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Statistical Analog Circuit Simulation:  
Motivation and Implementation 

David C. Potts 
Fairchild Semiconductor Corporation 

USA 

1. Introduction       

New technologies are continually being developed that enable designers to create faster, 
more complex circuits, packed within a shrinking die.  However, along with the promise of 
speed and density comes the challenge of variability, as intra-die device mismatch looms 
proportionately greater. Analog designs typically employ multiple core building block 
circuits, including current mirrors, band gap references, differential pairs and op amps, that 
are especially sensitive to device mismatch. Understanding the impact and potential 
interactions of variations between these matched devices can be critical in producing a 
commercially viable product. 
The first part of this chapter will provide a background on the statistical nature of the 
semiconductor manufacturing process, with a particular focus on their implications on 
device performance. Due to the complexity of interactions coupled with circuit-specific 
design sensitivities, traditional corner models do not provide the designer with sufficient 
accuracy and visibility to thoroughly assess and improve the quality of their designs.  
Corner models also do not account for mismatch, which is a major concern for analog 
designs.  A statistical simulation system that realistically replicates process variability will 
provide the designer with insights to optimize the design.  
The second part of the chapter will delve into the extraction and use of statistical models 
within a statistical simulation system. A properly implemented statistical design tool can 
become one of the greatest assets available to the designer. Following a discussion of 
various published statistical model formulations and extraction methodologies from 
literature, we will consider how they might be incorporated and used within commercially 
available simulators.   
We conclude the chapter with a demonstration that systematically evaluates the 
components of a band gap circuit to isolate matching sensitivities and refine the design for 
optimized results. With the assistance of statistical design analysis, a designer can make 
informed choices that will produce better circuit performance and manufacturability. 

2. Semiconductor process variation 

Semiconductor device and circuit performance will fluctuate due to the inherent underlying 
statistical variation in the process itself. This variation can include both random and 
systematic components. As illustrated in Figure 1, the overall total variance can be 
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partitioned into components reflecting the physical separation of the material during 
processing.   
 

 

Fig. 1. Classifications of Statistical Variation 

Lot-to-lot variance is generally the largest of the components as it reflects significant sources 

of variation not seen in the other groups, including variation across different tools that may 

be used at a given process step, variation between batches of raw materials, along with time-

based trends and cycles relating to tool aging, preventive maintenance, upgrades and 

adjustments.  Wafer to wafer variance can result from the slight differences experienced 

between wafers at single wafer processing steps as well as from gradients across batch 

processed wafers, such as induced by temperature and flow gradients within a furnace tube. 

Die-to-die variance can be an artifact of differences in exposures in stepper based 

lithography or gradients or localized disturbances of wafer uniformity.  Lot-to-lot, wafer-to-

wafer and die-to-die variance combined are often referred to as Global Variation, because all 

devices found on any particular die will be simultaneously and equally affected by them in 

the same way.  In other words, in the world of that particular die, this is a global effect. 

Within-die (device-to-device) variation may include a more localized contribution of some 

of the wafer uniformity effects driving die-to-die variance, as well as individual device 

definition effects resulting in slight non-uniformities in film thicknesses and edge 

definitions, dopant distributions, junction depths, surface roughness, and so on. Within-die 

variance is generally referred to as Local Variation, because the performance of each 

individual device on a given die will be affected slightly differently by it. 

This variation can include both random and systematic components.  The designer may 
have some limited control over certain systematic components relating to device layout, but 
needs to be aware of and have some means to estimate the effects of variation on circuit 
performance. Traditionally, this was done using so-called ‘corner’ models, intended to 
represent the worst case corners of the process variation. 

3. Issues with traditional corner models 

In traditional corner methodologies, ‘worst case’ models were typically created by 
evaluating the sensitivities of critical model parameters individually and then setting each of 
them to their worst case values simultaneously.  The accuracy of this approach, however, 
would be highly dependent on the actual physical correlation between the parameters as 
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well as the cumulative probability that all would be worst case at the same time (Nardi et 
al., 1999).  The corner method also assumes a ‘one-size-fits-all’ solution, when in reality 
different designs and circuit architectures will exhibit different worst case sensitivities.  
Finally, fixed corner models do not account for the intra-device variations that can have a 
major impact on analog circuit performance. 

3.1 The issue of correlation  
To demonstrate the impact of correlation, consider two standard normal variables, X and Y, 
which are summed and scaled to create Z. Figure 2 depicts the results for 3 cases 
representing negative, zero and positive correlation between X and Y:  
 

 

Fig. 2. The Impact of Correlation 

In this simple example, it is intuitively obvious that when X and Y are negatively correlated, 
they would tend to cancel each other out, thus minimizing the resulting variability of Z. 
Conversely, when they are positively correlated, they would tend to reinforce each other, 
creating greater variability. Semiconductor processes, of course, are much more complex 
with a great number of interacting variables. The fact that there are a large number of 
variables brings in the next problem: how to determine which combinations of these 
variables best define the corners? 

3.2 The issue of corner selection  
Assume we have a normally distributed process and we want to define a set of worst case 

corners that encompass an interval of ± 3 standard deviations about its mean (μ ± 3σ). In 

other words, the probability the process would fall outside of our μ ± 3σ corners would be 
about 0.0027. The probability that two different uncorrelated normally distributed variables 
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would both simultaneously fall outside their respective μ ± 3σ is only (0.0027)2 = 0.00000729.   
As the number of independent variables increases, the probability that they would all 

simultaneously fall outside their respective μ ± 3σ windows drops off rapidly, as shown in 
Figure 3a.   

Instead of putting all variables at ± 3σ, we might prefer to find a ± kσ window such that the 
probability of falling outside remains constant at 0.0027 (for n variables, this corresponds to 
the standard normal z score for area of (0.00271/n)/2). As the number of independent 
variables increases, the k value drops, as shown in Figure 3b.   
Of course, there is nothing that forces us to select a corner that puts each variable at the 
same k value.  Figure 3c show the line that plots possible solutions of k values when there 
are only 2 variables to consider (for 3 variables, the solution would be a surface and for n 
variables, it would be an n dimensional space). 

 

Fig. 3.  

(a) Probability of Multiple Variables Falling Outside Their Respective μ ± 3σ Windows 

(b) k Values vs. # Variables for Cumulative Probability Outside μ ± kσ = 0.0027 

(c) Possible Solutions for k1 and k2 for Constant Probability Outside μn ± knσn = 0.0027   

The more variables there are in a given process, the less likely that the uncorrelated 
components within them will all be worst case at the same time.  Ideally, a worst case corner 
would place those parameters that have greatest impact on circuit performance at more 
extreme values, while letting other less important parameters remain at more nominal levels.   
In the context of semiconductor device and circuit performance, the relative importance of a 
given process parameter often depends on the device architecture and operating conditions.  
Figure 4 depicts the sensitivities of several simulated MOS IDS conditions to SPICE model 
parameters lint (channel length offset fitting parameter), wint (channel width offset fitting 
parameter), vth0 (threshold voltage @ Vbs=0), tox (gate oxide thickness) and rdsw (parasitic 
resistance per unit width).   
The underlying independent process variables that would contribute to that variation 
include poly gate lithography, gate oxide deposition and source drain implant and anneal 
(Mutlu & Rahman, 2005).  Being independent, the probability of all of them being worst case 
at the same time is quite low.  Figure 5 further demonstrates this effect, showing the results 
of a 10000 trial Monte Carlo simulation of the propagation delay of a simple inverter cell.  
Although the Monte Carlo completely covers the range of values defined by the worst case 
corner models for the individual model parameters, the resulting propagation delay 
distribution falls well inside the values predicted by the corners, simply because the 
occurrence of those simultaneous worst case conditions is so improbable: 

www.intechopen.com



Statistical Analog Circuit Simulation: Motivation and Implementation   

 

211 

 

Fig. 4. Some Underlying MOS IDS Sensitivities vs. Device Size and Bias Conditions 

 

 

Fig. 5. All Parameters Simultaneously at Worst Case Yields Unrealistic Corners  

Complicating the issue of corner selection is the fact that the worst case conditions may be 

completely different for circuit performance criteria that are sensitive to different process 

perturbations, such as the propagation delay of a CMOS digital logic circuit versus the gain 

of an operational amplifier. Even between related circuit performance parameters within the 

same circuit cell there can be notable differences. Consider the enable and disable 

propagation delays of a sample CMOS digital logic circuit as present in Table 1.  When set to 

the worst case corners for disable (HZ/LZ) delay, TpZH encompasses less than 25% of the 

delay window obtained when using worst case enable corners (0.4nS vs. 1.8nS). The 

difference between the two corners is the placement of Tox. Ordinarily, Tox would be 

reduced for a Fast corner as it provides higher drive.  However, thinner Tox also means 

higher oxide capacitance. The benefit of higher drive more than compensates for the penalty 

of higher capacitance in active delays, but the impact of the higher capacitance dominates 

for disable delays. 

Statistical models are not tied to a particular fixed choice of conditions as corner models are.  
They are generally formulated to reflect underlying process interactions by re-expressing 
the correlated model parameters as functions of an appropriate set of uncorrelated 
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Worst Case Corner Setting 
TpHZ 
(nS) 

TpLZ 
(nS) 

TpZH 
(nS) 

TpZL 
(nS) 

Corner 1: Worst Case Disable Times 3.2/4.6 3.3/4.1 2.3/2.7 2.0/2.5 

Corner 1: Δ Slow - Fast 1.6 0.8 0.4 0.5 

Corner 2: Worst Case Enable Times 3.6/4.2 3.5/3.9 1.6/3.4 1.5/2.9 

Corner 2: Δ Slow - Fast 0.6 0.4 1.8 1.4 

Table 1. Different Circuit Parameters may have Opposing Corner Conditions   

parameters.  When exercising a statistical model, the uncorrelated parameters are perturbed, 
rather than the model parameters directly. These changes are then propagated through to 
the model parameters to generate properly correlated model decks.  While statistical models 
do not inherently resolve the issues of circuit dependencies in and of themselves, they do 
enable the use of exploratory statistical simulation strategies including design of 
experiments and response surface model (DOE/RSM) techniques that can efficiently 
evaluate the response of a given circuit over the entire process/design space to determine 
the particular worst case conditions for a given circuit (Rappitsch et al., 2004; Sengupta et al., 
2004; Zhang et al., 2009).  

3.3 The issue of localized matching variation  
It is imperative for analog/mixed-signal designs, and is becoming increasingly important 
for digital designs as well, that today’s simulation methodologies have the means to 
evaluate the effects of localized device mismatch on circuit performance. Fixed corner 
models applied uniformly across all device instances in a circuit do not provide any 
allowance for mismatch. As seen in Figure 6, the impact of mismatch on analog circuit 
blocks can easily exceed the variation that would otherwise be expected due to global 
variation over the entire process range. Simulating under the effects of global process 
variation only, the current mirror output current, IO, exhibited a standard deviation of 
~50nA, traced predominantly to VT, with some residual sensitivity to LEFF/WEFF and 
 

 

Fig. 6. Statistical Simulation of Basic Current Mirror  
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mobility. Adding in additional slight perturbations to the values of these parameters as 
applied each individual device in the circuit, the standard deviation of IO increased about 
17x to 0.85uA, almost entirely attributed to the slight difference in VT applied between the 
critically matched MOS devices: 
Local mismatch variation is observed by comparing two or more identical devices on a die.  
In the absence of systematic variation, a normally distributed random mismatch variation 
would induce a normal distribution upon a given parameter, P, such that P would be 

expected to have a mean of μP, the average value of P across that die, and a standard 

deviation of σP: 

 P ~ η( μP, σP2) (1) 

The observed difference in P between any two identical devices would be expected to be 

distributed with a mean of 0 and standard deviation of √2σP (variance of 2σP2): 

 ΔP ~ η(0, 2σP2) (2) 

(Lakshmikumar et al., 1986) derived a 1/√(LW) scaling dependence for threshold voltage 
and conductance mismatch.  Using Fourier techniques, (Pelgrom et al., 1989) postulated a 

generalized expression for the variance of ΔP between two rectangular devices as: 

 ( )
2

2 2 2P
P P x

A
S D

WL
σ Δ = +  (3) 

where: W and L are the width and length of each rectangle 
 Dx is the separation distance between the rectangles 
 AP , also known as A factor, is the area coefficient and  
 SP is the spacing coefficient 

As indicated that model, the variance of ΔP would be expected to increase as the device sizes 
decrease and as the devices are spaced farther apart from one another.  The magnitude of 
the A factor is typically a reflection of the process design itself as opposed to specifically 
controllable manufacturing components (Tuinhout, 2002).  For MOS devices, VT, gm and ID 
matching is affected by multiple process architectural components, including S/D and 
channel doping (Tuinhout et al., 2000 & Dubois et al., 2002) and gate poly/oxide definition 
(Difrenza et al. 2003; Brown et al., 2007; Cathignol et al., 2008).   
For analog designs in MOS technologies, threshold voltage mismatch is of particular 
concern.  (Pelgrom et al., 1998) presents a physical representation of AVT, the A factor for 
MOS threshold voltage mismatch, as: 

 
0

2ox depl

VT
ox

q t Nt
A

ε ε

⋅
=  (4) 

where: N represents the total number of doping in the depletion region (Na+Nd) 
 tdepl represents the width of the depletion region 
 tox represents the gate oxide thickness  
A direct relationship between tox and AVT is clearly evident. A former rule of thumb for 

technology nodes over 0.1μm gate length suggested AVT, in saturation regions, would run at 

about 1 mVμm per nm of gate oxide thickness (Pineda de Gyvez & Rodríguez-Montañés, 
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2003).  Within equation (4), the reduction of tox is somewhat offset by the required increases 
in doping levels at reduced geometries. Deep sub-100nm processes bring increasing effects 
from lithography and other gate region uniformity challenges (Brown et al., 2007; Cathignol 
et al., 2008 & Lewyn et al., 2009). Layout effects and neighbouring topology can all induce 
additional mismatch deviations beyond those accounted for in AVT (Drennan et al., 2006 & 
Wils et al., 2010). 
From a design perspective, it is important to take in account the relationship of circuit bias 
selections on resulting mismatch performance (Kinget, 2004). For instance, as VGS 
approaches VT, the relative mismatch variation in ID increases, peaking in subthreshold 
region as shown in Figure 7: 

 

Fig. 7. MOS ID Relative Mismatch Variation Increases in Subthreshold Region 

 

 

Fig. 8. Comparison of Current Mirror Data 

The influence of biasing impacts can be seen in sample current mirror data.  Figure 8 shows 
results, measured over multiple mirror configurations and sizes, for the total observed range 
of Io (expressed as +/- %) relative to the median operating Io value under various test 
conditions.  Mirrors intended to run at very low currents will be exhibit proportionately 
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greater mismatch sensitivities.  Reducing this variation requires larger devices and/or more 
complex mirror configurations, either of which can adversely impact manufacturing costs 
due to a larger die area. 
Statistical models can offer the designer the opportunity to evaluate and compare the effects 

of mismatch on circuit performance under different design scenarios. Relative to corner 

models, statistical models offer improved accuracy, by properly retaining key parameter 

correlations, improved coverage, by not being tied to some arbitrary set of corners, and 

improved capability, by incorporating localized mismatch as well as global process 

variation effects. 

4. Implementing statistical design  

Implementing statistical design requires the development or procurement and integration of 

3 key components:  a simulation tool capable of exercising statistical models, the statistical 

models themselves and finally the appropriate methodologies to use them efficiently and 

cost effectively to validate and improve a circuit’s design (Duvall 2000). The goal of 

statistical circuit modeling is to be able to replicate the observed pattern of global and local 

variances such that their effects on a particular circuit design can be simulated and, if 

necessary, design enhancements introduced prior to committing the design to silicon.   

4.1 Extracting statistical models  
Statistical models are formulated to retain correlation by re-expressing the correlated model 

parameters as functions of an appropriate set of uncorrelated parameters.  When exercising 

a statistical model, the uncorrelated parameters are perturbed, rather than the model 

parameters directly.  These changes are then propagated through to the model parameters 

to generate properly correlated model decks.  

In its most generic representation, a statistical model would define the value of some 
parameter P within the jth device on the ith die as: 

 Pij = μPROCESS + GOFFi + LOFFij (5) 

where: μPROCESS = overall process mean for that parameter. 
 GOFFi = global offset associated with the ith die:  

  (μ=0, σ2=σ2GLOBAL)  
 LOFFij = local offset for the jth device on ith die:  

  (μ=0, σ2=σ2LOCAL)  
As indicated in Figure 9, variations in the independent fabrication process variables (eg: 

implant dose and energy, furnace temperature, ramp time, flow rate, etc.), interact to create 

statistical distributions of the process characteristics (eg: junction depths, doping profiles, 

etc.). Different characteristics may exhibit some degree of correlation to one another due to 

common influences. For example, the annealing temperature/time of a poly implant will 

have some effect on the ultimate doping profiles of earlier source/drain and well 

implants/diffusions. The process architecture design and implementation will influence the 

nature and strength of these correlations. The statistical variations and inter-correlations of 

process characteristics will drive the statistical variations and inter-correlations of the device 

characteristics, as influenced by the device architecture design, and so on. 
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Fig. 9. Progression of Increasingly Complex Parameter Interactions 

It is effectively impossible to precisely track the propagation of the variation and their 
impacts throughout the levels.  We can get a general assessment of process variation from 
inline process data, device variation from wafer electrical test (ET) and circuit performance 
variation via wafer sort (WS) and final test (FT) data, but we have no way of knowing what 
specific process conditions any particular die experienced.  TCAD simulators can be coupled 
together to cover the entire process (Hanson et al., 1996), but that requires very well 
calibrated models as the effects of any errors/omissions would be compounded throughout 
the system. 
The inputs to the circuit simulator (referred to hereafter as the model parameters) are a 
mixture of inter-correlated pseudo-physical as well as non-physical (fitting) parameters. 
Since they are inter-correlated, it is not statistically (or physically) appropriate to perturb 
their values independently of each other.  Proper correlation between the model parameters 
can be maintained by expressing the model parameters as functions of other independent 
parameters which are more suitable for applying direct statistical perturbations. These 
parameterized model expressions can be thought of as behavioral models, developed to 
provide suitable proxy for device characteristic/model parameter distributions as inputs to 
the circuit simulator such that reasonably realistic circuit performance projections can be 
expected. 
Establishing appropriate distributions and intercorrelations of the model parameters can be 
a significant challenge. Wafer electrical test (ET) data is used to characterize a process and 
extract the circuit model parameters. The cumulative effect of the underlying variations in 
the process is manifest in the observed distribution of ET parametric data.  That is: 

 E=f(p) (6) 

where: E = an ET parameter  
 p = a vector of process parameters  
ET data is used to extract the circuit model parameters.  This is generally done by creating a 
large database of ET results obtained over a wide array of device geometries, architecture 
and operating conditions and using a specialized extraction tool, such as ICCAP, to optimize 
the model parameters via curve fitting.  Hence, we have: 

 M=f(E) (7) 
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where: M = a device model parameter  
 E = a vector of ET parameters  
For statistical modeling, the challenge is to define how to alter the model parameters in a 
statistically realistic manner. As stated earlier, it is not appropriate to vary the model 
parameters directly since they are correlated with one another. It is also not feasible to 
estimate the correlation between the model parameters from the model files themselves as 
they are usually only directly extracted for a very limited number of ET sites (and even if a 
suitably large set of model files were generated, there would be concerns over whether the 
model extraction methodology itself might have influenced the results).  TCAD simulation 
can be used to develop models tied back to independent physical components, but this 
introduces additional, compounding sensitivities to the inherent accuracy of each modeled 
stage.  Circuit designers and modelers often have less access to and familiarity with those 
TCAD tools.  They are generally quite familiar with ET data, however, and large samples are 
often readily available from which the necessary statistical information can be determined 
and utilized for statistical modeling (Chen et al., 1996; Potts & Luk, 1998; Singhal & 
Visvanathan, 1999). The variation of several model parameters can be directly mapped to 
the variation in measured or extracted ET characteristics, including vth0 (to measured 
threshold voltage), xl/lint and xw/wint (to extracted LEFF and WEFF calculations, 
respectively), tox (to inverse of gate oxide capacitance) and the sheet resistances of various 
layers.  Others can be proportionally mapped to functions of measured data, including 
mobility (u0 ~ Gm/Cox*[L/W]) and saturation current (is ~ ln(vbe)).    
The first step of the extraction process is to validate the ET data, removing any invalid 
outliers, and transforming each parameter to a standardized normal distribution (keeping 
track of the transformations so that we know how to reverse transform it back later).  Next, 
we perform principal component analysis (PCA) on the transformed data.  PCA is a 
technique that can be used to re-express a correlated set of variables in terms of uncorrelated 
components [16]. An orthogonal transformation matrix, B, is found such that: 

 Y=B(E-Ē) (8) 

 Z=Λ-½ B(E- Ē)=AX (9) 

 S=B’ΛB (10) 

where: E = matrix of correlated ET data, with means Ē 
 Y = matrix of principal components 
  Z = standardized PCA components 
 S = covariance matrix of X1,X2, ...,Xn 

 B’ΛB = spectral decomposition of S 

 Λ = diagonal matrix, diag(λ1,..λn), with λ1>λ2>...>λn the eigenvalues of S 

 Α = Λ-½ B  and  X = (E-Ē)  
Each of the principal components in Y and Z has a mean of 0 and is uncorrelated with all 
other principal components (that is, each Yi is uncorrelated with all other Yi and each Zi is 
uncorrelated with all other Zi).  The variance of each Yi is the value of the corresponding ith 
eigenvalue, while the standardized PCA components, Zi, each have a variance of 1.  If all Xi 
are normal, then each of the Zi is standard normal, which is convenient for formulating the 
statistical models.  For example, to run a monte carlo, the statistical simulation tool would 
generate vectors of Z, with each Zi being a random normal value.  These random vectors of 
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Z would then be reverse transformed back into corresponding vectors of E, from which we 
can map random, but properly correlated, perturbations of M!   
Figure 10 demonstrates this technique.  The black data points represent an actual sample of 
data collected over a 4 month period. The original 6 correlated ET parameters are 
decomposed into 4 uncorrelated PCA components. The matrix between them on the lower 
right graphically depicts that transformation relation. LEFFN and LEFFP are strongly related to 
PCA parameter A, TOXN and TOXP are strongly related to B, VTP is strongly related to D and 
VTN is related to C with dependance on A and D as well.  While the PCA solution is entirely 
a mathematical construct, it may offer insights into the underlying physical relationships.  
Physically, LEFFN and LEFFP would be highly dependent on the gate poly CD, TOXN and TOXP 
on the gate oxide thickness, VTN would be dependent on multiple parameters, including NA, 
TOX, xj and, for short/narrow devices, L/W,  while VTP would have a strong dependence on 
VT adjust implant.  A PCA solution that does not appear to bear any resemblance to a logical 
underlying physical relationship should merit greater scrutiny of the data for a possible 
invalid readings or a need for normality transformation.   

 

Fig. 10.  Example of PCA Transformations: ET > PCA & PCA > ET 

For parameters that cannot be directly mapped to physical data, it will be necessary to 
indirectly estimate appropriate values that will yield appropriate results when used in 
simulation. This includes all mismatch parameters. The backward propagation of variance 
(BPV) technique is quite helpful in this process (McAndrew et al., 1997; Telang & Higman, 
2001, Drennan & McAndrew 2003; McAndrew et al., 2010). Measured ET data is collected 
over a wide spectrum of device geometries and bias conditions.  Simulations are then set up 
covering the same set of parameters. For the first pass of simulations, a small arbitrary value 
of variation is assigned to each of the independent mismatch model parameter (such as 1% 
of its corresponding global variance). These initial simulations are used to determine the 
covariance matrix (or squared correlations) between the mismatch models parameters and 
the resulting simulated mismatch variance. Regression analysis is then performed to fit an 
appropriate vector of mismatch model parameter variance such that the simulated ET 
mismatch variances would approximate the actual measured ET mismatch variances: 
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 σ2
ET=S*σ2

Model (11) 

where: σ2
ET = vector of observed ET variance in measured data 

 S = covariance matrix of simulated ET results vs model parameters 

  σ2
Model = vector of (fitted) variance to assign to model parameters 

 

 

Fig. 11. Example of BPV to Fit Observed ET Data 

4.2 Implementing statistical models  
Over the past decade or so, Monte Carlo and other statistical simulation capabilities have 
been added to commercial SPICE simulators. They enable the use of specially parameterized 
and formulated expressions to implement the desired statistical model behavior (Lu et al., 
2009).  Recent compact models are also incorporating new parameters that, when combined 
with extracted layout information, can better predict important mismatch sensitivities, such 
as stress and well proximity effects (Watts et al., 2006; Yang et al., 2008).   
We have implemented our parameterized statistical models within the Cadence Analog 
Design Environment, utilizing the monte carlo features available within their Statistical 
Analysis Tool (Potts & Luk, 2005). This tool offers the ability to designate random variables 
into two groups, process and mismatch, as declared within a statistics block within the 
model library, prior to the models themselves: 
 

statistics  { 
    process  { 
  vary G1     dist=gauss     std=1 
  …. 
  vary Gn     dist=gauss     std=1 
     } 
    mismatch  { 
  vary L1     dist=gauss     std=1 
  …. 
  vary Lm     dist=gauss     std=1 
     } 
      } 
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Within the models, we then encode the ith model parameter, Pi, as a functions of these 
independent variables by applying the statistical models we have derived for global 
variation , e.g.: fGi(G1,...,Gn),  and mismatch, e.g.: fLi(L1,...,Lm), such that: 

 Pi = PTYPICAL + fGi(G1,...,Gn) + fLi(L1,...,Lm) (5) 

Since we have formulated our statistical models as functions of independent normal 
variables, each of our global variables (G1 - Gn) has been declared as Gaussian distributions 
with a mean of 0 and a standard deviation of 1. The local variables (L1 – Ln) are declared as 

Gaussian distributions with a mean of 0 and a standard deviation of δi (0< δi <1), where δi 
are fitted through a backwards propagation of variance technique.   
With statistical SPICE models in hand, the simplest and most generic analysis methodology, 
equally applicable to dc, transient or any other simulation set-up, utilizes Monte Carlo 
simulations to detect and isolate potential trouble spots in the circuit. With the Cadence 6.x 
ADE-XL/GXL platform, traceability can be enabled to monitor Monte Carlo values applied to 
each instance during each trail, providing a means to quickly locate any design weaknesses. 
The major drawback to Monte Carlo analysis is simulation time.  A large number of trails 
are needed, especially if one needs to accurately evaluate the tails of the distribution.  This is 
less of an issue for small circuits or individual circuit blocks which can be simulated on the 
order of seconds or less per trial.  As such, one strategy for larger circuits would be to break 
it down into blocks, and fitting behavioural macromodels to express the variation of the 
output of one block, which could then be applied as the input to the next block.  Ignoring 
correlation, this could simply be done by redefining a fixed voltage or current as a design 
variable, say V1, set by an additional random variable of desired location and spread, e.g.:  
 

parameters V1 = {desired mean value} 
statistics  { 

   process  {    .... 
  vary V1     dist=gauss     std={desired standard deviation} 
     } 
 

A more proper solution, however, would retain correlation by expressing the V1 voltage as 
a function of the same Monte Carlo variables used in defining the SPICE statistical models 
themselves. This would be done by running Monte Carlo simulations on the circuit block 
that generates the V1 signal, applying regression techniques to fit the resulting V1 over the 
values for the Monte Carlo parameters from each trial, and then using that regression 
equation to define the V1 input to apply to the next block, e.g.: 

parameters V1 = fGi(G1,...,Gn) + fLi(L1,...,Lm)  

There are alternative methods that do not require Monte Carlo, including sensitivity 
analysis, design of experiments (DOE) and response surface modelling (RSM) techniques.  
Typically, a sensitivity analysis is performed to isolate the critical model inputs and then a 
DOE is run over those variables (which generally requires far fewer trials than a Monte 
Carlo), and then RSM is employed to analyze/optimize the results. These methodologies are 
not as readily implemented within standard commercial SPICE simulators, requiring 
significant additional pre-/post-processors for set-up and analysis. Commercial solutions 
are available from 3rd party vendors, however, including Circuit Surfer® (PDF Solutions), 
Variation Designer (Solido Design Automation) and WiCkeD™ (MunEDA GmbH). 
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5. Demonstrational analysis of a band gap circuit  

In this section, we will demonstrate the use of our statistical CAD tools and methodologies 
to characterize and optimize a Bi-CMOS band gap circuit consisting of a MOS bias 
generator, PNP band gap reference and MOS op amp, as shown in Figure 12. The circuit 
was initially designed and simulated to produce a stable reference voltage, VBGOUT, of about 
1.18 +/- 20 mV over corner models. 
 

 

Fig. 12. Band Gap Circuit used in this Example 

The baseline process Monte Carlo projected a VBGOUT σ of 9.5mV – virtually all traced to 
PNP Is variation. 
 

 

Fig. 13. Process-Only Monte Carlo Results 

The combined process and mismatch Monte Carlo generated a much larger variation along 
with a prominent asymmetric low tail: 
 

 

Fig. 14. Combined Process & Mismatch Monte Carlo  
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Partitioned mismatch Monte Carlos quickly pinpointed the source of the tail to MOS 
mismatch sensitivities within the start-up & biasing block:  
  
 

 
 

 
 

Fig. 15. Partitioned Mismatch Monte Carlo Results 

Probing in the biasing block revealed “lurking cliff” ΔVt sensitivities between devices P1 & 
P2 and N3 & N4 (where P1,P2,... refer to devices as labelled in Figure 12):  
 

 

 
 

Fig. 16. Tail Traced to ΔVT in Bias Circuit 

After removing the outlying values in the tail, the remaining mismatch sensitivities are 
traced to the differential pair (P5/P6) and mirror (N5/N6) in the op amp and the PNP pair 
(Q0/Q1) in the band gap: 
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Fig. 17. Non-Tail Sensitivities: Op Amp & Band Gap  

Increasing the sizes of these identified critical devices by about 2x to 3x from their original 

values reduces the Vbgout standard deviation under combined Process & Mismatch Monte 

Carlo from ~ 35mV to ~ 10mV.  At that point, the PNP Is process sensitivity becomes the 

dominant factor in overall VBGOUT variability and any additional mismatch reduction yields 

minimal benefit. 

 
 

 
 

Fig. 18. Overall Variation Optimized @ 2x-3x  

6. Conclusion 

Statistical design offers considerable improvements over traditional worst case design 

methodologies.  New tools and methodologies are being developed and offered in the EDA 

market that will enable the designer to use statistical models efficiently.  A statistical design 

simulation framework enables the opportunity to make more intelligent design choices up 

front that will result in a more robust and manufacturable circuit design.  
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