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China 

1. Introduction 

Network measurement depends on certain measurement method, technique and standard 
to obtain measurement sample based on measurement devices or tools, which applies the 
network performance analysis model to identify network topology architecture, and to infer 
performance parameter and traffic characteristics that provides the scientific decision for 
network resources optimization deployment, network management, failure point position, 
and so on[1~3]. For the wired network with solid infrastructures, such as Internet, it often 
adopts a interior direct measurement method that is also defined as traditional 
measurement technique in the chapter.  
During the middle period of 90 years in last century, NT measurement technique was 
brought forward by Y. Vardi[4],which used the end-to-end measurement sample to infer 
network link performance parameters. Traditional network measurement technique is often 
applied in Internet with solid infrastructure, which does not need the interior nodes to 
collaborate with each other in the same autonomous area, but requires some IP network 
standard protocols to help, such as SNMP, ICMP, and so on. NT measurement technique 
could adopt the active or passive measurement method, and analyzes statistically the end-
to-end network performance sample to infer link performance parameters, topology 
architecture or traffic characteristics. The objective of NT measurement technique mainly 
focuses on link delay or loss rate inference, link bandwidth and throughput inference, 
network topology architecture identification and traffic matrix estimate[6~13].  
The measurement process in NT technique consists of three steps[14,15]. At first, measurement 
system model must be built on, including measurement topology model and performance 
analysis model, which generally adopts logic tree network topology model, and makes use of 
the relationship between nodes in measurement topology model and packet transmission 
behavior to build on performance analysis model. Secondly, active or passive measurement 
method is used to obtain the end-to-end measurement sample, then to evaluate the temporal 
and spacial independence of measurement sample.  At last, the mathematics and statistics 
theory are used to analyze and evaluate the measurement sample based on performance 
analysis model to infer link performance or to identify topology architecture, etc. 

1.1 NT measurement topolgy model 

Measurement topology model is the basis on NT measurement technique. If the number of 
source node which has the chance to send measurement probes, is only one in measurement 
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process, that of leaf nodes collecting measurement sample is more than one, where exists 
one-to-many relationship between source node and leaf nodes, this measurement style is 
often called as single-source measurement model, and often uses tree topology 
measurement model to descript as the figure 1(a). Otherwise, if the source nodes and leaf 
nodes exit many-to-many relationship, this measurement style is generally called as multi-
source measurement and often uses the non-loop graph topology measurement model to 
descipt as the figure 1(b).  
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(a)  single-source measurement system model   (b) multi-source measurement system model 

Fig. 1. NT measurement topology model 

In the tree topology measurement model, Let T=(V, L) denotes a reverse tree with the node 
set V and link set L. V could be finely classified as { , , }V S M R= , where S denotes the set of 

source nodes, M the set of interior forwarding nodes and R the set of leaf nodes(or receiver 
nodes). As in figure 1(a), {0}S = , Because there is only one source node to send the probes. 

However, leaf nodes 4,5,6,7 has the chance to collect the measurement sample. The link set 
contains ordered pairs (i, j) such that node i sends its data to node j directly, destined for the 
leaf node r( r R∈ ). The link (i, j) is simply denoted by ,li j ( ,l Li j ∈ ). Howerver, the path from 

the node i to j is denoted by ,Pi j , Let  f(i)  denote the father set of the node i.  The ancestor 

set of node i could be denoted as: 1 2( ) { ( ), ( ),..., ( )| ( ) }n nf f f fF i i i i i S= ∈ , noted that there exists 

the following rules: 0( )f i i=  , 1( ) ( )f i f i= and 1( ) ( ( ))( 1)n nf fi f i n−= ≥ . In the multi-source 

measurement model as in figure 1(b), there are more than one source nodes which has the 
chance to send probes, such as {0, }S i= . If the number of source nodes and leaf nodes are M 

and N respectively, the network architecture in multi-source measurement is called as M-
by-N topology architecture[16]. 

1.2 NT measurement analysis model 

NT measurement analysis model mainly consists of performance analysis model and 

network topology architecture identification model, the former focuses on link loss rate and 

delay inference, and the latter on topology architecture identification. 

1.2.1 Link loss rate analysis model 

It is to use the mathematical method to describe the relationship between the link and path 

performance. For example, Bernoulli model[17,18] and Gilbert model[19,20] are often used 
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in link loss rate inference. The former supposes that the loss of packets in one mobile node is 

independent of each other, which actually is a Bernoulli stochastic process. Stochastic 

process ( )X xr= ( r R∈ ) is used to describe state of the leaf node r  receiving probes, 1xr =  

denotes node r  receiving a probe, otherwise 0xr = . For the N probes, the receiving state of 

leaf node r  could be denoted as 
( )

{ }
n

X xr r= ( 1 n N≤ ≤ ). If the link loss rate parameter is 

presented as ( )( )Llrlr
α α= ∈ , where rα  is the loss rate of link lr , the aim of  Bernoulli model 

is to obtain the maximum pre estimate: arg ( | , )Max P X Tr Rα αα
∗ = ∈ . However, the latter 

considers that there exits time dependence correlation between the consecutive probes. For 

instance, if the probe with sequence one is lost in one mobile node, the probability of probe 

with sequence two in the same mobile node being lost is higher. Gilbert model uses two 

states Markov process to describe this temporal dependence, 1 denotes probe loss and  0 not 

loss. In Gilbert model as in figure 2, p  denotes that the probability of current probe is not 

lost where the one after which is lost, while q  denotes that the probability of current probe 

is lost where the one after which is not lost. If 1p q+ =  is satisfied, Gilbert model could be 

changed into Bernoulli model. 

1.2.2 Link delay analysis model 

In link delay anlysis model, we often suppose that the system clocks in each nodes are 

synchronous, and discrete delay mode and continuous delay one are often used. In general, 

the discrete delay model adopts the discrete time method to study the probability 

distribution of link delay based on NT. However, the continuous delay time model often 

uses the cumulate generating function (abbreviated as CGF) to infer link delay parameters. 

Owing to using the logarithmic operation in CGF for its un-linear correlation, there exists 

some variances in the inference result, and even sometimes the variance is high. In order to 

reduce and correct the variance, Yolanda et al. [21] adopts a linear optimization method to 

correct the variance estimation of inference results.  Network delay includes the fixed delay 

time and variational one, the sending delay( Tt )and transmission one ( Tg ) composes the 

former, and the process delay( Tp ) and queuing delay ( Tq )the latter. Link delay analysis 

model could be presented as the formula 1, where m is the number of link, ,,0 ,0T Tt g  

denotes the sending delay of source node and transmission delay of the first link 

respectively.  

 ( ),0 ,0 , , , , ,
1

m
Delay T T T T T T Tt g t n g n p n q n q d

n
∑= + + + + + +
=

 (1) 

1.2.3 Network topology inference analysis model 

Network topology inference analysis model is founded on the basis of the following 

hypothesis, that the correlative degree between brother nodes is stronger than that between 

non- brother nodes. [22,23] bring forth a bias relationship of probe receiving to infer 

network topology architecture, which defined a hamming distance of probes receiving 

between node i  and j  as the formula 2. where n  is the number of measurement. 

 ( , ) ( ), ,
1

n
m md i j x i j Vxi j

m
∑= ⊕ ∈
=

 (2) 
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If ( , )d i j ε<  is satisfied, node i  and j  are deemed to brother node, and ε  is a liminal value. 

Therefore, network topology architecture could be inferred through computing the ( , )d i j  

between nodes, which is a bin-tree architecture. However, a tree topology architecture could 

be inferred by expanding the method above. 

1.3 NT measurement probes 

unicast probe  Unicast probe is transmitted by the source node to the leaf nodes according to 
a certain sample rule as in figure 2(a). Link loss rate and delay could be inferred on the basis 
of the number of unicast probes and that the leaf node receiving, end-to-end delay, and so 
on. Owing to unicast communication is supported by many networks, the merit of unicast 
probe is its broad application scope. Although the interval between unicast probes accords 
with a certain sample rule, which could reduce the influence brought by active 
measurement in a certain extent, it will destroy the correlation of the two conterminous 
unicast probes and reduce the precision of measurement. As in figure 2(a), the source node 0 
sends unicast probe, since the leaf node 3 and 4 receive unicast probe dependently, if the 
node 3 receive a unicast probe, but node 4 not, it is difficult to judge where the unicast probe 
is lost. 
multi-cast probe  In order to settle the limitation of unicast probe, the multicast probe is put 
forward in network measurement. As in figure 2(b), the source node 0 transmits the 
multicast probe to a group of leaf nodes, such as node 4,5,6 and 7. Since the multicast probes 
have the same communication characteristic in the shared path, it will resolve the problem 
the correlation of probes and improve the precision of measurement. If node 3 receives the 
multicast probe, but node 4 not, it is easy to infer that the probe is lost in the link l4. Of 
course, there are much limitation on municast probes, one is that some network devices,  
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(a) unicast probe                          (b) municast probe 
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(c) packet pair probe                     (d) packet strips probe 

Fig. 2. NT measurement probes 
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such as switcher and router, do not support or configure multicast communication 
protocols, which will influent its application scope, another is some network devices adopt 
difference process method on unicast and multicast, which will also affect the measurement 
precison in some extent. 
packet pair probe Nowak Robert et al. brings forth to using packet pair to measurement 
network performance as in figure 2(c).  Packet pair comprised of two unicast probes with 
small interval, which is smaller than that between different packet pairs. In figure 2(c), 
source node 0 sends one packet pair to node 3 and 4, if the first unicast probe arrives at node 
3 successfully, the we could safely guess that the probability of node 4 receiving the second 
unicast probe is near to 100%. Therefore, packet pair not only has the properties of multicast 
probe, but also extends the application scope of unicast probe. However, packet pair only 
takes into account the correlation between unicast probe, it is just used for bin-tree 
measurement analysis model. 
packet stripes probe In order to resolve the limitation of packet pair, N.G. Duffield introduce 
the packet strips into network measurement, which extends the number of unicast probes 
from two to many as in figure 2(d). From the other point of view, the packet strip could be 
considered as many packet pairs, which supports the different packet pairs with correlation 
in the shared path. However, when the number of unicast probes is more enough, packet 
strip could be changed as unicast probes. 

1.4 NT measurement inference method  

NT measurement inference method is to use end-to-end network performance measurement 
sample to infer the probability distribution of link performance based on measurement 
analysis model and performance analysis model, which mainly composed of Maximum 
Likelihood Estimate(MLE), Expectation Maximization method(EM) and Bayesian estimate. 

Maximum Likelihood Estimate Method  MLE[24] is one of the elementary method on parameter 

estimate, which supposes that link performance parameter accords with distribution ( ; )f X Θ , 

where ( , , , )1 2Θ nθ θ θ= A  is the estimated parameter. If end-to-end measurement sample is 

denoted as { , , , }1 2y y ynA , supposing that they follows the same distribution rule 

independently, the distribution function of path performance parameter Y could be 

expressed as ( ; )Y p Y Θ= , then the pseudo function follows the formula 3 

 
1

( ; ) ( ; )
n

i
i

L Y Θ p y Θ
=

=∏  (3) 

The objective of MLE is to find the value of the parameter Θ  when ( ; )L Y Θ  obtains its 

maximum value, which could be denoted as ˆ arg ( ; )Θ MaxL Y Θ= . Nevertheless, it is difficult to 

find the transcendent distribution function ( ; )f X Θ  of network link performance parameter 

X. Even though it was founded, there are high computing complexity degree of pseudo 

parameter estimate for the complexity of pseudo function with large network scale. 
Expectation Maximization method EM algorithm[25,26] is to use partial measurement sample 
to infer maximum pseudo value of link performance distribution function, including two 
procedures, that is, E-step and M-step. The main problem about EM algorithm is that it 
could obtain the partially optimized solution, not the unitary optimized one. For the sake of 
computing complexity increasing by the scale of network, Pseudo-EM Algorithm[4] 
decomposes a large scale problem to several small scale ones. The maximum likelihood of 
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these small scale problems could be expressed as formula 4, where S is set of all small scale 
problems. 

 ( , , ..., ; ) ( ; )1 2
1

n
s s sL Y Y Y X P Y Xn i

i s S
∏= ∏
= ∈

 (4) 

Bayesian estimate method It uses the transcendent probability distribution of link performance 
to infer the posterior one. However, how to get the former probability distribution is a 
difficult work. It is also difficult  for Bayesian estimate method to obtain the link 
performance parameter with large network scale for its computing complexity. In order to 
solve this problem, Markov Chain Monte Carlo method is brought forth to infer link 
performance parameters by using Gibbs and Metropolis-Hasting sample rule based on 
Bernoulli and Gilbert probability model[27]. 
In short, MLE and Bayesian estimate methods needs to know the transcendent distribution, 
but it is very difficult to obtain in practice. EM resolves the problem of computing the 
estimated parameter of network link performance in math, but it is easy to converge on a 
partially optimized solution.  

2. NT measurement technique in WSNs  

Recent technological advances have made the development of low cost sensor nodes 
possible, and this allows the deployment of the large-scale sensor network to be feasible. 
The accurate network performance plays an important role in the successful design, 
deployment and management of sensor networks. However, the inherent stringent 
bandwidth and energy constraints of sensors create challenging problems in the network 
performance measurement. Motivated by the needs of accurate sensor network performance 
measurement and the inherent constraint of sensor network, in this section, we concentrate 
on: (1) the problem of efficiently estimating the internal link loss Cumulant Generating 
Function (CGF); (2) the problem of efficiently estimating the internal link loss rate from the 
passive end-to-end measurement.  
There has been much research in the field of network tomography for the wireless sensor 
network .In [28], Li et al. proposed a simple method based on the hamming distance of 
sequences on receipt/loss of aggregated data between each pair of parent-child node to 
identify the lossy nodes. Under the assumptions that the link losses are mutually 
independent, Li et al. [29] formulated the problem of link loss estimation as a Bayesian 
inference problem and propose a Markov Chain Monte Carlo algorithm to inferring the 
internal link loss characteristics from passive end-to-end measurement. In [30] this problem 
was formulated as a Maximum-Likelihood Estimation problem and used the Expectation-
Maximization algorithm to solve it. Almost existed methods used the iterative 
approximating approach to estimate the loss rate that requires a long execution time. In 
addition, iterative approach may trap into a local maximum. To overcome this problem, a 
simple up-bottom approach [31] and a bottom-up [32] to estimate loss rate in wireless sensor 
network were proposed, which identifies parameters of loss probability model based on the 
observations collected in the sink node. Knowledge of sensor network topology is a crucial 
component of sensor network tomography techniques. Based on the partial ordering 
relation on the packet receipt/loss between a node and its descendant nodes in the data 
aggregation process, Li et al. [33][34] formulated the problem of sensor network topology 
identification as a topological sorting problem and proposed a topological sorting algorithm 
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to solve it. In [35], an algorithm that named hamming distance and hop count based 
classification algorithm (HHC), to infer network topology by using end-to-end data in 
sensor network. 

2.1 Loss cumulate generating function inference method 

Each link loss CGF preserves all the statistical information of the loss since it is the log of the 
Fourier transform of the link loss probability density function. We can accurately infer many 
features of the link loss distribution from loss CGF[36]. 

2.1.1 Cumulate generating function 

We suppose the link losses Xi  are mutually independent, 1, ,i n= A . Define the end-to-end 

loss cumulate generating function (CGF) of the path i  log
tYiK E eYi

= ⎡ ⎤
⎢ ⎥⎣ ⎦

 and the link loss CGF 

log
tXiK E eXi

= ⎡ ⎤
⎢ ⎥⎣ ⎦

, with CGF parameter t , ( ),t∈ −∞ ∞ . The CGF of Y can therefore be 

expressed as 

 
( )

( ) ( ) ( )

( )
log log log

log
1

t X tXj MtY j jiiK t E e E e E eYi j Mi

tX mj
E e a K t A K tX Xij ijj M ji

∑ ∈
= = = ∏

∈

∑ ∑= = ⋅ = ⋅
∈ =

⎧ ⎫⎪ ⎪⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎨ ⎬⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎪ ⎪⎩ ⎭
⎡ ⎤
⎢ ⎥⎣ ⎦

 (5) 

where ( )iA  denotes the ith  row of the matrix A  and  ( ) ( ) ( ), ,
1

T
K t K t K tX X Xn

= ⎡ ⎤
⎣ ⎦A  ( T denotes 

transpose). Thus the vector of end-to-end CGF’s ( ) ( ) ( ), ,
1

T
K t K t K tY Y Yn

= ⎡ ⎤
⎣ ⎦A  can be 

expressed by the following linear relation 

 ( ) ( )K t A K tXY = ⋅  (6) 

There are n  links and n  paths in the sensor network, so the matrix A  is full rank. The 

relation (2) is invertible and the link loss CGF ( )K tX  can be determined from the end-to-end 

loss CGF ( )K tY as the following equation 

 ( ) ( ) ( )
1T T

K t A A A K tX Y

−
= .  (7) 

Let ( ) 1T T
B A A A

−
= , then we have 

 ( ) ( )
1

n
K t b K tX ji Yj ii

∑= ⋅
=

. (8) 

Define the end-to-end loss moment generating function (MGF) of path i
tYiM E eYi

= ⎡ ⎤
⎢ ⎥⎣ ⎦

, and 

the loss MCF of link i  
tXiM E eXi

= ⎡ ⎤
⎢ ⎥⎣ ⎦

. Similarly, we can get the relationship between 
iXM  

and 
iYM  ( ) ( )

1

n
M t b M tX ji Yj ii

∑= ⋅
=

. 
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2.1.2 Loss CGF inference 

Let N be the number of data collection trial, then the estimated value of 
iYM  can be 

obtained using the following equation 

 ( ) 1ˆ

1

kN tYiM t eYi kN
∑=
=

 (9) 

where k
iY  is the end-to-end loss of  path i  in the kth  data collection trial. We obtain 

estimates of the vector ( )K tX  from ( ) ( ) ( )ˆ ˆ ˆ, ,
1

T
M t M t M tY Y Yn

= ⎡ ⎤
⎣ ⎦A . Note that M̂Yi

 is an 

unbiased estimate of the MGF
iYM . According to equation (8), we have 

 ( )( )ˆ ˆlog
1

n
K b M tX ji Yj ii
′ ∑= ⋅

=
. (10) 

As mention in [37], ˆ
jXK′ is biased estimate of 

iXK  due to non-linearity of the log.  We apply 

the technique adopted in [37] to obtain a bias corrected estimator for
iXK . 

 

( )( )
( )( )

( ) ( ) ( )( )

( )
( )( )

( )

ˆ ˆlog
1

ˆlog 1

ˆ ˆ ˆlog 1 1 1

ˆ
1

ˆlog 1 11
ˆ

1

n
K b M tX ji Yj ii

bjin M tYi i

bb b jiji jin n nE M t E M t M tY Y Yi i ii i i

bjin M tb Yiji in E M tYi bi jin E M tYi i

′ ∑= ⋅
=

= ∏ =

= − −∏ ∏ ∏= = =

∏ =
= − −∏ =

∏ =

⎧ ⎫
⎨ ⎬
⎩ ⎭
⎧ ⎫⎛ ⎞⎪ ⎪⎡ ⎤ ⎡ ⎤⎨ ⎬⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎪ ⎪⎝ ⎠⎩ ⎭

⎛ ⎛ ⎞
⎜ ⎜ ⎟⎡ ⎤⎜ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎡ ⎤⎜ ⎜ ⎟⎜ ⎟⎜ ⎢ ⎥⎣ ⎦⎝ ⎠⎝

( )
( )( )

( )

( ) ( )
( )

( )

ˆ
1

ˆlog log 1 11
ˆ

1

ˆlog log 11

1
. . .

2

1

2

bjin M tb Yiji in E M tYi bi jin E M tYi i

bjin E M tY ji i

K t H O TX j jj

K tX j jj

ω

ω ω

ω ω

∏ =
= + − −∏ =

∏ =

= + −∏ =

= − − +

≈ − −

⎧ ⎫⎞
⎪ ⎪⎟⎪ ⎪⎟⎨ ⎬

⎟⎪ ⎪⎟⎪ ⎪⎠⎩ ⎭
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎡ ⎤ ⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦ ⎡ ⎤⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠⎝ ⎠

⎡ ⎤
⎢ ⎥⎣ ⎦

  (11) 

where 
( )( )

( )

ˆ
1

1
ˆ

1

bjin M tYi i
j bjin E M tYi i

ω
∏ =

= −

∏ =
⎡ ⎤
⎢ ⎥⎣ ⎦

.  This suggests that we can correct the bias using the 

following equation: 
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 ( )( ) 2

1

1ˆ ˆ ˆ ˆlog
2j i

n

X ji Y j j
i

K b M t E Eω ω
=

⎡ ⎤⎡ ⎤= ⋅ + +⎣ ⎦ ⎣ ⎦∑  (12) 

where ( )Ê ⋅  denotes empirical average, 

 

( )( )
( )

ˆ ˆ
1

ˆ 1
ˆ

bjin E M tYi i
E j

M tX j

ω

∏ =
= −

⎡ ⎤
⎢ ⎥
⎣ ⎦⎡ ⎤

⎣ ⎦  (13) 

          

( )( )
( )

( )( )
( )

2
ˆ ˆ ˆ ˆ2 1 1

2ˆ 1 2ˆ ˆ

b bji jin nE M t E M tY Yi ii i
E j

M t M tX Xj j

ω

⋅ ∏ ∏= =
= − +

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎡ ⎤

⎣ ⎦   (14) 

( )M̂ tX j
 is an estimate of the loss moment generating function of link j , which can be 

obtained from 

 ( ) ( )( )ˆ ˆ

1

n bjiM t M tX Yj ii
= ∏

=
. (15) 

The empirical average ( )( )ˆ ˆ ji

i

b

YE M t
⎡ ⎤
⎢ ⎥⎣ ⎦

 can be obtained by implementing a sliding window 

method with window size W and step size S  [9]. Define the number 
N W

Nw
S

−
=
⎢ ⎥
⎢ ⎥⎣ ⎦

 of 

windows increments 

 ( )( ) ( )

( )11 1ˆ ˆ

1 1 1

bjib l S W kNw tYji iE M t eYi lN W k l Sw

− +
∑ ∑=
= = − +

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥

⎣ ⎦ ⎝ ⎠
. (16) 

We obtain the empirical average ( )( )2ˆ ˆ
bji

E M tYi

⎡ ⎤
⎢ ⎥
⎣ ⎦

 in a similar manner, 

 ( )( ) ( )

( ) 2
2 11 1ˆ ˆ

1 1 1

bjib l S W kNw tYji iE M t eYi lN W k l Sw

− +
∑ ∑=
= = − +

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥

⎣ ⎦ ⎝ ⎠
. (17) 

2.1.3 Simulation study and application 

The ns2 simulator was extended to perform the simulation of the sensor network.and 
simulate the data flow through sensor network. For each data collection round, whether a 
node successfully received data sent to it by its child nodes was determined randomly but 
with a specified intended loss rate for each link. That is, as the number of data collection 
rounds increases the actual loss rate of each link should converge to the intended loss rate. 
Two networks were used in the simulations. One consisted of 120 nodes while the other 
contained 9 nodes. Figure 3 shows the topology of the 9-node network. An intended success 
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rate of 0.9 was chosen for all normally links in the simulation network. Each simulation 
consisted of 1200 data collection trials. Once all of the data was collected, each link loss CGF 
was inferred using the approach presented in Section 4. To estimate the loss CGF, we set the 
window size W to be 400, and the window shift step size S to be 10. 
 

s

1

2 3

4 5 6 7 8  

Fig. 3. A 9-node data aggregation tree 

Two possible scenarios were simulated that may occur in a real sensor network. These 
scenarios were: (1) Equal losses throughout the network; (2) Cascaded losses. i.e., Heavy 
losses at links on the same path to the sink. The cascaded losses scenario was simulated by 
setting the intended success rates of links 2 and 5 to be 0.7.  
Because each internal link loss CGF preserves all the statistical information of the link loss, 
we can accurately estimate many features of the link loss distribution from the link loss 
CGF. Here we give an example of lossy link detection. We define a lossy link in sensor 

network as the link whose loss rate exceeds a predefined threshold δ.  In practical 
application, we can infer a link as the lossy link when the probability of a link loss rate 

exceeding δ exceeds a predefined threshold P. By the Chernoff Bound [38], 

( )
tX jt

P X e E e Pi j
δδ −≥ ≤ =

⎡ ⎤
⎢ ⎥⎣ ⎦

 

By appropriately selecting the threshold δ and threshold P close to 1, we can detect a lossy 

link by testing whether Pj > P.  In Table 3, we show the Chernoff Bounds for P(Xj ≥ 0.3) 
which were estimated from the simulation in Cascaded losses scenario. By setting the 
threshold P to 0.95, we can identify link 2 and 5 as the lossy link. This accord with the 
simulation configures. 
 

Link 1 2 3 4 5 6 7 8 

P(Xj ≥ 0.3) 0.66952 0.99671 0.67041 0.66942 0.99918 0.67060 0.66826 0.66684 

Table 1. Chernoff Bound for each link in Cascaded losses scenario 

2.2 Loss temporal dependency characteristic inference method 

Here we concentrate on the problem of efficiently estimating the internal link loss rate from 
the passive end-to-end measurement. We use the Bayesian inference problem to formulate 
the sensor network loss inference problem and use the Metropolis-Hastings Sampling to 
find out link-level characteristics. 

2.2.1 Loss inference based on gilbert model 

In our proposed approach, firstly the unobservable data is inferred based on the link 
relationship and the observable data collected at the sink node. Once the unobservable data 
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has been identified, for every link this proposed approach uses Metropolis-Hastings 
algorithm to generate a sequence of samples of Gilbert model parameter. We iterate the 
unobservable data inference process and the sampling process until it reaches the given 
number of the samples. The following two subsections are used to detail the proposed 
algorithm for unobservable data and sampling algorithm, respectively. Without loss of 
generality, we also take the figure 1 for instance in this subsection.  

2.2.2 Unobservable data inference 

We employ the up-down approach to infer the unobservable data. Firstly, we infer the 
unobservable data of the node 1, the reception or loss of the packets sent from the children 
node of the node 1 to node 1, and then we move one level down to estimate the 
unobservable data of the lower level nodes that are children node of node 1. The process is 
continued until it reaches the leaf nodes. 

Assume that one of children nodes of node i is node j. Using the similar method as 

presented above, we have the conditional posterior distribution of j,i

m
y , 

if

if

[ ]
, , 1 1
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1 1 1 1
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0 1
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(19) 

According to the conditional posterior distribution of m

j,iy  as described above, we can draw a 

sequence of samples of m

j,iy . 

2.2.3 Loss performance parameter inference 

We infer the Gilbert model parameters Θ  according to the samples of m

j,iy  and the 

observable data X . As the problem formulation describes, the estimated value Θ̂  should 

agree with the posterior distribution ( | )p X,YΘ . However, the posterior distribution ( | )p X,YΘ  

is not a closed-form expression. That is, the value of Θ̂  can’t be calculated from the data 

X and Y  directly. In this paper, we consider the Metropolis-Hastings algorithm for 

sampling the parameters {( , ), }
k k

p q k ∈V . Here we do not pay much attention on choosing the 

proposal distribution and the initial value of parameters, but concern that how to sample the 

parameters using Metropolis-Hastings algorithm. In [39], it is discussed in detail that 

choosing the proposal distribution and the initial value of parameters 
We can choose a random walk proposal distribution for the proposed sampler, e.g. 

 - σ( 1) ( ) ( 1) ( 1)( , ) ( , )j j j j
k k k kg p p U p p σ− − − +∼  (20) 
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That is, we draw a sample ( )j

k
p  based on the above proposal distribution and accept it with 

probability 

 
( ) ( ) ( 1) ( )

( ) ( 1)

( ) ( 1) ( 1) ( 1)

( | , , \ ) ( , )
( , ) min 1,

( , ) ( | , , \ )

j j j j
j j k k k k

k k j j j j
k k k k

p p p g p p
p p

g p p p p p
α

−
−

− − −

⎧ ⎫Θ⎪ ⎪= ⋅⎨ ⎬
Θ⎪ ⎪⎩ ⎭

(j)

(j-1)

X Y

X Y
 (21) 

where by assuming uniform prior on 
k

p , we have 

 1,0 1,10
, ( )( | , , \ ) ( , | ) ( ) (1 )

n n
k k k f k kkp p p p p y p p∝ ∝ ⋅ ⋅ −(j) (j)
X Y X YΘ Θ  (22) 

where nuv is the number of occurrences of the adjacent pair (u, v) in the sequence Zk,f(k), u, v 

∈{0,1}. As the loss model describes, each node tries to send data in each round. Thus the 

marginal distribution on 0
, ( )k f ky  can be given by 0

, ( )( 0) k
k f k

k k

p
p y

p q
= =

+
 and  

0
, ( )( 1) k

k f k
k k

q
p y

p q
= =

+
. 

Using the formula (21)(22)(23), we can draw the random samples of kp  based on the 

samples of the unobservable data Y and observable data X . Similarly, we can also draw 

the random samples of kq  where  

0 ,1 0 ,00
, ( )( | , , \ ) ( , | ) ( ) (1 )

n n
k k k f k kkp q q p p y q q∝ ∝ ⋅ ⋅ −(j) (j)
X Y X YΘ Θ (23) 

The proposed sampler iterates between sampling m
j,iy  from the observable data X  and 

sampling the Gilbert model parameters ( kp , kq ) based on the above sampler. After the 

sample procedure is finished, we can calculate the estimated value of ˆ {( , ), }k kp q kΘ = ∈V . For 

a general sensor network, we can similarly infer link loss rate as in this simple example 

described above, and expand the sampling strategy as an up-bottom approach where we 

start from the child node of the sink node, followed by their child nodes, and so on, until we 

reach the leaf nodes. 

2.2.4 Algorithm description 

Suppose the total number of samples is J=J0+J1, where J0 is the number of samples as ‘burn-

in’ period and J1 is the number of samples used to infer link loss parameters. Denote Θ(i) and 

Y(i) as the ith round sample value. 
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Draw randomsamples and from their perior
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    { }

- σ

and accept it with probability

Calculate from 1 1

( 1) ( ) ( 1) ( 1)

( ) ( 1)

( ) ( 1) ( )

( , ) ( , )

( , ).

ˆ: , , ,

ˆ:

j j j j
k k k k

j j
k k

J J J

g p p U p p

p p

σ

α

− − −

−

+

+∼

AInference

Output

Θ Θ Θ Θ

Θ

 

Denote the size of sensor network as | |V . From the algorithm described as above, we can 

get the time complexity of this proposed algorithm is ( | |)O J N× × V . 

2.2.5 Simulation study 

NS2 was used to perform the simulation of the sensor network. The ns2 was extended to 

simulate the data flow through sensor network. For each data collection round, whether a 

node successfully received data sent to it by its child nodes was determined randomly but 

with a specified intended loss performance for each link. The inference algorithm is 

implemented in MATLAB. 

Two networks were used in the simulations. One consisted of 120 nodes while the other 

contained 9 nodes. Figure 3 shows the topology of the 9-node network. We used the Gilbert 

error model to model the link loss performance with parameters (p, q) as (0.1, 0.85) for all 

normally links in the simulation network. Each simulation consisted of 1000 data collection 

trials.  

In the 9-node simulation network, we simulated two possible scenarios that may occur in a 

real sensor network. These scenarios were: 1) Equal losses throughout the network; 2) 

Heavy losses at some links. The second scenario was simulated by setting the loss 

parameters of links 2, 5 and 7 to be (0.15, 0.80).  

Four plots of the inferred and sampled internal link loss performance parameters for all 

links are shown in Fig.4-Fig.7, respectively. The inferred link loss performance value is very 

close to the sampled link loss performance value. In the second scenario the error was 

significant since some of the losses that should have been attributed to link 2 were instead 

attributed evenly amongst link 2’s child links. However, it is still possible to infer that these 

lossy links is in fact experiencing the heavy losses. 

 

    

Fig. 4. True Value vs. Inferred Value in the equal loss scenarios for p 
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Fig. 5. True Value vs. Inferred Value in the equal loss scenarios for q 

 

 

Fig. 6. True Value vs. Inferred Value in the heavy loss scenarios for p 

 

 

Fig. 7. True Value vs. Inferred Value in the heavy loss scenarios for q 

Take the link 2 for instance. Figure 8 shows the relationship between the convergence 
speeds of the estimated loss performance value and the number of samples. Before the burn-
in period was over, the error between the estimated value and the true value is significant. 
With the sample number increases, the estimated value is approaching to the true value. 
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Fig. 8. Inferred Value vs. Sample Number in equal loss scenarios for q of link 2 

Table1 provides the simulation result in 120-node network. It shows that the inferred link 
loss performance value is close to its true value. In the two simulation scenarios, the 
maximum error of link loss estimation is only 0.027 and 0.0312, respectively. These results 
show that our loss rate inference algorithm scales well. 
 

p 0.043 Mean 
Error q 0.021 

p 0.070 
Equal losses 

Max Error 
q 0.052 

p 0.058 Mean 
Error q 0.027 

p 0.089 

Heavy losses on 
some links 

Max Error 
q 0.061 

Table 2. Absolute errors: 120-node network 

3. NT measurement technique in ad hoc network 

NT measurement technique adopts Edge nodes not only as the source sender to send the 
measurement packets, but also as the receivers to receive the measurement data sample 
used for inferring link performance parameters in Ad Hoc network. Since it is independent 
of network infrastructure and protocols, NT measurement outweighs internal network 
measurement in Ad Hoc network. Of course, there will appear new problems for 
introducing the NT technique to Ad Hoc network measurement. 
The dynamic characteristic of Ad Hoc network topology is the main obstacle to use NT 
technique in Ad Hoc network measurement, because it effects the correctness not only of the 
measurement results, but also of the link performance parameters inference results. 
Therefore, the following problems must be resolved at first: (1) to put forward a feasible 
analysis method on dynamic characteristic of Ad Hoc network so as to meet the requirement 
of NT technique. (2) to found the Ad Hoc network measurement topology architecture and 
link performance inference model. (3) to chose the proper measurement method so as to 
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obtain measurement sample of performance parameters based on End-to-End. (4) to bring 
forth a link performance inference method so as to infer the link performance parameters by 
using measurement data sample, link performance inference model , mathematical and 
statistical theory. 

3.1 Ad hoc network topology dynamic characteristics  

Although researches have focused on the dynamic characteristics of mobility models in Ad 
Hoc network and taken much achievements recently[40], little attention was paid on the link 
topology dynamic characteristics of mobile models. Narayannan Sadagopan et al. [41]puts 
forward a statistical method to obtain the dynamic characteristic of MM, which includes 
how to obtain the probability density distribution of link and path connection time. 
Nevertheless, the research mainly focus on the viewpoint of the influence of dynamic 
characteristic on the performance of active network protocols, not on that of the Ad Hoc 
network measurement. At the same time, statistical analysis method is only applicable for 
the certain mobility models with one time to change its’ velocity or direction in one second, 
such as RPGM, Freeway and Manhattan mobility model, not for the other mobility models 
in NS-2 tool, such as RW and RWP. Although Tian et al. [42]brings forward a link 
connection time model which could be used to compute the link connection minimum time, 
and further to obtain the minimum value of network topology lifetime. However, the 
computing model is too complicated for not being simplified. Besides, it is only adaptable 
for the RWP mobility model, not for the other mobility models in Ad Hoc networks. Wang 
et al. [43] brings forth a circle mobility model, in which when the initialization position of 
mobile nodes is known, the network topology architecture of Ad Hoc network could be 
computed according to the rules of nodes’ movement. Specially, the minimum of network 
topology lifetime could also be obtained statistically. However, this research on NT 
measurement technique in Ad Hoc network mainly focus on circle mobility model,  it fails 
to be useful for other mobility models. Therefore, How to put forward a analysis technique 
on the dynamic characteristic of Ad Hoc network topology , which could be used for all the 
mobility model as are supported in NS-2 tool, is an interesting issue to be solved. 
In order to resolve the above problem, Yao et al.[44] presents a network topology snapshots 
capture method to obtain the Ad Hoc network topology architecture at any moment on the 
basis of analysis on the scene files of mobility models in Ad Hoc network. Through 
analyzing on the Ad Hoc network topology snapshots, the times of network topology in 
steady state or unsteady state during a certain time t could be obtained statistically, as well 
as the durative time of network topology in steady state or unsteady state during the whole 
simulation time. Furthermore, Yao et al.[45] adopts the discrete time and continuous time 
Markov stochastic process theory to predict the probability of the network topology 
invariability event happening and that of the network topology variability event happening, 
and the experiential formula of the probability of the network topology invariability and 
variability was deduced. The simulation result shows that the statistical analysis technique 
on Ad Hoc network topology dynamic characteristic not only is effective, but also has the 
general attribute, which could be used in the statistical analysis technique on Ad Hoc 
network topology dynamic characteristic under any mobility model. 

3.1.1 Formalized description on mobility model 

All the mobility models supported by NS-2 [46]have the same format of scene files produced 
by setdest tool.  Through analysis on the scene files we could arrive at the conclusion that 

www.intechopen.com



Research on Network Tomography Measurement Technique   

 

157 

there is a certain spatial relativity among mobile nodes. That is, the destination position of 

node j at time i is its current position at time i + 1 on condition that j
V i equals zero, where 

j
V i denotes the velocity of node j from time i to i + 1. Furthermore, during the period from 

time i to i + 1, node j moves along a line at the velocity of 
j

V i  from ( , ), ,
j j j

C c ci x i y i=  to 

( , ), ,
j j j

d dDi x i y i= , where j
Ci denotes current position of node j at time i, ,

j
cx i  and ,

j
cy i  the x 

position and y position respectively of node j at time i, j
Di the destination position of node j 

at time i.  Then the spatial relativity of mobile nodes could be expressed as formula (24). 

 
& ! 01

0                1

,   if 

,    if 

j j j j j
C C vD Di i i i i

j j j
C C vi i i

= ≠ =+

= =+

⎧⎪
⎨
⎪⎩

      (24) 

 
If let γ  denote the snapshot time slot, the relativity between velocity and spatial position 

could be expressed as formula (25). 
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 , ,, 1
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j j j
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= + ×
+

= + ×
+

⎧
⎪
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⎪
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 (25) 

where 
,
j

vi x
 and ,

j
vi y  denote the x-axis and y-axis value of speed j

vi  at time i, which could be 

obtained by using  position j
Ci , j

Di  and j
vi . Thus it can be seen, the state information of node 

j at time i could be expressed as a three tuple , ,
jj jC VDi i i

〈 〉 . Furthermore, position snapshots of 

mobile nodes at any moment could be derived from formula (25). The method how to get 

physical topology snapshot is to compute the Euclid distance R between node j and 

( \ { })l l V j∈  at each time, where V denotes the node set of Ad Hoc network. If R is smaller 

than the transmission range of mobile node denoted as r, illuminating that there is a chance 

for the node  j and l to build up a wireless connection at link layer, the state of link between 

node  j and l could be set as 1, otherwise, as 0. If the same operation is implemented between 

any mobile nodes at each snapshot time, we could achieve the physical topology snapshot. 

At last, the steady and un-steady period of Ad Hoc network topology can be obtained by 

computing all the physically topology snapshots statistically. 

3.1.2 Simulation study 

Through analyzing on the Ad Hoc network topology snapshots with RW and RWP mobility 

model, the relation of the link topology in steady or un-steady state and link topology 

varying ratio varying with time are shown as in Fig. 9(a~d). Next, we will explain the three 

concepts used in Fig. 9. Link connection ratio is the ratio of the links having a wireless 

connection with each other to all links in Ad Hoc networks in each one topology snapshot. 

Topology varying ratio is the ratio of the number of links that the state of which has varied  
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   (a)  snapshot time = 1.0s in RW                 (b)  snapshot time = 0.5s in RW 
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                     (c)  snapshot time =1.0s in RWP               (d) snapshot time = 0.5s in RWP 
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                  (e) snapshot time = 0.25 in Freeway         (f)  snapshot time = 0.25 in Manhattan 

0 100 200 300 400 500 600 700 800 900
0

10

20

30

40

50

60

70

Time (s)

V
a
ry

in
g
 r

a
ti
o
 (

%
)

 

 

Link connection ratio

Topology varying ratio

Topology lifetime

0 100 200 300 400 500 600 700 800 900
0

10

20

30

40

50

60

70

Time  (s)

V
a
ry

in
g
 r

a
ti
o
 (

%
)

 

 

Link connection ratio

Topology varying ratio

Topology lifetime

0 100 200 300 400 500 600 700 800 900
0

10

20

30

40

50

60

70

Time  (s)

V
a
ry

in
g
 r

a
ti
o

 (
%

)

 

 

Link connection ratio

Topology varying ratio

Topology lifetime

                     

(g) snapshot time =1.0s in RPGM (h) snapshot time =0.5s in RPGM (i) snapshot time =0.25s in RPGM 

Fig. 9. Topology dynamic characteristic 
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to all links between the two consecutive topology snapshots. Topology lifetime is the time 

during which the Ad Hoc network topology does not vary. Actually the curve of topology 

lifetime is equivalent to that of the topology varying ratio in Fig.9, since when the value of 

topology varying ratio between the two consecutive topology snapshots is not equal to zero, 

the topology lifetime is set as two, otherwise set as zero to denote that the Ad Hoc network 

topology does not vary between the two consecutive topology snapshots. The mobile scene 

is set as the following parameters in NS-2: There are all 50 mobile nodes, and the stop time is 

0s in RW and 5s in RWP respectively. The maximum velocity of mobile nodes is 20m/s, 

simulation being 900s, and the scene covers a square area with 1200m*1200m. The wireless 

communication coverage range is set as a circle with radius being 250m. 

According to the result of analysis on the RW, RWP mobility model as in Fig. 9(a~d)[47], 

and that on the Freeway, Manhattan and RPGM mobility model in Fig.9(e~i)[48], we could 

safely arrive at the conclusion: The steady and un-steady period appear in turn during all 

simulation time, and the number of the steady and un-steady state, and the duration time in 

each state vary with different mobility models and the parameters of movement scenes. 

3.1.3 Statistical characteristic of the steady period number 

In a certain time t, the number of steady period (or un-steady period) is a discrete stochastic 

variable X. Through analyzing on the stochastic variable X, we could obtain the frequency of 

the steady period (or un-steady period) appearing in a certain time. We used the data in Fig. 

9(d) as an example to obtain the probability distribution chart of the number of steady 

period appearing in 10t = s, 15t = s and 20t = s as in the Fig. (a), (b) and (c) respectively.  
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                 (a) 10t = s                                    (b) 15t = s                                  (c) 20t = s 

Fig. 10. Probability distribution chart of the number of steady period 

From the Fig. 10, we could likely arrive at the inconclusive hypothesis that the number of 

steady period appearing in a certain time approximately follows the poison distribution, 

and for different time there exists different parameter λ . Next, we will use 2χ  Fit 

hypothesis testing method to verify this hypothesis. At first, we put forward the following 

hypothesis test problem: 

0H : The number of steady period follows the poison distribution, 

1H : The number of steady period does not follow the poison distribution. 

If the statistical time is set as 10t = s, that is, we will count the number of steady period once 

per 10 seconds. Through processing the data in Fig. 10(a), about 90 statistical data is 

obtained as in the table 3.  
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0.13 

 
0.63 

 
0.42 

 
0.51 

 
1.70 

 
2.07 

 
0.39 

 
0.15 

 
1.40 

Table 3. 2χ  fit hypothesis testing table about the number of steady period 

And then, we discuss how to verify the hypothesis test problem in the following three steps. 

Step 1. To compute parameter λ  in poison distribution by using the maximum likelihood 

estimate under the condition that hypothesis 0H  is true. 

If the sample of stochastic variable X is denoted as xi , 0,1,..., ( 89)i n n= = , the 

maximum likelihood function about parameter λ  could be expressed as formula (26). 

 1( ) ( )
!1 ( !)

1

n
xin xi inL e e nxii xi

i

λλ λ λλ
∑
=− −= =∏

= ∏
=

  (26) 

Though implementing the logarithmic operation on both sides of the formula (26), 
the logarithmic maximum likelihood function could be expressed as formula (27). 

 ln ( ) ln ln( !)
1 1

n n
L n x xi i

i i
λ λ λ= − + −∑ ∑

= =
 (27) 

In order to let the formula (27) equal to its maximum, we implement the differential 
coefficient operation for parameter λ  on both sides of formula (27), and let it equal 
to zero as the formula (28). 

  
ln ( ) 1

0
1

nd L
n xid i

λ
λλ = − + =∑

=
 (28) 

Through computing the formula (28), the maximum likelihood estimate of 

parameter λ  in poison distribution could be expressed as the following:  

" 1

1

n
xin i

λ = ∑
=

. 

Noted that the maximum likelihood estimator of parameter λ  has the attributes, 

such as, an un-bias and effective estimate.  According to the data in table 1, we 

could easily obtain the estimate value of parameter λ as "λ :  

“ 1
4.14

1

n
ivin i

λ = =∑
=

. 
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Step 2. To compute the test statistic variable V as is expressed in formula (29).  
According to analysis on the data in table 1, we could obtain the value of the test 

statistic variable: 7.40v = . 

                 
2( )

1

n pnmi iV
pn ii

−
= ∑

=
  (29) 

Step 3. Under the condition that significance levelα  equal to 0.05, we could get the in-

equation relation between the theoretical value and statistical one as the following:  

  2 2( 1) (9 1) 15.507 7.400.05rχ χα − = − = >  

This in-equation relation means that the test statistic variable v does not belong to 
the reject range, therefore, we have to accept the hypothesis 0H , and to refuse 

another hypothesis 1H . It is reasonable for us to believe that the number of steady 

period appearing in 10 seconds follows the poison distribution with 4.21λ = , when 

we choose RWP mobility model in a certain mobile scene as our research object. 
At the same time, that the number of un-steady period appearing in 10 seconds follows the 

poison distribution with 4.21λ =  could also be verified as the method above. When the 

statistical time is equal to different values, such as 15s, 20s, and so on, or when we choose 

other different mobility models, such as RW, Freeway, Manhattan and RPGM, we could also 

safely arrive at the conclusion that the number of steady or un-steady period appearing in a 

certain time also follows the poison distribution with different parameter λ . The paper does 

not discuss these for the limit to its length. 

3.1.4 Statistical characteristic of the steady or un-steady duration time 

When Ad Hoc network topology is in the steady state, the duration of which is called as 

steady duration time, otherwise, called as un-steady duration time. Because the steady 

duration time is a continuous stochastic variable, the statistical analysis method on the data 

about steady duration time in Fig. 9(d) is different from that on the number of steady period 

appearing in a certain time. Therefore, we divide the analysis method into three steps as the 

followings. 

Step 1. To coordinate the data. 

At first, we should coordinate the data about steady duration time,  such as 

, ,...,1 2x x xn , in the sort ascending order as ...(1) (2) ( )x x x n≤ ≤ ≤ , where n is the 

scale size of data sample about steady duration time, (1)x  is the minimal value of 

the steady duration time, and ( )x n  the maximal one. 

Step 2. To discrete the zone , ][ ( )(1)x x n . 

Secondly, the zone , ][ ( )(1)x x n  is discrete to l  smaller zones or groups as 

(1 )i lIi ≤ ≤  according to the scale size of data sample about steady duration time n. 

In general, if 100n ≥ , the value of l  belongs to the zone [10,20] ; when n is equal to 

50 or so, l  usually is set as 5 or 6. Since in Fig.1(d), 332 100n = ≥  comes into 

existence, we set the value of l  as 10. The case of small zones about the data in 

Fig.1(d) is processed and analyzed as in table 4. 
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Zone number: i 1 2 3 4 5 6 7 8 9 10 

Zones 
(0.0, 
1.0 ] 

(1.0, 
2.0 ] 

(2.0, 
3.0 ] 

(3.0, 
4.0 ] 

(4.0, 
5.0 ] 

(5.0, 
6.0 ] 

(6.0, 
7.0 ] 

(7.0, 
8.0 ] 

(8.0,  
9.0] 

(9.0,  
∞ ] 

“pn i  157.0 87.6 48.8 27.2 15.2 8.5 4.7 2.6 1.5 1.9 

mi  172 77 35 18 13 6 5 2 2 2 

«| |pnmi i−  15.0 10.6 13.8 9.2 2.2 2.5 0.3 0.6 0.5 0.1 

“

“

2
( )pnmi i

pn i

−
 1.43 1.28 3.90 3.11 0.32 0.74 0.02 0.14 0.17 0.01 

Table 4. 2χ fit hypothesis testing table about steady duration time 

Step 3. To analyze on the steady duration time 
According to the data in the anterior three lines in table 4, the probability distribution of 

steady and un-steady duration time in Fig. 9(d) is shown as the Fig. 11 and Fig. 12 

respectively. If we connect the middle points in the upper side line of the each rectangle to 

construct a fold line, when n and l are big enough, the fold line is approximate to the PDF 

curve of the stochastic variable, the steady or un-steady duration time, according to the 

probability statistic theory as in Fig. 11 and 12.  

The larger is the scale size of data sample, the steady duration time, the smaller is the each 

zone, and PDF curve of the steady duration time of Ad Hoc network topology is more 

precise. According to the curve in Fig. 11, we could also likely arrive at the inconclusive 

hypothesis that the steady duration time approximately follows the exponential 

distribution. Next, we will use 2χ  fit hypothesis testing method to verify this hypothesis. At 

first, we put forward the following hypothesis test problem. 
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Fig. 11. PDF of steady duration time       
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Fig. 12. PDF of un-steady duration time 

0H : The steady duration time follows the exponential distribution, 

1H : The steady duration time does not follow the exponential distribution. 

According to analysis on the data in Fig. 9(d), we could obtain 332 data sample about the 
steady duration time. The analysis result about the 332 data sample is shown as in the table 
2. Next, we will discuss the hypothesis test problem in the following three steps as the 
similar to that in section 3.1. 

Step 1. To compute parameter λ  in exponential distribution by using the maximum 

likelihood estimate under the condition that hypothesis 0H  is true. 

If the sample of stochastic variable X , the steady duration time, is denoted as 

xi , 0,1,..., ( 331)i n n= = , the maximum likelihood function about parameter λ  

could be expressed as formula (30). 

              ( ) exp( )
1

n
nL xi

i
λ λλ= − ∑

=
 (30) 

Though implementing the logarithmic operation on both sides of formula (30), the 
logarithmic maximum likelihood function could be expressed as formula (31). 

              ln ( ) ln
1

n
L n xi

i
λ λ λ= − ∑

=
  (31) 

In order to let the formula (31) equal to its maximum, we implement the differential 

coefficient operation for parameter λ on both sides of formula (31), and let it equal 

to zero as the formula (32). 

                
ln ( )

0
( ) 1

nd L n
xid i

λ
λ λ

= − =∑
=

  (32) 
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  Through computing the formula (32), the maximum likelihood estimator of 

parameter λ  in exponential distribution could be expressed as formula (33). 

  " 1 1

1

n Xn
xi

i

λ = =

∑
=

  (33)       

Noted that the maximum likelihood estimate of parameter λ  also has two 

attributes, such as, an un-bias and effective estimate. To the limit of this paper, we 
ignore its proof. According to analysis on data in table 4, we could easily obtain the 

estimate value of parameter λ as "λ :   

" 1 1
1.7131

1

n
ivin i

λ = =

∑
=

 

Step 2. To compute the test statistic variable: 
2( )

1

n pnmi iV
pni i

−
= ∑

=
. According to analysis on 

the data in table 4,  the value of the test statistic variable could be obtained as 

11.12v = . 

Step 3.  Under the condition that significance levelα  is equal to 0.05, there exists the 

inequation relation between the theoretical value and the statistical one as 

2 2( 1) (9 1) 15.5070.05r vχ χα − = − = > . 

This in-equation relation means that the test statistic variable v does not belong to the reject 
range, therefore, we have to refuse the hypothesis 1H , and accept another hypothesis 0H . It 

is reasonable for us to believe that the steady duration time follows the exponential 

distribution with the " 1
1.713

λ = =0.584, when we choose RWP mobility model in a certain 

mobile scene as our research object. At the same time, we could also prove that the un-
steady duration time in the whole simulation time follows the exponential distribution 

with " 1.276λ = . In the same way, when the statistical time is equal to different values, such 

as 15s, 20s, and so on, or when we choose other different mobility models, such as RW, 
Freeway, Manhattan and RPGM, we could also safely arrive at the conclusion that the 
steady or un-steady duration time follows the exponential distribution with different 

parameter λ . The paper does not discuss these for the limit to its length. 

3.1.5 Markov stochastic process analysis method 

According to the analysis result above, the dynamic characteristic of Ad Hoc network 
topology mainly embodies the following two points: one is that there is two states about Ad 
Hoc network topology, that is, the steady state and the un-steady state. Specially, the 
number of steady state or un-steady state appearing in a certain time follows the poison 

distribution with parameter λ . Another is that the steady or un-steady duration time 

follows the exponential distribution with parameter 'λ . Therefore, we could easily arrive at 

the theorem 1. 

www.intechopen.com



Research on Network Tomography Measurement Technique   

 

165 

Theorem 1 The dynamic varying process of Ad Hoc network topology is actually a 
continuous time and discrete state Markov stochastic one. 
Proof: 
When the data of Ad Hoc network topology snapshots with the snapshot time set as 0.25s is 

compared with that snapshot time set as 0.125s about RWP, RW, RPGM, Freeway and 

Manhattan mobility models, we find that the absolute error between them is less than 1%. 

Therefore, it is reasonable for us to consider that when the snapshot time is small enough, 

the states of the two consecutive Ad Hoc network topology snapshots does not vary except 

of the skip varying of state. This shows that time of MM is comprised of a serial of the 

steady and un-steady duration time periodically as in Fig. 13,  where t1~t4 represent each 

different steady duration time, and s1~s4 the different un-steady ones , which could be 

achieved by counting the states of all the Ad Hoc network topology snapshots with small 

snapshot time. 

 

T

t1 t2 t3 t4s1 s2 s3 s4

 

T: time, t1~t4: the steady duration time, s1~s4: the un-steady duration time 

Fig. 13. Time sequence 

If the state space is set as { , 0}( {0,1})I ni in n= ≥ ∈ , where “0” denotes the steady state and 

“1” the un-steady state, for any time 0 ...1 2 1t t t tn n≤ < < < < +  and the its corresponding 

states 1, 2,..., , 1 Ii i i in n ∈+ , there exists the following formula:  

    { ( ) | ( ) , ( ) ,..., ( ) }1 1 1 1 2 2P X X X Xt i t i t i t in n n n= = = =+ +  

 { ( ) | ( ) }1 1P X Xt i t in n n n= = =+ +   (34) 

According to formula (34), the state of Ad Hoc network topology snapshot is not only 
correlative merely to that of its former one, but also a discrete stochastic variable. Further 
more, the duration time of each state, that is, the steady or un-steady duration time is a 
continuous ones. Therefore, the theorem 1 is proved. 
According to the analysis results in above section, if the Ad Hoc network topology is in 
steady state (denoted as “0”)now, after a steady duration time in this state, it transfers to the 
un-steady state (denoted as “1”), and the un-steady duration time keeps to the exponential 
distribution with parameter 1λ . However, the steady duration time follows the same 

distribution with parameter 2λ . Therefore, the density matrix of this Markov stochastic 

process could be denoted as the following Q . 

 

1λ1λ−

2λ 2λ−
 

According to the forward differential equation of continuous time Markov stochastic 

process[19,20], '( ) ( )t P t QP = , the following differential equations (35) could be obtained. 
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'
( ) ( ) ( )1 200 00 01p p pt t tλ λ= − +

'
( ) ( ) ( )1 201 00 01p p pt t tλ λ= −

'
( ) ( ) ( )1 210 10 11p p pt t tλ λ= +−

'
( ) ( ) ( )1 211 10 11p p pt t tλ λ= −

 

  

(35)

 

According to the probability theory, there exists the following restriction condition. 

              

( ) 1 ( )00 01p pt t= −

( ) 1 ( )11 10p pt t= −

 

                       

If we use the equation ( ) 1 ( )01 00p pt t= −  to replace the ( )01p t  in the first differential 

equation of formula (35), then the following equation could be obtained. 

' ( ) ( ) ( )2 1 200 00p pt tλ λ λ= − +  

Let ( )00 tQ  be equal to ( )1 2 ( )00
tp te λ λ+ , that is, ( )( ) 1 2 ( )00 00

tpt tQ e λ λ+= ,Then to 

implement the differential coefficient operation on both sides of this equation for the 
parameter t , we could get the formula (36). 

                '' ( ) ( )( ) ( ) 1 2 ( ) 1 2 ( )1 200 00 00
t tp pt t tQ e eλ λ λ λλ λ + += + +  (36) 

To multiply the first equation of the formula (35) by ( )1 2 te λ λ+  on its both sides, the 

formula (36) could be simplified as the following formula (37). 

 ' ( )( ) 1 2200
ttQ e λ λλ +=  (37) 

Through implementing the integral operation on the both sides of the formula (37) and 

adopting the initial condition: (0) 100p = , we could finally obtain the following forecast 

experimental formula (38) and (39).  

         2 ( )( ) (1 1 2 )00
1 2

tp t e
λ λ λ

λ λ
− += +

+
  (38) 

         
1 ( )( ) ( 1 2 )1 211

1 2

tp t e λ λλ λ
λ λ

− += +
+

 (39) 

Formula (38) means that if the Ad Hoc network topology is in the steady state now, after 

time t, the probability that it is still in steady state is ( )00p t . Formula (39) means that if the 

Ad Hoc network topology is in the un-steady state now, after time t, the probability that it is 

still in un-steady state is ( )11p t . Therefore, formula (38) and (39) are called as the Ad Hoc 

network topology steady and un-steady duration time forecast experimental formula 
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respectively. Next, we use the concept of opposite events in probability theory to obtain 

warning experimental formal (40) and (41). 

          1 ( )( ) 1 ( ) (1 1 2 )01 00
1 2

tp t p t e
λ λ λ

λ λ
− += − = −

+
 (40) 

 2 ( )( ) 1 ( ) (1 1 2 )10 11
1 2

tp t p t e
λ λ λ

λ λ
− += − = −

+
 (41) 

Formula (40) means that if the Ad Hoc network topology is in the steady state now, after 

time t, the probability that its state varies as un-steady one is ( )01p t . While formula (41) 

means that if the Ad Hoc network topology is in the un-steady state now, after time t, the 

probability that its state varies as steady one is ( )10p t . When time is set as 4s and 10s 

respectively, the experimental probability about state keeping invariable and varying  is 

shown as the Fig. 14,15and 16 according to the forecast formula (38),(39)and the  warning 

formula (40),(41), where x axis denotes the parameter of exponential distribution 1λ , y axis 

the parameter 2λ , and z axis denotes the probability value. 
In order to understand the rule that the parameter of exponential distribution , 1λ  and 2λ , 

varies with time , we set 2λ  as 1.276  and 1λ  as 0.584 which are the same values as the 

analysis results in section 3.2, the experimental probability about state keeping invariable 
and varying with 1λ or 2λ  and time could also be obtained according to the forecast 

formula (38),(39), and the warning formula (40),(41), but  they are not shown for the limited 
length of paper. 
As shown in Fig 14~16, we could safely arrive at the following conclusion: (1) P01 and P11 
increases, while P00 and P10 decrease with the increment of parameter 1λ . (2) P00 and P10 

increase, while P01 and P11 decrease with the increment of parameter 2λ . (3) P01 and P10 

increases, while P00 and P11 decrease with the increment of time t.  
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(c) P01                  (d) P10 

 
Fig. 14. Experimental probability about forecast and warning formula with t=4s 
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(c) P01              (d) P10 

Fig. 15. Experimental probability about forecast and warning formula with t=8s 
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(c) P01              (d) P10 

Fig. 16. Experimental probability about forecast and warning formula with t=10s 

If the number of steady period appearing in a certain time is larger than 2, with the 

increment of parameter 1λ  in passion distribution, the number of steady period appearing 

will becomes smaller according to the progression theory, that is, the probability of Ad Hoc 

network topology keeping steady period will decrease. Therefore, P01 and P11 increases, 

while P00 and P10 decrease with the increment of 1λ  in a certain time. If steady duration 

time is lager than 1.0s, with the increment of parameter 2λ  in exponential distribution, the 

steady duration time will become larger according to the progression theory, that is, the 

probability of Ad Hoc network topology keeping steady period will increase. Therefore, P01 

and P11 decreases, while P00 and P10 increase with the increment of parameter 2λ in a 

certain time. With the increment of time t, the probability of Ad Hoc network topology 

keeping its former state(i.e., steady state or un-steady state) will become smaller. Therefore, 

P01 and P10 increase, while P00 and P11 decrease with the increment of time t with a certain 

parameters 1λ and 2λ .  

www.intechopen.com



Research on Network Tomography Measurement Technique   

 

169 

In a practical Ad Hoc network application system, we could use GPS or other position 

location technology to obtain the position of mobile nodes in any moment, instead of 

analyzing on the scene file. Next we could use the computing and analysis method in the 

paper to obtain the dynamic characteristic of Ad Hoc network topology, which could be 

used for performance evaluation and optimization of Ad Hoc network.  

3.2 Performance inference method in ad hoc network 
At present, Ad Hoc network performance measurement mainly focus on traditional network 
intra-measurement technique. [49][50] bring forth to use active probing in Ad Hoc network to 
measure available bandwidth. [51] puts forward a DEAN (Delay Estimation in Ad Hoc 
Networks) protocol, in which neighbor nodes uses Hello message to exchange delay time 
between each other, that is, to measuring delay time needs the collaboration of intra-nodes. All 
the research above actually is traditional intra-measurement, which has many faults as 
described above. Above all, there are many theory problems to be solved in Ad Hoc network 
measurement. At fist, how to deal with the influence of dynamic characteristic of network 
topology on performance measurement is a key issue. Second, measurement model and 
inference method is another key issue to be dealt with in NT measurement of Ad Hoc network. 

3.3 Performance inference based on linear analysis model 
In the process of the performance measurement on Ad Hoc network based on End-to-End 
measurement technology, the dynamic characteristic of link topology directly influences the 
measurement results. Yao et al. [52] consider that if the measurement could be completed 
under the condition that link topology remains relatively invariable, which maybe improve 
the veracity and precision of performance measurement. In his pervious works, the 
positions of mobile nodes in Ad Hoc networks at any moment could be obtained through 
link topology snapshots capturing algorithms according to analyzing on the scenario files of 
mobility models, and then the serials of snapshots of physical topology could be archived. 
The different periods during which physical topology is invariable can be gained by 
analyzing on the snapshots statistically, which is called as measurement window time in 
this paper. According to the results of analysis on the scenario files of RW, RWP, RGMP, 
and Manhattan mobility models, we could safely arrive at the conclusion: measurement 
window time will appear periodically in the whole simulation time. 
During measurement window time, since the state of link in Ad Hoc network could not 
vary, the inference results of link performance based on the samples of End-to-End 
measurement could reflect the interior link characteristics effectively. Yao et al.[52] call this 
phenomenon as time validity in the measurement of Ad Hoc network. The next section  
presents a interior link delay reference algorithm of Ad Hoc network on the basis of End-to-
End measurement method[53]. The main content of this algorithm is as followings: First to 
obtain the measurement time window through a link topology snapshot algorithm, Second 
to build up a measurement model and linear delay analysis model for Ad Hoc networks, 
Third to complete End-to-End measurement, Forth to refer interior link delay of Ad Hoc 
network according to measurement data sample, correlation among mobile nodes in Ad 
Hoc network topology, linear delay analysis model and mathematical statistics theory. 

3.3.1 Link delay linear analysis model 

On the assumption that we have done the measurement experiments m rounds. Each round 

we could get the End-to-End delay vector of receiver i  denoted as { , ,..., },1 ,2 ,y y yYi i i i m=  
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( 1 i n≤ ≤ ), where n is the number of leaf node, and (1 ),y j mi j ≤ ≤  is the sample of stochastic 

variable ( [1, ], [0, ])i nY Yi i∈ ∈ ∞  . After the m times experiments have finished, the delay 

probability distribution of the End-to-End measurement could be obtained as: 

( ) { ( ), ( ),..., ( )}1 2P Y P P PY Y Yn= . If the estimated link delay probability distribution is 

denoted as ( ) { ( ), ( ),..., ( )}1 2P X P P PX X Xv= , then the maximum likelihood function could be 

expressed as formula (42):  

 ( ; ) ( , ,..., ; , ,..., ) ( ; )1 2 1 2
1

n
L Y X P P XY Y Y X X X Yn v i

i
= = ∏

=
  (42)  

When Formula (42) equals to the maximum, we use “ arg max ( ; )
1

n
X p XYiX

i
= ∏

=
, where 

“ “ “ “( , ,..., )1 2X X X Xn= , as the estimated value of link delay X. However, the maximum 

likelihood estimation algorithm is very difficult to obtain the estimated value of link delay 
X for computing complexity. In order to obtain the link delay X, [25] adopts the 
expectation maximum (EM) algorithm including two procedures: E-step and M-step. The 
main problem about EM algorithm is that it could obtain the partially optimized solution, 
not the unitary optimized one. For the sake of computing complexity increasing by the 
scale of network, Pseudo-EM Algorithm[26]decomposes a large scale problem to several 
small scale ones. The maximum likelihood of these small scale problems could be 
expressed as: 

 ( , ,..., ; ) ( ; )1 2
1

n s s sL Y Y Y X P Y Xn i
i s S

= ∏ ∏
= ∈

  (43) 

where S is set of all small scale problems. The method to get the solution for Formula (43) is 
similar to that  for Formula (42). The Bayesian estimation method uses the former 
probability distribution of link delay to infer the posterior one, however, how to get the 
former probability distribution is a difficult work. 
The linear analysis model of delay will be presented next. As we all know, the delay of 

( )path i j→ , denoted as ( , )d i j , is the sum of all link delay along this path, denoted as ( )d k   

( ( ) { }k F j j∈ ∪ ), that is, 

 ( , ) ( )( ( ) { })d i j d k k F j j= ∈ ∪∑  (44) 

In the End-to-End measurement of Ad Hoc networks, the node i belongs to the set of S, and 

node j to the set of R. The task of link delay inference is to infer ( )d k according to the 

measurement samples of ( , )d i j . If we only utilize one formula, it is impossible to infer ( )d k . 

In order to obtain the link delay, we must use multi-formula and constitute simultaneous 
equations to resolve the link delay. The simultaneous equations could be expressed as 
formula (45). 

    Y AX ε= +  (45) 
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Formula (45) is referred to as interior link delay linear analysis model of Ad Hoc network in 
this paper. In Formula (45), Y is the delay of path which could be obtained or observed in 
End-to-End measurement procedure. cis the traffic matrix, and ε is the noisy which is 

ignored in this paper. X is the interior link delay of Ad Hoc network. Our task is that on the 

condition of Y and A known, ε  ignored, how to resolve X . The solution of X is concerned 

with the types of A . In the next section, we will present the algorithm of link delay 

inference on the condition of A  being square traffic matrix and non-square traffic matrix. 

3.3.2 Algorithm of link delay inference 

To compute the formula (45) is equivalent to resolve a non-homogeneous linear equations 

according to linear algebra theory. According to different type of traffic matrix A , we will 

divide two types(i.e., square traffic matrix and non-square traffic matrix) to discuss how to 

resolve the solution space for the formula (45) in this section.  

Square Traffic Matrix When the traffic matrix is a square one, the solution for the non-

homogeneous linear equations as formula (45) is concerned with the rank of the traffic 

matrix A . If the rank of traffic matrix A  is full, there is a unique solution for the non-

homogeneous linear equations, otherwise, the question of solution for the equation in 

section 3.1 is translated to that of a non-square traffic matrix problem. Now we only 

consider the A  as a full rank traffic matrix. At first we could obtain the reverse matrix of A 

denoted as 1A− , the interior link delay can be expressed as formula (46). 

 1X YA−= ×   (46) 

If the sender node sends N probes to every leaf nodes in Fig. 1(a) respectively, then every 
link delay in Ad Hoc networks could be achieved according to Formula (46) at different N 
time. However, we do not care about the link delay at different time, but are concerned 
about the link delay probability distribution during measurement window time, which 
could be obtained through analyzing on the link delay statistically during measurement 
window time based on the discrete link delay time. In practice, it is not possible to construct 
a square traffic matrix A in Ad Hoc networks. There is only one case that if there are N 
mobile nodes in Ad Hoc network, only one node is the sender, the other N-1 nodes are all 
leaf nodes. Under this condition, it is not necessary to use End-to-End measurement 
technology to infer the link delay, since there is only one step between the sender and leaf 
nodes, we could obtain the link delay directly through measurement. 
Non-square Traffic Matrix  When the rank of traffic matrix A is not full, or the traffic matrix 
A is a non-square matrix, the problem in section A is translated to how to resolve a non-
homogenous linear equations. We will discuss this problem from the following two sides. 
(1) When the rank of the traffic matrix A is not equal to that of its augmentation matrix(i.e., 

|A Y ) , there is no solution for the non-homogenous linear equations. (2) When the rank of 

the traffic matrix A  is equal to that of its augmentation matrix, there is a solution space for 

the  non-homogenous linear equations. If the traffic matrix A  is denoted as ( ),aA i j m n
= × , 

and rank(A)=rank( |A Y )=r( r n< ), then the solution space is composed of n-r characteristic 

solutions (i.e., { }(1 )i n riη ≤ ≤ − ) for  the homogenous linear equations and one special 

solution(i.e., β ) for the non- homogenous linear equations. Therefore, the solution space of 

the non-homogeneous linear equations could be denoted as the following formula (47). 
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1

n r
S ki i

i
βη

−
= × +∑

=
 (47) 

Since the solution space S comprised of infinite solutions, it is necessary to limit the scale of 

solution space. The link l ( l L∈ ) delay inference result is as formula (47), which is shared by 

χ  paths.  If the End-to-End delay of the χ  paths is denoted as  (1 )jj χ≤ ≤Τ , the minimum 

delay of the χ  paths Γ could be expressed as the following formula (48). 

 min{ (1 )}jj χΓ = ≤ ≤Τ  (48) 

Then the solution space S could be reduced to Ω : ( , )0Sk kj jj j
β βη η∑Ω = × + Ω ⊂ × + ≤ Γ≤ . Next it 

is similar to the section A that we could obtain any link delay probability distribution through 
analyzing  on the N times of solution space based on the discrete delay time. The unique 
difference between the square traffic matrix and non-square traffic matrix is that the lessen 
solution space maybe belongs to many discrete bins, but unique solution only to one bin. The 
algorithm of interior link delay probability distribution is as the following Algorithm  
 
Step 1. To discrete the link delay time. 

Step 2. 0,Count = and to compute the rank of traffic matrix A and augmentation matrix 

|A Y . If  

               ( ) ( | )rank A rank A Y≠  is true, Goto step10. 

Step 3. To compute the characteristic solution for the homogenous linear equations as 

{ }(1 )i n riη ≤ ≤ −  

Step 4. To compute the special solution for the non-homogenous linear equations as β  

Step 5. To construct the solution space for the non- 

Homogenous linear equations as 
1

n r
S ki i

i
βη

−
= × +∑

=
 

Step 6. To reduce the scale of S to Ω . 

Step 7. Count + + . 

Step 8. If Count N< (N is the times of End-to-End measurement),  Go to Step3. 

Step 9. To compute the link delay probability distribution through analyzing on the link 
delay in all N times statistically based on discrete delay time. 

Step 10. Finish. 
 

Delay time discrete method Let Θ  be a set of finite delay, and link delay time (1 15)j
j

θ ≤ ≤  is 

discretized to Θ , then  jθ  takes a value in Θ . If we suppose that discrete parameter is α , 

then bin size of delay time is 1
α ,  and the set Θ  could be defined as following formula (49) 

based on the fixed bin size delay time discrete model.         

  1 2{0, , ,... ...,1}( [0, ])i i αα α αΘ = ∈    (49) 

Then discrete function of delay time could be defined as the following formula (50) 

www.intechopen.com



Research on Network Tomography Measurement Technique   

 

173 

 

( )Discrete Function jθ− =

0 
1[0, ]2jθ α∈

i
α

1 1
( , ]

2 2

i i
jθ α α α α
∈ − +

1
2 1

( ,1]
2

j
α

θ α
−

∈
( [0, ], [1, ])i jα∈ ∈ ∞

 

(50)

 

The value of α is an important factor to influence the reference accuracy and computing 

complexity. If α  is small, although more discrete delay time zone and reference accuracy 

could be obtained, the computing complexity will increase quickly. Otherwise, in despite of 
computing complexity being reduced, discrete delay time zone and reference accuracy will 
be reduced. Therefore, it is necessary to make a compromise between computing complexity 
and reference accuracy according to difference application requirement. 

3.4 Link performance inference based on multi-sources measurement 

Yao et al.[54] presented a interior link loss rate reference algorithm of Ad Hoc network on 

the basis of End-to-End and multi-sources & multi-destinations measurement method. The 

main content of this algorithm is as followings: First to obtain the measurement time 

window through a link topology snapshot algorithm, Second to build up a measurement 

model and link loss analysis model for Ad Hoc networks, Third to complete End-to-End and 

multi-sources & multi-destinations measurement, Forth to refer interior link loss rate of Ad 

Hoc network according to measurement data sample, correlation among mobile nodes in 

Ad Hoc network topology, link loss analysis model and mathematical statistics theory. 

Results of simulation indicate that the loss rate reference algorithm based on multi-sources 

& multi-destinations measurement is not only better than on one-source & multi-

destinations measurement, but also the former has short computing time, which is very 

adaptable to interior link performance reference for Ad Hoc networks.  

3.4.1 Methodology and measurement framework  

We make the following assumption on routing behavior[55], (1) The routes from the sources 

to the destinations are fixed during the measurement period. (2) There is a unique path from 

each source to each destination. (3) Two paths from the same source to different receivers 

take the same route until they branch. Two paths from different sources to the same receiver 

use exactly the same set of links after they join.  (4) The routers and switches in the topology 

obey a first-in first-out policy for packets of the same class. In order to make the assumption 

A1 more reasonable, we seek to limit probing and keep the measurement period as short as 

possible. The assumptions A1 and A2 are motivated by the shortest-path nature of routing 

in the Internet and the situations of the load balancing and multiple-paths are not 

considered in the paper. The assumption A4 is reasonable as the measurement probes is 

steady flow from one source to one destination. 

Let [ , ]P a b  devotes the path from a to b; ( )H p  devotes the hop count of the path of p; 

[ ; , ]SP s i j  devotes the shared path of paths from the source s to the destinations i and j; 

[ , ; ]SP i j d  devotes the shared path of paths from the sources i and j to the destination d; 

[ , ]
h

P a b
⎡ ⎤⎢ ⎥  devotes the portion path of [ , ]P a b  with hop count is h and the path begins from a; 
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[ , ]
k

P a b⎢ ⎥⎣ ⎦  devotes the portion path of [ , ]P a b  with hop count is h and the path ends with a; 

[ , ]
h

a b⎡ ⎤⎢ ⎥` devotes the thh link in the path [ , ]P a b . Let ( )pψ ( ( )pϕ ) devotes the minimal delay 

of the large packets (the small packet) which probe the path p. The minimal delay (also 
called stable delay) includes the propagation delay, transmission delay and the stable 
processing delay and does not include the queuing delay. In this paper, the probe with the 
minimal delay is called the valid probe, and the size of the small packet is set 56 bytes (the 
minimum packet size in IP) and the size of the large packet is set 1500 bytes (the maximum 

packet size in IP). Let ( )pλ  devotes the minimal delay difference of the path p measured by 

the large packet and the small packet, so ( ) ( ) ( )p p pλ ψ ϕ= − . Then ( )pλ  is a path metric and 

has monotonicity and separability properties.  
The main process of the new methodology to identify the routing topology includes four 

steps. Firstly, we calculate the hop count of the path from the each source to each 

destination. Secondly, we infer the hop count of the share path for every 1-by-2 component. 

Thirdly, we infer the hop count of the share path for every 2-by-1 component. Fourthly, the 

routing topology is constructed by the topology construction algorithm based on hop count 

information  

Hop count of a path  In this step, we calculate the hop count of the path from the source i to 

the destination j by subtracting the left TTL value of a packet received by destination j 

(devoted by jttl ) from the initial TTL value (devoted by 0ttl ).  

0( [ , ]) jH P i j ttl ttl= −  

 

One source to two destinations  In this step, which contains two sub steps, we consider a 

single source (devoted by 0s , 0s S∈ ) transmitting probes to two destinations (devoted by i 

and j, ,i j R∈ ). In first step, as depicted in Figure 3(a), 0s  sends back-to-back packet pairs 

with the large packet destined for j and the small packet destined for i, in which the large 

packet is followed closely by the small packet. As the large packet and the small packet will 

be separate at the branching node, the share path of the large packet and the small packets is 

0[ ; , ]SP s i j . If the packet pair do not suffer the queuing delay, then  

0 0

0

( [ , ] ( [ ; , ])
; , 0 0( [ ; , ]) ( [ , ]))

H P s i H SP s i j
s i jd SP s i j P s iψ ϕ −⎢ ⎥⎣ ⎦= + , 

 

where 
0 ; ,s i jd  devotes end-to-end stable delay of the small packet. 

In second step, we measure the delay difference of very physical link in the path from the 
source to the destination using a serial of the back-to-back packet pair, in which the large 

packet with the initial TTL value 0ttl  from 0 to ( [ , ])H P S i (specially , when the 0ttl  is set 0 

the source does not send the large packet)is followed closely by the small packet with the 

initial TTL value larger than ( [ , ])H P S i . As the large packet will be discarded by the internal 

node when the TTL number is reduced to zero, the share path of the large packet and the 

small packets is 0
0[ , ]

ttl
P s i
⎡ ⎤⎢ ⎥ . If the packet pair do not suffer the queuing delay, we get the 

relationship of hop count and the delay difference, 
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Fig. 17. Packet pair probes for every 1-by-2 component. (a) The meathead of probing the 

delay difference of the share path 0[ ; , ]SP s i j  of each 1-by-2 component in the first sub step. 

(b) The meathead of probing the delay difference of every physical link in the path from 

0s to i in the second sub step.                           

0 0 00

0

( [ , ]
0 0, ( ( [ , ]) ( [ , ]))

ttl H P s i ttlttl
s id P s i P s iψ ϕ −⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎣ ⎦= + , 

0

0

0 0 0

( [ , ]
0 0

( [ , ] ( 1)1
0 0

( [ , ]) ( [ , ]) ( [ , ])

                  ( ( [ , ]) ( [ , ]))

                    ( ( [ , ]) ( [ , ]))

                  

h h h

H P s i hh

H P s i hh

s i s i s i

P s i P s i

P s i P s i

d

λ ψ ϕ

ψ ϕ

ψ ϕ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥

−⎢ ⎥⎡ ⎤⎢ ⎥ ⎣ ⎦

− −− ⎢ ⎥⎡ ⎤⎢ ⎥ ⎣ ⎦

= −

= +

− +

=

` ` `

0 0

0 0

1
, ,

ttl ttl
s i s id −−

 

where 0

0 ,
ttl
s id  devotes end-to-end stable delay of the small packet with the TTL value of the 

large packet is 0ttl . Meanwhile, as depicted in Figure 4, we can get the follow formula: 

0

0 0

( [ ; , ])
; , ,

H SP s i j
s i j s id d= . 

So we can infer the hop count of the share path by  

0

0 0 0 00 [0, ( [ , ])] ; , ,( [ ; , ]) arg min{ } ttl
ttl H P s i s i j s iH SP s i j d d∈= − . 

Let 0( , , )M i ttl K devotes the digging measurements process, in which 0s  sends packet pair 

destined to i and large packets with initial TTL value 0ttl  and K measurements are collected 

in total. For each measurement 1,2,...,k K= , let 0

0 , ( )ttl
s ix k  denotes measured delay time, 

then   
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0 ; ,s i jd

0

0 ,

ttl

s id

0

1

,s id
0

2

,s id

0

3

,s id

0

0

( [ , ])

,

H P s i

s id

0( [ , ])H P s i
0ttl0( [ ; , ])H SP s i j

0

0

,s id tσ+

 

Fig. 18. The relationship of the ttl0 and the delay difference. As the internal nodes may have 
different bandwidth, the increase values of delay difference produced at internal nodes may 
be not equal. So the points corresponding to delay differences are not placed on a straight 
line. 

0 0 0

0 0 0 0, , , ,( ) ( )ttl ttl ttl
s i s i s i s ix k d q k tσ= + + , 

Where 0

0 , ( )ttl
s iq k devotes the queuing time, 

0 ,s itσ  devotes the clock difference between the 

nodes 0s and i.  Similarly, let 
; ,0

( )
s i j

x k  denotes measured delay time of the share path in the 

first sub step, then  

0 0 0 0; , ; , ; , ,( ) ( )s i j s i j s i j s ix k d q k tσ= + + . 

For each type measurement we assume that these measurement results are independent and 
identically distributed; this assumption is reasonable if the probes are sufficiently separated 

in time. Then the hop count of the share path can be inferred by 0ttl  which makes the 

difference of minimal delay of packets (meathead 1) or the difference of the mean delay 
(meathead 2) reach the minimum value.  

0 0

0

0 0

0 [0, ( [ , ])]

' 1,2 ,..., ' ; , 1,2,..., ,

ˆ ( [ ; , ]) arg

        min{ min { ( ')} min { ( )} } 

ttl H P s i

ttl
k K s i j k K s i

H SP s i j

x k x k

∈

= =

=

−
 

0 0

0

0 0

0 [0, ( [ , ])]

'

; , ,
' 1 1

ˆ ( [ ; , ]) arg

1 1
        min{ ( ') ( ) } 

'

ttl H P s i

K K
ttl

s i j s i
k k

H SP s i j

x k x k
K K

∈

= =

=

−∑ ∑
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To simply the inference process and reduce the probing traffic load, we use the binary 

search algorithm to search 0
ˆ ( [ ; , ])H SP s i j  as the 0

01,2,..., ,min { ( )}ttl
k K s ix k= and 0

0 ,
1

1
( )

K
ttl
s i

k

x k
K =
∑  have 

monotonicity property when K is large enough.  

Two sources to one destination For two sources (devoted by i and j ,i j S∈ ), the main 

process of measurement in our new methodology to infer the hop count of the share path to 

one destination (devoted by 0d , 0d R∈ ) also includes two sub steps and the first sub step is 

the same to the second sub step in second step above to measure 0

0,
ttl
i dd .  

In the second sub step, we measure the stable delay difference of the share path 0[ , ; ]SP i j d . 

As depicted in Figure 5, the sources i and j send small packet and the large packet destined 

for 0d  periodically.  

 

 

Fig. 19. The meathead of probing the delay difference of the share path of  each 2-by-1 

component. The sources i and j send small packet and the large packet destined 0d . If the 

large packet reach the joining node just after the small packet, then the interval equals the 

delay difference when they reach 0d . 

Let ism  and jsm  devotes the sending moment of the packet by the node i and the node j in 

the measurement periods; isrm ( ilrm ) and jsrm ( jlrm )devotes the receiving moment of the 

small packet (the large packet) sent by the node i and the node j; ( )sx k ( ( )lx k ) devotes the 

measured delay time of the small packet (the large packet).  
If the small valid packet and the large valid packet reach the joining node almost 

synchronously (this mean the interval time between and two packet is smaller than the 

minimal link delay difference in the path from the source to destination.), then difference of 

the received moment equals the stable delay difference on the share path.  
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0( [ , ; ]) is jlSP i j d rm rmλ = −  

0 0

0 0 0 0

( [ , ]
0 [0, ( [ , ])] , ,( [ , ; ]) arg min{ ( ) ( ) }H P s j ttl

ttl H P s j is jl j d j dH SP i j d rm rm d d∈= − − − . 

 
Then we can infer the hop count of the share path by  
 

0 0

0 0

0 0

0 [0, ( [ , ])]

( [ , ]
, ,

ˆ ( [ , ; ])= arg

min{ ( ) (min{ ( )} min{ ( )}) } 

ttl H P s j

H P s j ttl
is jl j d j d

H SP i j d

rm rm x k x k

∈

− − −
. 

 
 or  

      
0 0

0 0

0 0

0 [0, ( [ , ])]

( [ , ]
, ,

1 1

ˆ ( [ , ; ])= arg

1 1
min{ ( ) ( ( ) ( )) } 

ttl H P s j

K K
H P s j ttl

is jl j d j d
k k

H SP i j d

rm rm x k x k
K K

∈

= =
− − −∑ ∑

 

 

To synchronize the valid packets of the same size from the two sources to the destination to 

reach the joining node synchronously, one source only need to adjust the sending time 

forwards (or backwards) by the difference of the received moment of the two packets, 

because if packets reach the destination synchronously, they must have reached the join 

node synchronously.  

To synchronize the valid packet of different size, we use the synchronization measurement 

process to adjust the sending moment. As the order of the valid packets reaching the joining 

node will remain to the destination, the destination can tell which valid packet reached the 

joining node firstly (secondly), and then inform the source to adjust the sending time 

backwards (forwards). In the synchronization measurement process, we keep the same ism  

and change jsm  using binary search algorithm to make the small valid packet and the large 

valid packet reach the joining node closely enough. To accelerate search process and to 

reduce the probing traffic load, we make advance measurements and use the measurement 

result to set the appropriate upper bound and the lower bound of jsm .  
In the advance measurements, as depicted in Figure 20, j sends small packets and large 

packets alternately, and i sends only small packets with the same period.  

If we change the sending moment of j from jsm  to j is jssm rm rm+ − , the small valid packets 

from the two sources will reach the joining node at the same. Meanwhile in another period 

the small packet from i will reach the joining first than the large packet from j. So the upper 

bound of jsm  can be set 'j is jssm rm rm+ − . In the same way, if we the change sending 

moment of node j to 'j is jlsm rm rm+ − , then the small packet from i and the large packet from 

j will reach the destination at the same time, that means the large packet reaches the joining 

packet firstly. So the lower bound of jsm  can be set 'j is jlsm rm rm+ − . After the advance 

measurements , the range of the jsm  is limited to 0( [ , ])P j dλ .   
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Fig. 20. The sending moment at the i and j, reaching moment at the joining node and the 

receiving moment at the 0d of valid probes in the advance measurements. The packets in 

lines a, b and c are the small packet sent by j, the large packet sent by j and the small packet 

sent by i. The packet in line d is the synchronized large packet sent by j.  

Algorithm computer the 0
ˆ( [ , ; ])SP i j dλ  

Input: the sources i, j and the destination 0d . 

Output: 0
ˆ( [ , ; ])SP i j dλ  

Precess: 

1. Set the initial sending moment ism  and jsm , and let j sends small packets and large 

packets alternately, and i sends only small packets with the same period. Make 
measurements for K times. 

2. Set [1, ] [1, ]' min { ( )} min { ( )}j k K is k K jshigh sm rm k rm k∈ ∈= + − , 

[1, ] [1, ]' min { ( )} min { ( )}j k K is k K jllow sm rm k rm k∈ ∈= + − , 'i ism sm= ,. 

While (
0[1, ( [ , ])] 0

ˆmin ( ( , ))
h

h H P j dhigh low j dλ ⎡ ⎤⎢ ⎥
∈− < ` ) Do 

       ( ) / 2mid low high= +⎡ ⎤⎢ ⎥ ; 

       jsm mid= ; 

Let j sends small packets and i sends small packets periodically for K times; 

  If (
[1, ][1, ]min { ( )} min { ( )}

k Kk K is jlrm k rm k
∈∈ < ) 

Then high mid= ; 

Else low mid=  

End If  
End While 

jsm low= ; 

Let j sends small packets and i sends small packets periodically for K times; 

Return [1, ] [1, ]min { ( )} min { ( )}k K jl k K isrm k rm k∈ ∈− ; 
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Algorithm topology Identification  

Input: the source set S and the destination set D; ˆ ( [ , ])H P i j , i S∈ , j D∈ ; ˆ ( [ , ; ])H SP i j d , 

, ,i j S i j∈ ≠ , d D∈ ; ˆ ( [ ; , ])H SP s i j , s S∈ , , ,i j D i j∈ ≠ ; topology ,G S D=< ∅ >∪ . 

Output: identified topology G  
Precess:  
1.  For (each node i in S)  

For (each node j in D) Do  

   Inset ˆ ( [ , ]) 1H P i j − nodes and ˆ ( [ , ])H P i j links in the path from i to j; 

End For  
End For 

2. For (each node s in S)  
For (each two nodes i and j in D) Do  

    Merge 
ˆ ( [ ; , ])

[ , ]
H SP s i j

P s i
⎡ ⎤
⎢ ⎥  and 

ˆ ( [ ; , ])
[ , ]

H SP s i j
P s j
⎡ ⎤
⎢ ⎥ ; 

End For  
End For 

3. For (each node d in D)  
For (each two nodes i and j in S) Do  

Merge 
ˆ ( [ , ; ])

[ , ]
H SP i j d

P i d
⎢ ⎥⎣ ⎦  and 

ˆ ( [ , ; ])
[ , ]

H SP i j d
P j d
⎢ ⎥⎣ ⎦ ; 

End For  
End For 
Return G 

 
Delay Measurement and Clock Synchronization The methodology above need the condition 

that the clock of the measurement node have higher timing precision than the size of table 

delay difference of one-hop in the path from the source to destination. Furthermore, the 

system errors (such as the location errors) will be eliminated we computer the table delay 

difference, so only the random error influence the methodology accuracy. If the maximal 

bandwidth of link in the path is 1Gb/s, the timing precision should be higher than 10us 

which can be realized based on general PC[17]. So our methodology can be applied widely 

and has lower measurement cost than the meathead that need the assumption that the 

source and the destination have the strict clock synchronization, as to satisfy the assumption 

need deploy costly GPS receivers for every measurement node.  

Probing Traffic Load For the M-by-N network, the probe number of the probe packet can be 
computed by the follow formula approximately: 

( )
( )

2

2 2

 2 2 ( )

max ( )
                            2 log ( ( ) ( ))

min ( )

N

M

probing number MN KM KMNE h

wd
KN E h E

wd

= + +

+
`
`

 

where ( )E h  devotes the average hop count of the paths from the sources to the destinations 

and 
max ( )

( )
min ( )

wd
E

wd

`
`

 devotes the average ratio of the maximal bandwidth and minimal 
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bandwidth of the links in the path the sources to the destinations. As usually during several 
seconds measurement time we can get the stable delay with a high probability [18, 19, 20], 

the value of K can be set from 50 to 100. In many case, the value of ( )E h  ranges from 5 to 20 

and the value of 2

max ( )
log ( ( ) ( ))

min ( )

wd
E h E

wd

`
`

 ranges from 5 to 10.  

3.4.2 Simulation study  

Firstly, we make simulations for the 1-by-2 component and 2-by-1 component, using the 
simulation tool ns-2. The hop count of every logical link ranges from 3 to 10. The physical 
link bandwidths range from 100Mb/s to 1000Mb/s. The background traffic added to every 
physical link is poisson traffic or self-similar traffic generated by three pareto traffics with 

1.9α = . Simulations were conducted in a low utilization scenario, a medium utilization 

scenario and a higher utilization scenario (by varying background traffic). In the first 
scenario, the average utilization over every physical link and runs was 10%, with a range of 
5-15%; in the second scenario the average was 30 %, with a range of 10-50%; in the last 
scenario, the average was 50 %, with a range of 30-70%. As there are many physical links 
between the source and the destination, the average utilization of every logical link in three 
scenario are 45%, 90%, 99%.  
The packet size in background ranges from 56byte to 1500byte; the small packet size of 
probe is 56 bytes and the large packet size of probe is 1500bytes. For every scenario, the 
simulation runs 200 times. The correctness of identification is depicted in Figure 8, Figure 9, 
and Figure 10. Generally speaking, the correctness increases quickly with the number of the 
probe packet and tend to 100%. The correctness of 1-by-2 component identification is higher 
than the correctness of 2-by-1 component identification, which can be improved by 
increasing the synchronization measurement process in the binary search algorithm. The 
background traffic become more unstable, the meathead1 adapt it better than meathead2. 
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Fig. 21. The correctness of the identification vs. the number of the probes for 1-by-2 
component with poisson background traffic. 
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Fig. 22. The correctness of the identification vs. the number of the probes for 2-by-1 
component with poisson background traffic. 
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Fig. 23. The correctness of the identification vs. the number of the probes for 2-by-1 
component with self-similar background traffic. 

Secondly, we make simulations for a 3-by-4 network depicted in the Fig. 1(a) with the 
medium utilization poisson background traffic. We using meathead1 and set K=50. The 
simulation runs 200 times and the correctness of identification is 98%. 

3.5 Ad hoc network delay tomography based on circle mobility model 

The circle mobility model (CMM) is proposed by Wang[56], which is suited to patrolling 
periodically for gathering information in the military area or forest fireproofing. The 
assumptions are as follows. First, the location of SN is known to other nodes. Second, the 
MN knows the direction and how far it will move to next destination. This is true in real 
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situations where nodes know their destinations. The process, representing the movement of 
a node within a circular area A with radius R, can be described as follows. A SN (n0) is 
placed at the point O, the centre of the circle. Initially, MN (ni, nj and nk) are placed at points 
over A, see Fig.1-a. Without losing the generality，ni is in initial position Pi0 with radius ri. 

Then a destination point Pi1 is chosen from the circle with radius ri and the node moves 

along arc Li with constant velocity vi and central angle iθ . Once ni reaches Pi1, ni stays a 

pause time ti and a new destination point Pi2 is drawn, ...Pi(n-1),Pin.... Obviously, the step 

time i i i iST v tθ= + and the step length i i iL rθ= . The nodes (ni and nj) with same radius have 

identical mobile properties, such as i jθ θ= , i jv v= , i jt t= , i jST ST=  and i jL L= , otherwise 

they might have different mobile properties. 

3.5.1 Circle mobility model 

The MANET with CMM could be denoted as a dynamic logical tree ( , ( ))V L TΨ = with the 

node set V and link set ( )L T  at time T [2]. A source node to probe is called the root. A set of 

receivers, which called leaves, is denoted as RCE V⊂ . The nodes between the source and 

receivers represent internal nodes. The tree model is defined by the set of paths. Each path, 

which is from the root to an end receiver denoted by rce RCE∈ , comprises one or more links 

(direct connections with no intermediate nodes). A logical link is referred to as a subpath in 

which every internal node has only one child. InΨ , the interal links are the logical links that 

link these branch nodes at T. Each node k , apart from the root, has a parent ( )f k  such that 

link ( ( ), ) ( )f k k L T∈ could be denoted as link k . The physical topology and the logical 

topology are depiced in Fig. 24(c) and Fig.24(d) respectively. The Fig.24(d) shows a typical 

binary tree in which the root and the receivers are 1, 3 and 4. 
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Fig. 24. The CMM mobility model and the topology used for the NS2 measurements (a) 
CMM mobility model. (b)Initial topology and nodes coordinates. (c) Physical topology 

within 1IT and 2IT . (d) Logical topology inferred within 1IT and 2IT . 

There are many random components determining link delay, such as propagation delay, 
queuing at the node, node packet servicing delay and dropped event due to the overload of 
finite output buffer of the node or link breakage. The key assumption of our delay model is 
that the individual delays between different links and packets should be considered 
independently within IT. IT means the period of time during which the topology is 
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relatively stable under CMM, to overcome the stubborn topology changes. A series of ITs 
can be calculated during the simulation period due to the breakage and comebacke along 
the paths. The internal link delay could be inferred which is associated with the 
corresponding IT by probing two closely time-spaced packets (back-to-back packet pair) 
from the source to two different receivers. This is the difference between our delay model 
and previous works [4]. Each members of a packet pair passes through a common set of 
links in their paths, but diverge at some branch node to arrive to the respective destination. 
Apparently, if the gap between the two members is on the order of the machine’s smallest 
unit of time, the difference between the delay experienced by the first and the second 
member of pair crossing same link can be ignored. Approximatively, the two packets 
experience identical network conditions along the shared links and any delay experienced 
will be identical for both probes. 

During the i-th IT denoted by ( ) ( ) 0i i
i startendIT t t= − > ( ( )( ) , ii

start endt t T∈ ), two members of the packet 

pair ( , )i j  are sent to destination rcei and rcej, respectively. Since the round trip paths of the 

probe are unsymmetrical, a measurement represents the E2E one way delay (OWD) of the 

couple of packets, denoted by ( (1), (2))i i iIT IT IT
ij i jX X X= . Where (1)iIT

iX  and (2)iIT
jX  are the 

delays from source to the two end receives, respectively. The sending time is stamped on 
every packet by the sender, and the OWD is calculated at the receiver. An experiment 

consists in sending n  packets pairs ( , )i j  for each pair of rcei and rcej. The set of 

measurements, the cumulated delay along the respective paths are associated 

with ( ) ( )
1, , ;( (1), (2))i ii

i ji j

IT m IT mIT
m n rec rec RCErec recX X X = ≠ ∈= …  for each couple of end receivers. The 

complete set of measurement iITX is obtained by combining all possible pair of distinct rcei 

and rcej in Ψ  winthin ITi. 

3.5.2 Link dealy probability distribution inference method 

Let 1
iIT

kD and 2
iIT

kD represent the estimated value of delay over link k in MANET for the first 

member and for the second one of the packet pair during the ITi. Since the distribution of a 
link delay is unknown, the characterization of the variable delay is obtained by non-
parametric discrete distributions. The delay could be quantified as a finite set of possible 
delay {0, ,2 ,......, , }Q q q Mq= ∞ , where q , M and ∞  denote the width bin, a positive integer 

and the lost, respectively. The bin associated to iq Q∈  is the interval [ 2 , 2]iq q iq q− + , 

where 0,1,2 ,i M= … . Many similar delays are grouped in a unique interval. The estimation 

of iIT
kD is the probability of these intervals, denoted by ( [ ])i iIT IT

d Qk kP D dα ∈= = . Our goal is to 

estimate ( )ii ITIT
k Vkα α ∈= . Let iITD be the set of delays experienced by the packet pairs along 

each link. It is possible to define the log-likelihood function for the pair ( , )i iIT ITX D of the 

measurement iITX , which is the complete data for inference problem: 

 ( , , ) log [ , ] ( )log ( )ii i i i i ITIT IT IT IT IT
k k

k V d Q

L X D P X D n d dαα α
∈ ∈

= = ∑ ∑  (51) 

Where ( )kn d  is the number of packet pairs with delay d over link k. We estimate 

ˆ ( ) ( ) ( ) ( )iIT
k k kk d n d n d n d nα = =∑  could be estimated by formula (51) with Maximum 

www.intechopen.com



Research on Network Tomography Measurement Technique   

 

185 

Likelihood Estimate. Although ( )kn d  is an unknown value, the maximum of formula (51) 

could be estimated by using the Expectation Maximum algorithm. 
| Initialization. Calculate the ITi to infer Ψ  according to CMM and select the initial delay 

distribution (0)ˆ iITα . First, the positions of the end nodes (source and receivers) are calculated 

by movement parameters along respective circles at time t T∈ . At the same time t, the 
coordinates of the other MN between source and recivers can be obtained. Second, 
comparing the distance between nodes and the radio link range, the topology whose life 

time is from ( )i
startt to ( )i

endt  could be inferred. The distribution of (0)ˆ [ ]ii ITIT
kP D dα = =  is the 

initial distribution for the iterative EM algorithm. 

~ Expectation. Let iITX be discretized to the set Q . The measurement ,
i

i j

IT
rce rcex  depends on 

rcei and rcej, simply iIT
recx . Using theorem of Bayes,  ˆ ( )kn d  could be derived as the following: 

 
( )

( ) ( )

( )
ˆ

1

( )
ˆ ˆ

ˆ ( ) [ | ]

ˆ( )( [ | ] [ ]) ( )

i i i
l

i ii i i i i
s s

n
IT IT IT h

k reck
h

IT IT sIT IT IT IT IT
rec rec reck k

n d P D d X x

n x P X x D d P X x d

α

α α α
=

= = =

= = = =

∑

∑
 (52) 

Where ( )iIT
recn x is the number of times of the same discretized measurement in iIT

recx . The count 

ˆ ( )kn iq for each iq Q∈  can be calculated in the formula (2). The iterative algorithm is 

expressed by the distribution iIT
kα computed at step s.  

¡ Maximization. The conditional expectation calculation of ( 1)ˆ iIT sα +  maximizes the 

function   ( , , )i i iIT IT ITL X D α , given iITX  and ( )ˆ iIT sα . It is possible to obtain the new estimate 

at (s+1)-th step, using the ˆ ( )kn d  in ~.  

¢ Iteration. The joint application ~ and ¡ gives the stationary solution of the 

maximization, and ( 1) ( )ˆ ˆ| |i iIT s IT s thresholdα α+ − < , where threshold allows the algorithm to 

know if the maximum is reached. Although the smaller threshold means the estimations are 
more precise, complicated calculations will be produced. In our simulations (Section 4), 

0.01threshold = . 

3.5.3 Simulation study 

The NS2 simulator could be extended to simulate the traffic through CMM model with 
simulation time of 150s. MANET with two-receiver (3 and 4) is depicted in the Fig. 1-b. We 
simulate 2 scenarios by the CMM in a rectangular field (500m × 500m) with 5 nodes and 
R=250m. We let 3 and 4 be static (v3=v4=0) for simplification, but these nodes is mobile for 

scalability and inferences algorithm. The MN (1 and 2) with 200r = , 10θ °= , 12 /v m s=  

and 1t s= . Radio propagation range for each node is 250 meters and channel capacity is 1.5 

Mb/s. We can easily infer Ψ  throughout 1 8IT s=  ( (1) 32startt s≈ , (1) 40endt s≈ ) and 2 8IT s=  

( (2) 136startt s≈ , (2) 144endt s≈ ), see Fig.1-d. A link between two nodes shows that the two nodes 

can hear each other within IT1 and IT2. The probes comprise packet pairs with a 0.15s inter-
pair time. The packet pairs were CBR with an inter-packet time of 0.1 microseconds by 
periodically sent to 3 and 4.  
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In scenario 1, background traffic consists of 2 TCP connections (2 to 1, 4 to 3) and the source 

is 0 and q=0.1s. In scenario 2, the source is 1, q=0.05s, and background traffic consists of 2 

TCP connections (0 to 3, 4 to 1). The typical initial delay probability of every link can be 

chosen by the uniform distribution from 0 to M.  

Fig.25 shows the simulation results plotted by Matlab6.5 along links (2,3 and 4). From left to 

right show results for link 2, link 3 and link 4. The estimated delay and actual delay are 

indicated with white and black, respectively. Obviously, internal links’ actual average 

delays with high probability (>0.1) accord with estimated average delay. Since the 

complexity of the analysis is a function of the numbers of bins, a small q to ensure a desired 

level of accuracy results in excessive computational costs. 

 

    
 

      
 

      

Fig. 25. Estimated vs. actual delay probability distributions from each scenario.  
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