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1. Introduction 

Systems have become significantly more complex as more sensors, actuators, and processing 

can all be contained within a single system. Such systems now process ever increasing 

amounts of data that can be used to better understand the environment and issues that 

concern the system. Whether the system is autonomous or involves an operator in the 

decision loop, processing the data into useful information is of paramount importance. The 

process of combining this data into a clearer picture is often referred to as data fusion.  

These systems are more complex than have been developed in the past. This includes an 

increase in the number of sensors that monitor not only the external environment of the 

system but also the current operational state of the system. Systems such as unmanned 

aerial vehicles (UAVs) and robots may operate according to a set script of actions or be tele-

operated but still must have a set of autonomous capabilities to overcome changes in 

operational conditions, avoid obstacles and other hazards, and be able to identify potential 

threats or mission criteria.  

Often, a single sensor cannot provide all the information that necessary to recognize the 

issue, event, or target of interest. With multiple sensors, more data is available, but the 

resulting streams of measurement data produced create a number of issues. The concept of 

data fusion is applied in these cases to sift through the often voluminous amounts of data, 

determine which data is important, associate the important data that is related, and combine 

the data into information that provides an improved understanding of internal or external 

environment. 

Data fusion is the ability to combine information from various sources, e.g., sensor systems, 

databases, individual perspectives, etc., into a coherent picture that improves the overall 

understanding of the events of interest. In some cases, such as target tracking or image 

understanding, specific types of algorithms can be used to fuse the data into a clearer 

picture. Data in those cases are often of a similar format and can be easily combined. For 

other problems, such as classification of entities or events, situation assessment, or impact 

assessment, the data come from a variety of nonrelated sources. In this chapter, a situation 

assessment data fusion technique for mechatronic systems is developed where the 

development of relationships of events or objects are determined. The examples that will  

be addressed with this type of fusion include a condition-based monitoring system 
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(Brotherton et al., 2002) that looks to relate various reports such as engine temperature and 

fluid pressures to determine if a correlation between events exists and the tracking of targets 

to determine if the targets are operating together. 

Evidence accrual is one approach to fuse the data for situational assessment. Often, evidence 

accrual approaches are based on Bayesian taxonomies or networks that attempt to directly 

relate the probabilities involved. While the underlying probabilistic principles are well 

understood, implementations frequently use heuristics to overcome some of the practical 

difficulties, such as uncertainties and the injection of a probability of zero. An alternative 

approach is an evidence accrual algorithm that uses dynamic systems modeling and a fuzzy 

Kalman filter (FKF) to propagate information and to incorporate new evidence. The 

technique has the advantage over typical approaches in that it can provide an uncertainty or 

quality measure with the results estimate. The technique of the FKF allows for the use of 

observation or measurement uncertainty to be incorporated into the injection value and 

produced a level-of-evidence state estimate with an associated uncertainty.  

These observations can be direct observations in that they measured the estimated state 

directly. For example, a pressure sensor can measure the oil pressure in an engine. With a 

more complex system, however, observations are often indirect. Temperature sensors, 

pressure sensors, and acoustic sensors can be used to estimate an oil leak and an imminent 

engine seizure. Also, the observations or measurements may provide only a partial 

description, such as a bearings-only measurement provides to a target track, or might need 

to be combined with other measurements to provide a full description of a state element, 

such as positions over time are used to provide velocity estimates.  

In this chapter, this evidence accrual technique is developed and then applied to two 

systems. The first is an automated situation assessment operation where observations of 

various objects in the region of interest (ROI) are processed to determine which have the 

potential to be operating together. The second example looks at the health monitoring 

capabilities of an autonomous vehicle. The development begins with a detailed summary of 

data fusion. This is followed by an overview of linear systems theory and the fuzzy Kalman 

filter. These component technologies are then combined into the evidence accrual system. 

2. Situational assessment as a level of data fusion 

The Joint Directors Laboratory (JDL) fusion model (Steinberg et al., 1999) decomposes the 

fusion problem into five subcategories, Level 0 to Level 4. These levels of fusion begin with 

lowest level, Level 0, that deals with the processing necessary to make measurements from 

the signals that sensors collect. Level 1 defines the state of the object or event. Levels 2 and 3 

are much more complex concepts that build relationships between objects and their impact 

on other events or objects. Finally, Level 4 is refinement. This the process to reconfigure 

sensor systems or adapt algorithms to improve performance. As seen in Figure 1, the 

various levels of fusions not only build on each other but also interact. In this development, 

Level 1 and Level 2 fusion are the two components that are considered. 

In Level 1, the objects are considered targets that are being tracked or classified, obstacles 

that are detected, events that are identified (such as turbulence or an abrupt change in target 

behavior), and changes in performance that may indicate a fault or failure in the systems 

capabilities. These objects are the measurements and the elements that are used to create the 

Level 2 state. 
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Fig. 1. Situation Assessment, or Level 2 fusion, is a component of the overall data fusion 
problem.  

Level 2 fusion is referred to as Situation Assessment. While there is a significant amount of 

debate on the definition of Situation Assessment (Hall & Llinas, 2001), for this chapter, Level 

2 fusion refers to the development and interpretation of relationships between entities or 

Level 1 objects. Many approaches have been developed to handle the Level 2 fusion 

problem. One approach to the Level 2 problem (Stubberud et al., 2003a; Llinas et al., 2004) is 

an extension of the Bowman model that was developed for Level 1 Fusion. While to some 

this model implies a Kalman filter implementation, the functional flow can be easily 

expanded beyond that simplistic viewpoint. As seen in Figure 2, the functional flow of the 

Level 2 problem is decomposed into a set of functional subcomponents. In this effort, the 

concentration is on the association component. Unlike Level 1 association that compares 

measurements to existing tracks as discussed in (Steinberg et al., 1999), Level 2 association 

must also incorporate interpretation of the relationships.  

 

Detect Predict Associate
Hypothesis

Generation
Update

Hypothesis

Management
 

Fig. 2. Level 2 fusion architecture. 

The first step to create the relationships is to develop a representation for a Level 2 object. 

The chosen representation is a state vector that can be comprised of information in a variety 

of formats, including numeric and linguistic reports. Each state component can be processed 

using different techniques. For the extension of target tracking, the Level 2 state can be 

defined as the elements that would define a relationship between targets. No matter the 

representations or information chosen for a Level 2 object, each subcomponent of the state 
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must have a measure or metric associated with it to develop data association scores with 

other detected objects and measurements. The basic state structure of a coordinated group 

would be given as 

 [ ]Ta b c d  (1) 

where 
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This state representation of this group contains four pieces of group information: kinematic, 

composition, formation, and extent. The extent component represents the physical footprint 

of the group along with a range of influence which may be the range of weaponry, 

communications, or the influence of command. In (Stubberud et al., 2003b; Subberud & 

Shea, 2003), association metrics were developed for each component of the state vector 

defined in Eqs. (1) and (2). The state vector provides a group representation based on Level 

1 information developed for individual targets such as classification and kinematic states. 

Using other knowledge such as doctrine and inferences such as road structure, the Level 1 

objects are combined into Level 2 objects.  

Most Level 2 fusion techniques have been developed combine various data including 

numeric, inference, linguistic, heuristic, and fuzzy (Hall & Llinas, 2001; Chen, 1996). While 

each of these techniques has been shown to work well as defined, most implementations 

were developed without consideration of the uncertainty associated with the measurements 

that created or are fused into them. More effective fusion would provide for means of 

uncertainty or error estimates in the information provided by the Level 1 object states to 

influence the determination of the relationship between objects. Poor kinematic estimates as 

opposed to those with a better pedigree should be weighted less.  

The Level 2 fusion approach developed in this chapter is designed to incorporate the 
uncertainty of the information as well as in the understanding of the process used to fuse 
the information. 

3. Evidence accrual for situation assessment 

Evidence accrual is a technique that has been applied often to the Level 2 fusion problem, as 

in (Buczak & Uhrig, 1995; Hammell & Sudkamp, 1998; Le Hegarat-Mascle, 1997; Stubberud 

& Kramer, 2007, 2008). The section begins with a discussion of two standard techniques that 

have been used in the evidence accrual application, Bayesian Taxonomy and Dempster-
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Shafer. A newer technique, referred to as Feature Object Exploitation (FOX), can incorporate 

uncertainty measures and is based on a combination of linear systems theory, fuzzy logic, 

and Kalman filtering is then developed. The development of the evidence accrual 

architecture for the FOX approach shows that the data injection is provided by the FKF. The 

propagation of the data through the architecture is generated using linear systems theory. 

The FOX approach provides for a variety of input formats, can utilize partial information 

observations, and can incorporates an uncertainty measure into each state estimate. 

3.1 Bayesian taxonomy and Dempster Shafer 

Bayesian taxonomy (Pearl, 1988) and the Dempster-Schafer method (Dempster, 1967; Shafer, 

1976) are the two classification techniques that are considered standards in the Level 1 

fusion community (Blackman & Popoli, 1999).   

3.1.1 Bayesian taxonomy 

The Bayesian taxonomy is theoretically straightforward in its implementation with the 

propagation of probabilities from an injection of new information throughout the tree-like 

structure, as shown in Figures 2a and 2b. The purpose of the Bayesian classification tree is to 

provide a probability belief in the classification of a target. The architecture selected to create 

the Bayesian classification tree is the taxonomic hierarchy, also known as a Pearl tree. The 

Pearl tree is an n-node (as opposed to binary) tree structure whose nodes represent 

exhaustive and mutually exclusive hypotheses. Each such node is initially assigned an 

a priori probability, also known as a measure of belief or a score, reflecting the prior 

probability that the hypothesis is true given all previous evidence. These measures of belief 

range from 0, indicating no confidence, to 1, indicating complete confidence. The probability 

at the root node of the tree is always 1, while the measure of belief at each intermediate node 

is the sum of the scores of its immediate children. 

Figure 2a illustrates a simple Pearl tree for target classification. In this example, the numbers 

included with the node names represent the measures of belief. Clearly, the previous 

evidence suggests that the target is a hostile aircraft. New evidence can be “injected” into 

one or more nodes. This evidence takes the form of likelihood ratios, where confirming 

evidence is greater than 1 and non-confirming evidence is less than 1. The impact of the 

evidence on each node in the hierarchy is calculated by applying propagation-based 

updating rules that specify messages to be passed between nodes. Information propagates 

up and down the tree in such a way that “cutting” across the tree in any way results in a 

sum of one. For example, confirming evidence with a likelihood of 1.9 is injected into the 

tree presented in Figure 2a at node “Air Superiority Fighter”.  

BEL(S), the probability or belief at that node S, is updated via  

( ) ( )S SBEL S BEL Sα λ+ = , where Sλ is the likelihood ratio and 
( ) ( )

1

1 1
S

S BEL S
α

λ
=

− −
. 

This value is then propagated up and down the tree using Bayesian conditional 

probabilities. The result of applying the propagation-based updating rules would yield the 

revised tree shown in Figure 2b. In this example, the injection of the confirming evidence at 

node “Air Superiority Fighter” caused the shaded nodes’ probabilities to increase. The 

probabilities for all other nodes, with the exception of the never-changing root node, 

decreased as a result of this confirming evidence. 
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Fig. 2a. Bayesian Network with A Priori Probabilities 
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Fig. 2b. Bayesian Network after Processing Confirming Evidence of Type “Air Superiority 
Fighter”. 
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3.1.2 Dempster-Schafer 

The Dempster-Schafer method is a generalized Bayesian inference which can incorporate 
uncertainty. It is a more complex approach that can incorporate both uncertainty and lack 
of information into its model. The result provides not only a probability of a given 
solution, but also a measure of its plausibility. Often, this technique is referred to in the 
literature as an evidential approach. When the information (input from sensors, sources, 
and the models used) is independent, the approach is a powerful tool in providing 
accurate solutions.  
Unlike the Bayesian taxonomy, each sensor is allowed to contribute information based on its 

own capabilities. Assume a set of target types {t1,t2,...,tn} that are mutually exclusive and 

exhaustive. A probability mass is assigned to any element of the set and any possible 

disjunction, where a disjunction is the event of a subset based on an OR operation. So a 

disjunction can be the event that Target 1 or Target 2 occurs. Negation indicates the opposite 

of a proposition. The sum of the probability mass of all propositions, disjunctions, and 

negations that are defined is equal to 1. The representation of the uncertainty is given as the 

disjunction of all of the original propositions,θ . 

In one example t1 is defined as a hostile missile, t2 a neutral launch, and t3 a friendly missile. 

A report of an unannounced launch is provided. The mass assignment is given as  

( )
( )1

1 2

0.02

, 0.98

m

m t t

θ⎡ ⎤=
= ⎢ ⎥=⎣ ⎦

m  

The probability that all three missile types could have occurred is thus 2% and the 

probability that it is a hostile or neutral is 0.98. The uncertainty in this case is quite small. 

A second sensor in this example determines classification based on the plume of the missile. 

The mass assignment for this sensor is given as 

( )
( )2 32

1

0.2

, 0.4

( ) 0.4

m

m t t

m t

θ⎡ = ⎤
⎢ ⎥== ⎢ ⎥
⎢ ⎥=⎣ ⎦

m . 

Using information from both sensors, the classification becomes 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 2
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Inconsistencies between reports can be incorporated when using Dempster-Schafer by 

increasing the uncertainty. This is done by summing the multiplications of all 

inconsistencies. For example, this would be a sensor m3 that only classifies each individual 

target. Thus, when fused with Sensor 1, the inconsistency of m(t2) and m(t1,t3) would be 

computed. This value is then subtracted from 1. The resulting value then divides the other 

values. 
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3.1.3 Drawbacks of probabilistic classification algorithms 

Both of these probabilistic techniques have drawbacks to their applications. First, when the 
measurements are not independent, information is repeatedly injected into the system, thus 
skewing the results. This condition is often a result of improper modeling of sensors or the 
sensors’ relationships to one another. With a Bayesian taxonomy, a concern arises when the 
probabilistic models of the sensor reports to the potential class are not properly defined or 
are not consistent across sensors. For example, a given classifier may be developed on the 
premise that the probability of a class is based on the number of vehicles of each class that 
would be seen for a given event. With other sensors using the same approach, multiple 
classes that all have similar characteristics but different weighted probabilities could be 
adversely affected when the information is combined. Usually, this results from the 
misunderstanding of the probabilities or from the fact that the models for different sensors 
are developed by different individuals with different viewpoints of the problem.  
Another concern is that the inputs of these probabilistic techniques require numeric 
information. If the information is symbolic or linguistic, it must be mapped into numeric 
information in the form of a crisp value with a possible associated uncertainty measure. The 
Bayesian taxonomy technique has difficulty in incorporating uncertainty about 
measurements or the quality of the information sources. The solution is to either to spend 
the time to properly model the various uncertainty conditions into the underlying 
probability density functions or to use ad hoc methods. The modeling of the uncertainty can 
be quite complex as environmental and sensor nuances are not always readily understood in 
a sensor’s deployment. When ad hoc techniques are used to correct this problem, the 
underlying probability foundation is lost. Both the Bayesian taxonomy and the Dempster-
Schafer method have the problem that they are confined to the axioms of probability, 
requiring that the evidence does couple across classes when normalization takes place. Even 
with Dempster-Schafer, the effects of evidence that only pertains to one class will have an 
indirect effect on all of the others. 
Finally, in both techniques, the formal application of the techniques is computationally 
complex. The Dempster-Schafer method, in particular, is also known to be computationally 
intensive and, for large number of classes, the method is avoided.  
To overcome these drawbacks, a fuzzy logic approach is developed. According to (Kosko, 
1992) and (Watkins, 1994), fuzzy logic can be considered a super set of Bayesian probability. 
Based on the Bayesian similarities of fuzzy logic developed in (Watkins, 1994), a fuzzy 
approach to Level 2 fusion based on well known techniques such as Kalman filtering and 
systems theory is developed. 

4. Evidence accrual architecture 

To develop the evidence accrual algorithm, a tree structure similar to that of the Bayesian 
taxonomy (see Figure 3) is developed. Each node is a Level 2 object or an important element 
of the development of a Level 2 object. The links between nodes represent the functional 
relationships between the various Level 2 objects and elements. The top node is the highest 
Level 2 object of interest. 
The tree structure allows for a decomposition of the fusion problem into smaller sub-
problems that are less complex to develop than creating a single Level 2 object from all of 
the inputs and databases. The measurements are injected at the different levels using a fuzzy 
Kalman filter. The FKF provides an ability to incorporate numeric and nonnumeric data as 
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measurements. It also allows for the incorporation of uncertainty measures into the state 
vector. The data is propagated up the tree structure using systems theory. This provides for 
both state propagation and uncertainty propagation. Linear, nonlinear, and fuzzy system 
approaches are all able to be used along the links. 
 

 

Fig. 3. Tree structure of levels of information provides an impact estimate. 

5. Fuzzy Kalman filter 

The Kalman filter is the standard estimation technique for dynamic systems. It is a 
measurement-driven technique that provides an estimate of the state representation of the 
object being observed and an associated uncertainty to that state. The Kalman filter, if 
properly designed, can incorporate various measurement types into the state vector as 
different sensor measurements and observations become known. The use of a fuzzy Kalman 
filter allows for nonnumeric information, as well as nontraditional information, to be 
mapped into the impact assessment object state. The ability to inject observations from these 
various information sources provides the proposed evidence accrual system the capability 
to determine understanding of impact. 
The standard Kalman filter equations are given as 

 1
| 1 | 1( )T T

k k k kK P H HP H R −
− −= +  (3a) 

 | | 1( )k k k kP I KH P −= −  (3b) 

 | | 1( )k k k kP I KH P −= −  (3c) 

 1| |k k k kx Fx+ =  (3d) 

 1| |
T

k k k k kP FP F Q+ = +  (3e) 
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If the measurements are represented as fuzzy membership functions, they cannot directly be 
incorporated into the Kalman equations. In (Watkins, 1994) it was shown that a fuzzy 
membership function can be incorporated into a linear vector equation through the 
relationship 

 
( ) ( )1

( )  ( )
  

( ) ( )

adj adj
adj

adj adj

A Bz m z dz z m z dz
A B A B mom m

m z dz m z dz

+
= + = +∫ ∫

∫ ∫
 (4) 

where adjm  is the informative fuzzy set of the measurement and 1mom  indicates the first 
moment. From this development, it follows that the fuzzy measurement can be incorporated 
into the Kalman filter through the update equation, Eq. (3b) as 

 | | 1 1 | 1( ( ) )k k k k adj k kx x K mom m Hx− −= + −  (5) 

The incorporation of this uncertainty, also referred to as the measurement error covariance, 
significantly departs from the approach developed in (Watkins, 1994) where the argument is 
made that only measurements are fuzzy and all other components of a system are crisp. The 
uncertainty associated with a measurement is represented as a set of fuzzy membership 
functions. This results from modeling the quality of the reports provided as the lower level 
classifiers that feed the centralized classifier are incorporated. Often, these classifiers are 
given a linguistic quality score that must be mapped into a matrix of values to be processed 
by the Kalman filter. To incorporate the fuzzy membership representation of the 
uncertainty, it is noted that a linear matrix equation can also be considered a vector 
equation. The concept of Eq. (4) is again applied it to the Kalman gain equation, Eq. (3a). 
First, it is noted that  

 | 1( )T
k kHP H R− +  (6) 

is a linear vector equation. Therefore, the fuzzy gain equation becomes 

 1
| 1 | 1 1( ( ( )))T T

k k k k adjK P H HP H mom m R −
− −= +  (7) 

With these two methods of incorporating fuzzy logic into the Kalman filter iteration, the 

evidence accrual system can be developed.  

6. Linear systems theory 

The evidence accrual technique begins with the development of tree structure, as seen in 

Figure 3. In this simplified view of an impact assessment problem, the top node represents 

the final state of interest for the user. The lower nodes indicate the evidence state of 

information that is used to comprise the lower level data. The state vector of each node 

would be defined as 

 [ ]1 2
T

s s snxa x x x=x …  (8) 

where xa is the state of the impact object report while xsi are the subcomponents of the 
impact object that are created from information provided by the subnodes of Figure 3. This 
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information is injected into the system using the fuzzy Kalman filter (FKF). The state 
elements of the state vector represent the evidence or values of interest of the impact object. 
The final state, xa, is always a level of evidence that represent the Level 3 fusion object that 
is reported to the end-user. 
The evidence accrual system relies on the concept of first-order and low-order observers 
(Santina, 1994). In this approach, the state elements are decoupled. Most of the state 
elements related to the subnodes do not interact. Figure 4 provides a system diagram of this. 
The state elements can be updated using a scalar equation or first-order equation: 

 ( ) ( ) ( ) ( )1  T Tx k f x k k k+ = + +g y h u  (9) 

For this evidence accrual application, u(k), the external input, is set to 0. When using the 
FKF rather than an observer, the gain g associated with the measurement y is the Kalman 
gain. If states are coupled, then a vector-matrix version of Eq. (8) is used. The benefit of this 
approach is that problem is decomposed into a number of smaller and more 
computationally simpler problems. The state xa is the only coupled state. It has no direct 
observations. It is updated similar to the velocity state when only position information is 
available (Blackman, 1986). 
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Fig. 4. The evidence accrual approach emulates the concept of first-order observers. 

The dynamics of the system that is used to generate a state for a given node is given as 
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0 0 0

s sn

k k

n

f xa x x

f

f

+

⎡ ⎤
⎢ ⎥
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦

x x

…
A

D D B
B B D D

A

 (10) 
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The benefit of the first-order estimator is that each fusion object can be computed separately 
based on the available observations.  The timestamp k is not an actual time but indicates an 
event. This approach is based on the implementation of scan reports in target tracking 
(Buczak & Uhrig, 1995) and event-driven control concepts used in engine control (Skjetne et 
al., 2002). This allows for the new information to be incorporated into the state vector and 
the state element xa when it is available. 
The significant function of Eq. (10) is f(.). This function maps the observation states into the 
evidence level for the given class. In this effort, a linear combination is assumed for the 
evidence combination of Eq. (10) and is defined as 

 1 1 1, 1 , 1   k a k s k n sn kx f xa f x f x− − −= + + +A  (11) 

In the covariance equation of the prediction, the relationship becomes 

 , 1 1 1, 1 , 1   k a a k s k n sn k xP f P f P f P q− − −= + + + +A  (12) 

If the function f(.) is nonlinear, the covariance equation becomes 

 , 1 1, 1 , 1
1

   k a k s k sn k x
n

df df df
P P P P q

dxa dx dx
− − −= + + + +A  (13) 

The variable qx indicates the quality of the evidence based on the combination. In other 
words, the level of understanding of the functional relationship of the various attributes to 
the classification of a given target type affects the size of the value of qx. Poorer 
understanding inflates the value while greater understanding reduces it. The output value 
at any level can be a level of evidence or an actually computed value.  This computed value 
may be a figure of merit or the output to an equation such as a position or velocity. 

7. Evidence accrual for situation assessment of multiple targets 

As part of system automation, the ability to understand the local issues is paramount. One 
part of this understanding is situation assessment of the coordination and independence of 
non-cooperative entities in one’s region of interest.  As seen in Figure 5, multiple targets are 
operating in a region. In operations, coordinated behavior can only be assumed based on 
observations. In this scenario, five targets are moving together in a formation. Three targets 
are traversing a road with one target not travelling in conjunction with the other two as its 
speeds vary. Finally, three targets appear to be converging on a specific point from different 
angles. The sampled track points are listed in Tables 1a and 1b. The reported classifications 
are shown in Tables 2a and 2b.  
The kinematic Level 1 reports provide target track location and uncertainty as well as a 
classification with an associated quality, e.g., expressed as a value from 0 to 1 with 1 being 
absolute confidence. The second functional component will use location and classification 
metrics defined in (Stubberud et al., 2003b; Subberud & Shea, 2003). These include a 
classification cardinality metric (Kelley, 1961), a classification Gap metric(Kelley, 1961), and 
a group distance metric for position and velocity (Stubberud et al., 2003b). The targets are 
defined as military vehicles including a transporter erector launcher (TEL). The classification 
of each target can be used to estimate composite groups to determine if the group falls 
within standard operational units. 
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Fig. 5. Scenario of the multiple targets with multiple group relationships 

The second component of the report consists of four separate estimates. The first is based on 
group position distance which was introduced in (Stubberud et al., 2003b):  

 { } { }
2 2

max min : ,  min :  
j i

i j i i j i
B A

A B
∈ ∈

⎧ ⎫⎪ − ∀ ∈ − ∀ ∈⎨ ⎬
⎪ ⎭⎩ x x

x x x x x x  (14) 

This is the distance between two groups of elements. The composite information to generate 
this measure is all of the position information for each target in each group. Thus, the overall 
position representation is defined as 

 ( ) _
1

_

1 grp a

grp b

k

⎡ ⎤
⎢ ⎥

+ = ⎢ ⎥
⎢ ⎥
⎣ ⎦

A

x x

x

 (15) 

where 

{ } { }_ _

_ _ _ _ _ _

2 2
max min : , min :  

grp b grp a
j i

grp a grp b grp a grp a grp b grp b
i j i i j i

B A
A B

∈ ∈

⎧ ⎫⎪= − ∀ ∈ − ∀ ∈⎨ ⎬
⎪ ⎭⎩x x

A x x x x x x  

with an associated Jacobian 

 _ _ _ _
0

grp a grp a grp b grp bx y x y

∂ ∂ ∂ ∂⎡ ⎤
⎢ ⎥= ∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥⎣ ⎦

B B B B

F

0 I

 (16) 

where 

_ _

2

grp a grp b
i j= −B x x . 
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Sample 
Time (sec) 

Tgt 1 Tgt 2 Tgt 3 Tgt 4 Tgt 5 Tgt 6 

0 
-1000     
800 

-1000 
804 

-995  800 -1000   -50 -1000   -50 
-1000  
1100 

5 
-967.94    
881.16 

-994.97 
805.56 

-992.6 
798.32 

-929.39 
30.504 

-990.04 
-31.861 

-908.74 
1083.1 

10 
-929.14     

1005 
-969.96 
888.17 

-974.9 
866.03 

-826.91 
144.06 

-903.38 
60.31 

-786.5 
1064.5 

15 
-879.59    
1121.1 

-922.09 
1013.1 

-926.59 
982.93 

-720.16 
257.78 

-797.09 
174.06 

-660.02 
1038.3 

20 
-838.35    
1241.1 

-875.77 
1138.8 

-879.74 
1106.1 

-620.98 
371.09 

-685.58 
292.31 

-537.36 
1021.1 

25 
-792.35    
1360.2 

-830.91 
1267.2 

-835.48 
1235.3 

-517.83 
484.78 

-578.44 
412.14 

-414.49 
998.34 

30 
-751.24    
1480.3 

-788.18 
1391.6 

-791.35 
1363.7 

-419.19 
597.85 

-479.7 
526.85 

-289.15 
975.02 

35 
-697.14    
1589.7 

-739.37 
1509.3 

-749.56 
1482.2 

-317.17 
705.01 

-378.1 
638.37 

-164.82 
954.34 

40 
-584.54    
1711.8 

-679.95 
1607.5 

-695.29 
1588.7 

-218.03 
814.42 

-275.83 
754.74 

-52.183 
947.48 

45 
-450.22    
1868.3 

-588.07 
1712.5 

-582.82 
1713.4 

-113.9 
928.98 

-176.01 
868.16 

18.583 
979.55 

50 
-361.77    
2025.7 

-486.21 
1823.9 

-445.21 
1867.1 

-22.073 
1021.3 

-77.271 
971.9 

75.327 
1024.8 

55 
-330.41    
2180.4 

-430.93 
1933.1 

-358.23 
2029.5 

44.679 
1059.6 

3.4299 
1039.1 

132.23 
1066.3 

60 
-326.35    
2315.2 

-419.91 
2031.5 

-323.35 
2184.8 

109.28 
1082.8 

69.283 
1069.8 

194.67 
1108.9 

65 
-335.44    
2381.7 

-423.87  
2115 

-322.73 
2316.4 

171.46 
1109.5 

129.48 
1094.1 

258.27 
1144.5 

70 
-352.8    
2419.4 

-432.05 
2164.4 

-338.43 
2380.2 

232.29  
1142 

193.17  
1120 

325.94 
1181.7 

75 
-365.59    
2453.2 

-448.6 
2212.4 

-351.2 
2416.4 

296.07 
1173.2 

258.79  
1152 

390.58 
1219.5 

80 
-372.93    
2491.8 

-458.18 
2253.9 

-363.07 
2451.2 

367.27 
1205.3 

324.08  
1187 

457.91 
1252.5 

85 
-378.97    
2537.1 

-468.78 
2299.8 

-363.83 
2494.7 

   

 

Table 1a. Track position reports for targets 1-6 
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Sample 
Time (sec) 

Tgt 7 Tgt 8 Tgt 9 Tgt 10 Tgt 11 

0 
295.47  
642.01 

345.47  
622.01 

245.47 
620.01 

231.47 
615.01 

227.47 
613.01 

5 
347.81  
791.44 

397.69 
769.36 

297.02 
767.02 

283.19 
762.85 

281.01 
764.21 

10 
429.87  
1010.8 

476.82 
991.62 

385.29 
980.21 

365.23 
 984.62 

363.77 
982.36 

15 
503.7  

1228.7 
558.18  
1207.1 

460.68 
1200.6 

442.07 
1198.3 

439.14 
1197.3 

20 
585.23  
1442.7 

636.46 
1422 

537.35 
1416.5 

523.16 
1410.7 

517.11 
1414.9 

25 
664.36  
1653.4 

712.43 
1631.2 

615.04 
1634.9 

601.36 
1628.2 

593.51 
1626.1 

30 
741.97  
1866.8 

792.38 
1845.5 

693.39 
1849.6 

678.65 
1838.8 

675.42 
1838.6 

35 
832.38  
2076.3 

883.61 
2060.4 

783.71 
2061.2 

766.23 
2057.3 

765.41 
2054.5 

40 
982.12  
2305.6 

1035.6  
2286.5 

935.04 
2285.2 

916.08  
2281 

912.81 
2277.5 

45 
1153.2  
2531.5 

1201.6 
2516.8 

1106.3 
2512.8 

1088.9 
2509.2 

1083.9 
2506.2 

50 
1327.1 
2761.3 

1371.7 
2741.4 

1274.6  
2738.1 

1256.3 
2733.1 

1255.6 
2733.4 

Table 1b. Track position reports for targets 7-11 

 
 

Sample
Time 
(sec) 

Tgt 1 Tgt 2 Tgt 3 Tgt 4 Tgt 5 Tgt 6 

5 Truck Truck Truck TEL Cmd Fuel 

10    TEL APC Fuel 

20    TEL Cmd TEL 

31 Truck Truck Truck    

35    TEL Cmd Fuel 

45    TEL Cmd Fuel 

60 Truck Truck Truck    

Table 2a. Classification reports for targets 1-6 
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Sample
Time 
(sec) 

Tgt 7 Tgt 8 Tgt 9 Tgt 10 Tgt 11 

5 Tank Tank APC APC Cmd 

10 Truck Tank APC APC Truck 

20 Tank Tank Tank APC Truck 

31      

35 Tank APC APC APC Fuel 

45      

60      

Table 2b. Classification reports for targets 7-11 

The Jacobian only has four elements based on the x and y coordinates of the two elements 

used for the difference. The second estimate is the velocity distance and has a similar state 

representation and Jacobian.  

The composition estimate is similarly developed based on the norm of the cardinality metric 

 ( )
0, if

, if and  = # of elements in 

A
card A

n A n A

= ∅
=

≠ ∅

⎧
⎨
⎩

 (17) 

which measures the difference in the number of elements of a classes in a group and the Gap 

metric  

 
max

sinθ  where 

( ) ( )1 2 1 2
arccos

T

T T

x y

x x y y

θ =
⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

. (18) 

which measures the ratio between the number of different classes of targets in a group. 
The norm of the cardinality and the Gap compare the potential group compositions with 

known grouping compositions. The compositions are based on reported classifications of 

the targets.  

For simplicity of implementation, in this example, potential groupings are only allowed 

when targets are within 300 m of each other. These three second component estimates 

provide the measurements to the third component estimation, the development of 

groupings levels of evidence. The third component estimator is a four state model 

 

( ) ( )0.4 0.3 0.3 sgn

1 0 0

0 1 0

0 0 1

pos vel comp pos

pos
evidence

vel

comp

x x x x

x

x

x

⎡ ⎤+ +
⎢ ⎥
⎢ ⎥⎡ ⎤⎡ ⎤= ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦⎣ ⎦

x  (19) 
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where the estimates from position, velocity, and composition are mapped via fuzzy logic to 
levels of evidence, a value from 0 to 1. The fuzzy map for position distance (antecedent 
fuzzification function, inference engine, and consequence Defuzzification function) is given 
in Figure 6. 
 

VC C SF F VF

VHP HP MP LP NP

0 300

VC C SF F VF

 

                                                                                   
0 1

NP LP MP HP VHP

 

Fig. 6. Fuzzy map for position distance 

The notation in the antecedent functions indicate targets are very close (VC), close (C), 
somewhat far (SF), far (F), and very far (VF). In the consequence function, no probability 
(NP), low probability (LP), medium probability (MP), high probability (HP), and very high 
probability (VHP). A similar map is defined for velocity. A two dimensional inference 
engine that uses the cardinality and the Gap have been defined as well. The initial 
covariance P was set to 10I. The process noise was defined as 

 

0.1 0 0 0

0 10 0 0

0 0 10 0

0 0 0 10

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

Q . (20) 

The second component estimates are updated with each track report. The third component 
estimate updates the observations only when a report is provided. The overall estimate is 
updated when any observation is reported. The initial values for the various groupings of 
targets are set to 0. If an evidence score is greater than 0.6, then it is reported as a grouping. 
The largest grouping with such a score is reported.  
The results for the Figure 5 scenario are shown in Table 3 and reflect the estimated situation 
assessment over the course of the scenario. Without velocity information and composition 
information, no groups can be formed. 
Once the velocity information and composition information is provided, the initial 
groupings can be formed. The group of five targets always uses position and velocity to 
maintain its relationship while the composition strengthens and weakens the relationship. 
Target 1 separates early from Target 2 and 3 and the other two do not keep pace. The 
convoy of truck composition increases the evidence to generate a relationship. Near the end 
of the scenario, Target 3 closes in and then keeps pace with Target 1 while Target 2 moves 
away. While the evidence level was close to the threshold, it did not maintain its grouping 
level. Finally, Targets 4 and 5 almost come together based on composition and position early 
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on but clearly remain apart as the second composition report and velocity are below 
threshold. After the velocity relationship improved, Targets 4 and 5 form a group. As Target 
6 approaches the group, it uses position and composition to create the larger group. 
 

Time Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 

0 No Groups 

5 1,2,3 4 5 6 7,8,9,10,11  

10 2,3 1 4 5 6 7,8,9,10,11 

20 1,2,3 4,5 6 7,8,9,10,11   

30 1,2,3 4,5 6 7,8,9,10,11   

35 1,2,3 4,5 6 7,8,9,10,11   

45 2,3 1 4,5 6 7,8,9,10,11  

50 2,3 1 4,5,6 7,8,9,10,11   

60 1,3 2 4,5,6 7,8,9,10,11   

80 1,3 2 4,5,6 7,8,9,10,11   
 

Table 3. Groupings based on evidence levels of 0.6 trashold. 

 

 

Fig. 7. Basic tree structure for engine health monitoring. 
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8. Condition-based health monitoring example 

Another application of this evidence accrual technique is that of condition based 
monitoring. As described in (Liggins et al., 2009), many systems, such as helicopters 
(Brotherton et al., 2002), UAVs, and automobile engines, have various sensors throughout 
the vehicle to monitor the current operating conditions of the vehicle. By combining the data 
from these sensors, the health state of the vehicle can not only be determined but also in 
some instances predicted. In this example, an automobile with sensors on the cooling 
system, the oil system, the fuel system, and passenger safety system is used. The individual 
systems are examined to determine their performance to provide the final recommendation 
of the need for periodic maintenance, urgent repairs, and safety critical repairs. In Figure 7, 
the basic tree structure is shown. The gray-filled node, indicate basic sensors. Each 
subsystem of the car creates it own branch of the tree structure. 
The oil system branch has three sensors: oil pressure, which is quite accurate, the oil 
temperature, which is also accurate, and an optical sensor to measure the oil clarity which is 
not very accurate. The pressure sensor feeds a change in pressure calculation as well as 
provides a direct measurement to the evidence accrual system. The temperature sensor is a 
direct input to the evidence level. The clarity sensor is the input to a more complex system 
that determines the level of particular content in the oil. The oil system state representation 
is given by 

 _ _ _ var 2

T

oil sys oil ch oil pr clarity clarity temp pressx x x x x x x⎡ ⎤= ⎣ ⎦x  (21) 

where 

( )
( )

2 /1.5
_

_

2

1

max 1, 0.6 1 0.7 2 0.9 3 0.9 4

clarityx
oil ch

oil pr

clarity clarity

x e

x r r r r

x f x

−= −

= + + +

=

 

where 

( )sec
var

sec

( )press pressx t x t t
x

t

Δ

Δ

− −
=  

and f is system that provides a level of clarity. 
The fuel system branch has one sensor, the fuel level gauge which is not very accurate. This 
sensor provides both a direct measurement of the fuel level and a change in fuel level. The 
state representation is given as 

 _ _

T

fuel sys fue ch gaugex x⎡ ⎤= ⎣ ⎦x  (22) 

where 

( )_ 0.25fuel ch gaugex xμ= − − . 

The cooling system has three sensors, a temperature sensor, which is very accurate, a 
pressure gauge which is accurate, and a clarity sensor similar to that of the oil system. The 
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temperature and pressure sensors provide direct input to the evidence accrual system. The 
clarity sensor again goes through a more complex system. The state representation is given 
as 

 _ _ _ 2

T

cool sys cool ch cool pr clarity clarity temp pressx x x x x x⎡ ⎤= ⎣ ⎦x  (23) 

where 

( )
( )

2 /1.5
_

_

2

1

max 1, 0.6 1 0.9 3 0.9 4

clarityx
cool ch

oil pr

clarity clarity

x e

x r r r

x f x

−= −

= + +

=

 

where all terms are the same as for the oil system except 

( )
( ) ( )( )
3

_1 1 * 200

4 1 20 120

cool ch days

press press

r r x t

r x x

μ Δ

μ μ

= + −

= − − + −
. 

The passenger safety system has two sensors, a built-in test at start-up to check the that the 
system has been activated and a simple deployment sensor. The first sensor checks to see if 
the airbage deployment system is operational. For the latter sensor, if any of the airbags 
have been deployed without being replaced, then it is set off. The state represenation of the 
safety system is given as 

 _ _ _ _

T

spass afety sys safety ch deployed sys testx x x⎡ ⎤= ⎣ ⎦x  (24) 

where 

( )( )( )_ _1safety ch deployed sys testx x xδ= − . 

The benefit of the evidence accrual system defined in this chapter is that the reporting 
evidence can be considered independent or interactive. In this case, the structure allows for 
periodic maintenance to also provide input into the urgent repairs while the safety issues 
are completely stand alone. The evidence state for periodic maintenance is defined as  

( )_ _ _ _max 1, 0.8 0.9 0.8per mat oil ch fuel ch cool chx x x x= + + , 

while the urgent repairs is given as 

( )_ _ _ _max 1, 0.8 0.9 0.3urgent repairs oil ch cool ch per matx x x x= + + . 

The safety system state is given as 

( )_ _ _ _max 1, 0.5 0.8safetys oil ch cool ch pass safety sysx x x x= + + . 

For the first example will look at an oil system problem. The oil clarity over time is given as 
seen in Figure 8. The oil pressure is given as described in Figure 9. The clarity clearly over 
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time degrades. This indicates that periodic maintennance is needed. Near the end of the 
operations, the oil pressure has spikes in the negative direction. While the oil pump and 
engine maintain pressure, the amount of oil has decreased such that turns induce a drop in 
the oil pressure indicating a potential major fault. 
 

 

Fig. 8. Oil clarity over time. 

 

 

Fig. 9. Oil pressure over time. 
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Table 4 shows sampled results of the system. This indicates that, at first, the automobile is 
fine but soon needs periodic maintenance. Over time, the oil pressure problem plus the 
ignoring of the need for periodic maintenance signals the need for urgent repairs. 
 

 Day 0 Day10 Day 40 Day 59 Day 70 

Oil Clarity 0.8 0.8 0.775 0.7 0.4 

Oil Clarity 2 0 0 0.09 0.12 0.62 

Oil Pressure 54.5 44.7 47.6 26 48.1 

Oil Variation 3 2.6 2.8 32 10 

Oil Change 0.0 0.0 0.058 0.077 0.339 

Oil Problem 0 0 0 1 1 

Periodic Maintenance 0 0 0.048 0.061 0.26 

Urgent Repair 0 0 0 0.83 0.91 

Table 4. Selected results of the oil system. 

9. Conclusion  

A fuzzy evidence accrual technique for data fusion as applied to mechatronics was 

developed. The technique incorporates multiple sensor inputs and uncertainty measures. 
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