornell et al., 1995) and the partial charge assignments proposed
by Lynden-Bell and cowarkers.(Hanke et al., 2001) The anion PF6

− was also described as
a united atom. One further simplification employed in our model is that five atoms in the
imidazole ring and three attached H atoms are represented by a united atom T1 positioned
at the center of mass of 8 atoms. The Lennard-Jones (LJ) parameters of T1 were adjusted, so
that our model reproduces the liquid structure of the model studied by Kim and coworkers.
MD simulations of the coarse-grained model for EMI+PF−

6 are performed using the DL_POLY
program.(Forster & Smith, 2001). Atoms i and j at positions ri and rj interact with each other
through the LJ and Coulomb potentials:

Uij = 4ǫij

⎡

⎣

(

σij

rij

)12

−

(

σij

rij

)6
⎤

⎦ +
qiqj

rij
, (1)
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atom σii (Å) ǫii (kJ/mol) qi (e) mass (amu)
M1 3.905 0.7330 0.316 15.04092
T1 4.800 1.5000 0.368 67.08860
E1 3.800 0.4943 0.240 14.03298
M3 3.800 0.7540 0.076 15.04092
PF6 5.600 1.6680 -1.000 144.97440

Table 1. The LJ parameters, partial charges, and masses of coarse-grained atoms (Jeong et al.,
2010)
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Fig. 1. Mean square displacement of (a) cations and (b) anions at various temperatures.

where rij ≡ |ri − rj| is the distance between the two atoms. The parameters of our
coarse-grained model are compiled in Table 1.
The model system comprises 512 pairs of rigid cations and anions. We performed simulations
in the canonical ensemble using the Nosé-Hoover thermostat and at density ρ = 1.31 g/cm3

at six different temperatures. Periodic and cubic boundary conditions were employed and
long-range electrostatic interactions were computed via the Ewald method.

3. Glassy dynamics

Glassy dynamics of the coarse-grained RTIL is studied using MD simulation results. We
analyze ion diffusion and structural relaxation with the mean square displacement,

∆(t) = 〈
1
N

N

∑
i=1

|ri(t)− ri(0)|2〉, (2)

and self-intermediate scattering function,

Fs(q0, t) ≡ 〈
1
N

N

∑
i=1

eiq0·[ri(t)−ri(0)]〉, (3)

where 〈· · · 〉 denotes the equilibrium ensemble average, N the number of ions, and q0 the
wave vector which corresponds to the position of the first peak in the static structure factor
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Fig. 2. Self-intermediate scattering function Fs(q0, t) for (a) cations and (b) anions. The wave
vector q0 is set to 1.24 Å−1 in (a) and (b), which corresponds to the position of the first peak
in the static structure factor for all ions.

for all ions. In this model, q0 is found to be 1.24 Å−1 regardless of the temperature. It is
attributed to the constant density employed in our model, while the density increases slightly
in real RTILs and so does q0, as the temperature is lowered.
In Figs. 1 and 2, the ionic liquid exhibits subdiffusive behavior and nonexponential relaxation
more apparently, as the temperature is lowered. ∆(t) shows sublinear dependence in the
intermediate time scale, which is followed by a crossover to Fickian behavior eventually. In the
time scale of non-Fickian behavior, we observe the plateau regime (β relaxation) in Fs(q0, t),
while the slow α relaxation follows in the long time regime. The latter is well described by
a stretched exponential function, c exp[−(t/τ0)

β]. At 300 K, the exponent β is found to be
0.64 and 0.59 for cations and anions, respectively, while 0.89 and 0.92 at 800 K. The exponent
β being less than unity as well as the subdiffusion and β relaxation is known to be a good
indicator of the glassy dynamics. The origin of the stretched exponential relaxation has been
discussed to be either the superposition of different exponential relaxations which arise from
heterogeneous dynamics or intrinsically nonexponential relaxation (Colmenero et al., 1999).
The structural relaxation time τα is determined by the relation Fs(q0, τα) = e−1 using the
results in Fig 2. The temperature dependence of τα is presented in Fig. 3. We observe that
τα does not follow the Arrhenius law τα ∝ exp(d2/T), but rather a super-Arrhenius behavior
given by τα ∝ exp(d1/T2). This indicates that our model of RTILs belongs to a fragile glass
former. A super-Arrhenius behavior in a similar RTIL has been also observed in a recent
experiment (Xu et al., 2003) For clarity, we note that we have assumed constant density at all
temperatures in our model. If the variation of density were employed, the structural relaxation
would be accelerated at high temperatures and decelerated at low temperatures. This would
not change the fragile behavior of our model qualitatively.

4. Dynamic heterogeneity

Dynamic heterogeneity of our ionic liquid system is investigated by verifying dynamic
correlations between local excitations. We first provide our working definition of local
excitations, and present various statistical analyses of them to prove and characterize dynamic
heterogeneity.
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Fig. 3. Temperature dependence of structural relaxation time τα (Jeong et al., 2010). Lines are
the fitted results using (a) τα = c1 exp(d1/T2) and (b) τα = c2 exp(d2/T). A super-Arrhenius
behavior shown in (a) and (b) suggest that our model of RTILs resembles a fragile glass
former.

4.1 Correlated local excitations

A general feature in the diffusive dynamics of supercooled or viscous liquids is that particles
are trapped in a cage for a long time because the thermal motions are not activated enough.
This is also the case of our model of ionic liquids at low temperatures; an ion exhibits merely
oscillatory motions, occasionally interrupted by significant movements. We monitor such
large motions of each ion and thereby quantify local dynamics in the ionic liquid. In this study,
local excitation events refer to the instances t1, t2, t3, · · · , where the displacement of an ion i
exceeds a threshold distance, i.e., |ri(t1)− ri(0)| > d, |ri(t2)− ri(t1)| > d, |ri(t3)− ri(t2)| > d,
· · · , etc (Hedges et al., 2007). The more local excitation occurs frequently, the more the ion
is mobile. The cut off distance d should be chosen appropriately in order to probe the local
dynamics. We display the results for d = 3.0 Å, for example, and note that other choices of d
on the order of the inter-ion distances do not alter our results qualitatively.
An initial excitation of an ion may perturb the local environment and thereby lead to another
excitation to the ion or neighboring ions. In the system where the excitations are sparse, the
first excitation and subsequent ones indicate different physical circumstances (Jung et al.,
2005). The molecular environment providing dynamic constraints persists until the first
excitation occurs during fluctuations. Then, the excitation is followed by exchange events due
to the dynamic correlations. To verify this, we define the persistence and exchange times to be
the waiting times for the first excitation and following ones, and they are denoted by τp and
τx, respectively. The facilitated dynamics would results in the decoupling of the exchange and
persistence times. The distributions of persistence and exchange times at various temperature
for cations and anions are displayed in Fig. 4. At 800 K, the two distributions almost coincide
with each other, while they become separated as T is lowered. The correlated excitations bring
about the decoupled distributions. This implies that the excitation events should not belong
to the Poisson process.
We remark that the above idea has been originally proposed in the kinetically-constrained
model (KCM) (Garrahan & Chandler, 2002), which describes the dynamics of supercooled
liquids successfully employing a two-state variable with kinetic constraint. Prior to our study
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Fig. 4. Decoupling of persistence and exchange times for (a) cations and (b) anions in a
coarse-grained model of EMI+PF6

− (Jeong et al., 2010).
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Fig. 5. Violation of the Stokes-Einstein relation in a coarse-grained model of
EMI+PF6

− (Jeong et al., 2010). (a) As the temperature is lowered, Dτα increases. The
deviation from a constant is more substantial in case of cations. Lines are guides for the eyes.
(b) The exponents in the scaling relation D ∼ τ

−ξ
α are found to be 0.84 and 0.93 for cations

and anions, respectively, while ξ = 1 corresponds to the Stokes-Einstein relation. Lines are
the fitted results.

of the ionic liquid, the decoupling of the exchange and persistence times has been shown in
not only the KCM but also the WCA model (Hedges et al., 2007), which is an atomistic model
for supercooled liquids.

4.2 Violation of Stokes-Einstein relation

The Stokes-Einstein(SE) relation is one of hydrodynamic relations for transport properties. In
normal liquids, the relation

D ∝
T

η
(4)

is usually accurate. In this study, we use another equivalent relation,

D ∝
1
τα

, (5)
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(a) 300 K (b) 800 K

Fig. 6. Spatial heterogeneity of the mobility in a coarse-grained model of EMI+PF6
− at (a)

300 K and (b) 800 K. For each cell, the sphere depicts the mobility mk such that its radius is
proportional to mk.

where τα is the structural relaxation time assuming that τα is proportional to η/T. We obtain
the diffusion constant D from the mean square displacement ∆[t− t0] = 〈N−1 ∑

N
i=1 |ri(t) −

ri(t0)|
2〉, using the relation limt→∞ ∆[t− t0] = 6D(t− t0). At low temperatures, sub-diffusive

behavior is pronounced in the intermediate time scale. Thus, we find the time t0 when the
Fickian behavior appears in ∆[t − t0] to specify the diffusion regime correctly (Szamel &
Flenner, 2006). The structural relaxation time τα has been obtained in Sec. 3.
If Equation 5 holds, Dτα would be a constant for all temperatures. We display the deviation of
Dτα for cations and anions in Fig. 5 (a), which means the structural relaxation decouples from
diffusive dynamics as T is lowered. To characterize the decoupling behavior in comparison
with supercooled liquids, we employ the scaling relation,

D ∼ τ
−ξ
α , (6)

where ξ = 1 corresponds to the SE relation. The results ξ = 0.84 for cations and 0.93 for anions
reveal a relatively weak SE violation in our model (Fig. 5 (b)), compared with supercooled
liquids. In the KCM, τα corresponds to the average persistence time 〈τp〉 (Berthier et al., 2005),
while the mechanism of self-diffusion is related to the dynamic exchange events. Therefore,
the violation of SE relation has a deep connection with the decoupling of the exchange and
persistence times. In this sense, the violation of the SE relation is another manifestation of
dynamic heterogeneity. It is also noteworthy that the exponent for the cation is less than that
for the anion. This indicates that cations should contribute more significantly to the dynamic
heterogeneity, which we turn to later.

4.3 Heterogeneity relaxation

We use the excitations defined in Sec. 4.1 to characterize the dynamic heterogeneity by
quantifying the local dynamics. We count excitations during a time interval to specify mobile
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Fig. 8. Time correlation functions of mk(t) given by Eq. 7.

and immobile regions. The simulation box is divided into 7 × 7 × 7 cells. The mobility mk(t)
is defined to be the number of excitations which occur at time between t− τcg/2 and t+ τcg/2
in the k-th cell. We hereby obtain the mobility as a function of the position and time which are
both coarse-grained. The time interval τcg is determined to accommodate three excitations on
average and depends on the temperature accordingly.
Figure 6 (a) describe the spatial heterogeneity of the mobility at 300 K, where the radius of the
spheres centered at the k-th cell is proportional to mk. We observe the clustering of mobile and
immobile regions. In contrast, the mobility appears relatively more homogeneous at 800 K,
in Fig. 6 (b). We confirm this by observing the distributions of the mobility in Fig. 7. At
800 K, P(mk) exhibits a Gaussian distribution. As the temperature is lowered, P(mk) becomes
asymmetric and develops a tail at large mk demonstrating a clustering of excitations. Note
that the the average of mk over all cells is set to be 3.0 by adjusting τcg.
The heterogeneity of the mobility is expected to relax with a long time scale. We obtain
the time scale of the heterogeneity relaxation by computing the normalized time correlation
function given by

C(t) ≡
〈mk(t)mk(0)〉 − 〈mk(0)〉2

〈mk(0)2〉 − 〈mk(0)〉2
, (7)

where the overline and 〈· · · 〉 denote the averages over k and the equilibrium ensemble,
respectively. The results for C(t) at T = 300 ∼ 800 K are displayed in Fig. 8. C(t) shows
rapid decay for t � τcg followed by nonexponential decay thereafter. The characteristic time
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temperature. The time scale τm for the mobility relaxation is determined from C(τm) = 0.1
displayed in Fig. 8. The increase of τm is faster than that of τcg.

scale τm of the heterogeneity is determined by the relation C(τm) = 0.1. Figure 9 shows the
temperature dependences of τm and τcg. The increase in τcg with a decrease in the temperature
indicates the slowing down of the dynamics. In particular, τm increases faster than that of τcg
as the temperature is lowered. At low temperatures, the correlation of the mobility maintains
for a significantly long time, e.g., about ten nanoseconds at 300 K which is about a hundred
times longer than the time interval for measuring the mobility.

5. Structural heterogeneity

Dynamic properties presented in Sec. 4 demonstrate that local dynamic constraint in
fluctuation-dominated dynamics is responsible for the dynamic heterogeneity in our
coarse-grained ionic liquid. To consider the structural origin producing the dynamic
constraint in RTILs, we examine dynamic propensity to probe the role of initial structure in
Sec. 5.1. Then, we analyze the Coulomb potential energy which represent the heterogeneous
structures of RTILs in Sec. 5.2.

5.1 Dynamic propensity

Dynamic propensity has been introduced to study structural influences on the heterogeneous
dynamics of supercooled liquids (Rodriguez Fris et al., 2009; Widmer-Cooper & Harrowell,
2007; Widmer-Cooper et al., 2004). Dynamic propensity of the ion i, denoted by pi, is
defined as the mean squared displacement of the ion i for t∗, which is averaged over the
trajectories starting from a given initial configuration with different initial momenta, i.e., the
isoconfigurational (IC) ensemble,

pi ≡ 〈|ri(t
∗)− ri(0)|2〉IC. (8)

The initial configuration is taken from the equilibrium ensemble and the initial momenta
are chosen to follow the Maxwell-Boltzmann distribution corresponding to the temperature.
In this study, we repeat simulations 200 times for each initial structure. The time interval
t∗ is chosen to be 1.5τα at each temperature, where τα’s have been determined in Sec. 3.
The averages over the IC ensemble exclude the influence of the direction and magnitude of
initial momenta on the resultant dynamics. Thus, pi would reveal how the ion i tends to be
mobile, resulted by, if any, the initial configuration. Previous studies of supercooled liquids
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Fig. 10. Probability distributions of dynamic propensity in a coarse-grained model of
EMI+PF6

− for (a) cations and (b) anions.

have found that several local structural quantities and the potential energy do not have any
direct correlations with the propensity of individual particle, but a general overlap of spatial
distributions in a large lengh scale (Berthier & Jack, 2007; Widmer-Cooper & Harrowell, 2006;
Widmer-Cooper et al., 2004; 2008).
Figure 10 shows the probability distributions P(pi) of dynamic propensities for cations and
anions at five temperatures. The distributions are obtained by performing averages over
the results from five uncorrelated initial configurations at each temperature. At 800 K, the
highest temperature we studied, P(pi) follow a narrow Gaussian distribution for both cations
and anions. As the temperature is lowered, P(pi) becomes more broad and asymmetric.
The Gaussian shape of P(pi) implies that each ion has an identical environment statistically
for t∗ according to the central limit theorem. Thus, a substantial deviation from the
Gaussian distribution means that each ion is located in heterogeneous environments. Though
not specified yet, there might be relatively more restrictive structures resulting in small
propensity, while less restrictive structures facilitate large propensity. Thus, the change of the
distributions with the decrease of the temperature indicates the development of the dynamic
heterogeneity.
One interesting feature in Fig. 10 is that the tails of P(pi) at large propensity become more
distinct in case of the cations, as the temperature is lowered. It implies that cations make
more dominant contributions to the heterogeneous dynamics in our model. In Sec. 3, we have
observed that τα for anions is much longer than that of cations, especially at low temperatures,
and so is t∗. Therefore, most of surrounding cations for an anion undergo complete structural
relaxation, resulting in relatively homogeneous environment for the anion. It is consistent
with the result in Sec. 4.2, where the breakdown of SE relation is prominent in case of cations.

5.2 Coulomb potential energy

To examine a heterogeneous enviornment which may affects motions of individual ion, we
calculate the Coulomb potential energy Ui at the position of the ion i using the Ewald
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using Eq. 10 for each τcg.

method (Forster & Smith, 2001),

Ui = ∑
k �=0

N

∑
j=1

4πqiqj

k2 exp[ik · (ri − rj)] exp(−k2/4α) + ∑
j( �=i)

qiqj

|ri − rj|
erfc(

√
α|ri − rj|), (9)

where qi is the charge of the ion i and α is a parameter which determines a Gaussian
distribution for screening and compensating charges in the Ewald method.
Due to the inertial dynamics of ions, Ui fluctuates with large amplitude. We take average
of Ui during a coarse-graining time interval τcg to probe only the structural aspect. The
coarse-grained Coulomb potential energy for the ion i is given by

U
cg
i (t) ≡ 1

τcg

∫ t+τcg/2

t−τcg/2
Ui(t

′)dt′. (10)

We study how the distribution of U
cg
i depends on τcg here. With the increase of τcg, the

variance of U
cg
i over ions, σ2[Ucg], should decrease in general. However, Figure 11 shows

that σ2[Ucg] does not decrease substantially as τcg increases at a low temperature 350 K. It is
because the values of τcg employed in Fig. 11 are shorter than the structural relaxation time
τα, which are found to be 1960 ps and 4840 ps for cations and anions, respectively, in Sec. 3.
On the other hand, σ2[Ucg] decreases faster at T = 800 K, where τα are 3.4 ps for cations and
3.9 ps for anions. Specifically, the variance scales as σ[Ucg] ∼ τ−1

cg at 800 K, as it should be
when U

cg
i follows an identical distribution for all i, according to the central limit theorem. We

thus consider the weak decreasing of σ2[Ucg] with τcg at 350 K as a result of heterogeneous
structures. If we further increase τcg to the time much longer than τα, σ2[Ucg] would start
to decrease substantially, and the heterogeneity would be averaged out, eventually. On this
account, we consider Ucg

i as a quantity which has structural information for individual ion at
a low temperature.
To verify the environment which facilitates ions to be mobile or immobile, we consider U

cg
i

and the mobility mi, which is defined as the number of excitations of the ion i during τcg.
We obtain conditional probability distributions of U

cg
i on the conditions that the ion i has

the mobility mi larger and smaller than mc. At 300 K, τcg are set to be 1 ns and 2.5 ns for
cations and anions, respectively, while 15 ps and 18 ps at 800 K. We choose mc = 2 for cations
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Fig. 12. Conditional probability distributions for Ucg
i corresponding to the cases of mi > mc

and mi ≤ mc for (a) cations at 350 K, (b) anions at 350 K, (c) cations at 800 K, and (d) anions at
800 K. The coarse-graining time intervals τcg to obtain U

cg
i and mi are chosen to be 1 ns and

2.5 ns for cations and anions at 350 K, respectively, while τcg is determined to be 15 ps for
cations and 18 ps for anions at 800 K. mc = 1 in (b),(c), and (d), while mc = 2 in (a).

at 350 K, otherwise, mc = 1. In Fig. 12, the conditional probability distributions for mi >

mc are observed to shift to higher energies for all cases. We first point out that mobile ions
have higher U

cg
i on average at 800 K as well as 350 K. At 800 K, we have not observed the

heterogeneity of mi or U
cg
i which persists significantly. Therefore, higher mobility would

not be facilitated by higher U
cg
i . It is conjectured that the shift of P(U

cg
i ) should be mainly

attributed to the perturbed structures caused by local excitations. Moreover, two distributions
exhibit considerable overlaps. Ions can have relatively lower U

cg
i even though the ions are

mobile in a variety of situations made by complicated dynamics in liquids. In this sense,
larger values of Ucg

i cannot be a decisive factor to make the ion mobile. However, we also
observe more distinct discrepancy between two distributions for cations at 350 K in Fig. 12 (a),
compared to other cases. This might be a contribution from heterogeneous structures, which
will be specified further in detail as a future study. It is also necessary to examine if these
structures act as mobile or immobile environments.

6. Conclusions

To summarize the chapter, we have shown various dynamic properties manifesting the
dynamic heterogeneity in a coarse-grained model of EMI+PF6

−. As the temperature is
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lowered, our model system exhibits nonexponential relaxation, subdiffusive behavior, the
breakdown of the Stokes-Einstein relation, and the decoupling of persistence and exchange
times. We point out that all the properties have been observed in models of supercooled
liquids before. The dynamical similarity regardless of strikingly different molecular details
is of particular interest. We essentially attribute the universality to the dynamic correlations
existed in glassy liquids. Furthermore, the dynamic heterogeneity of our model have been
verified by introducing the mobiity, which we claim a convenient quantity to describe
local dynamic states. We have also studied how the dynamic correlations are developed,
specifically whether they are structurally originated, by computing the dynamic propensity
and Coulomb potential energy. In conclusion, the dynamic propensity and Coulomb potential
energy demonstrate the dynamic heterogeneity well. However, they do not seem to affect the
dynamics decisively. The dynamics of RTILs resolve itself into the fluctuation-dominated
dynamics. Nevertheless, it is still necessary to improve microscopic understanding of the
diffusion mechanism in terms of the Coulomb interactions. More detailed analyses on the
Coulomb potential energy are in progress.
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