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1. Introduction

During the past decades, many researchers have investigated stability of switched systems;
due to its potential for real world application such as transportation systems, computer
systems, communication systems, control of mechanical systems, etc. A switched systems
is composed of a family of continuous time (Alan & Lib, 2008; Alan & Lib, 2009, Alan et al.,
2008; Hien et al., 2009; Hien & Phat, 2009; Kim et al., 2006; Li et al., 2009; Niamsup, 2008; Li
et al., 2009; Lien et al., 2009; Lib et al., 2008) or discrete time systems (Wu et al., 2004) and a
switching condition determining at any time instant which subsystem is activated.

In recent years, the stability of systems with time delay has received considerable attention.
Switched system in which all subsystems are stable was studied in (Lien et al., 2009) and
switched system in which subsystems are both stable and unstable was studied in (Alan &
Lib, 2008; Alan & Lib, 2009, Alan et al., 2008). The commonly used approach to stability
analysis of switched systems is Lyapunov theory and some important preliminaries results
have been applied to obtain sufficient conditions for stability of switched systems. A single
Lyapunov function approach is used in (Alan & Lib, 2008) and a multiple Lyapunov functions
approach is used in (Hien et al., 2009; Kim et al., 2006; Li et al., 2009; Lien et al., 2009; Lib
et al., 2008) and the references therein. The asymptotical stability of the linear with time
delay and uncertainties has been considered in (Lien et al., 2009). In (L.V.Hien et al., 2009),
the authors investigated the exponential stability and stabilization of switched linear systems
with time varying delay and uncertainties by using the strictly complete systems of matrices
approach. The strictly complete of the matrices has been also used for the switching condition,
see (Hien et al., 2009; Huang et al., 2005; Niamsup, 2008; Lib et al., 2008; Wu et al., 2004). In
this paper, stability analysis for switched linear and nonlinear systems with uncertainties and
time-varying delay are studied. We obtain the new conditions for exponential stability of
switched system in which subsystems consist of stable and unstable subsystems. The stability
conditions are derived in terms of linear matrix inequality (LMI) by using a new Lyapunov
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function. The free weighting matrices and Newton-Leibniz formula are applied. As a results,
the obtained stability conditions are less conservative comparing to some previous existing
results in the literatures. In particular, comparing to (Alan & Lib, 2008), our results give a
much less conservative results, namely, for stable subsystems, the condition that state matrices
are Hurwitz stable is not required. Moreover, advantages of the paper are that the delay is
time-varying and switched system may have uncertainties. The paper is organized as follows.
In section 1, problem formulation and introduction is addressed. In section 2, we give some
notations, definitions and the preliminary results that will be used in this paper. Switching
design for the exponential stability of the switched system is presented in Section 3. In section
4, numerical examples are given to illustrate the theoretical results. The paper ends with
conclusions and cited references.

2. Preliminaries

The following notations will be used throughout this paper. R
n denotes the n-dimensional

Euclidean space. R
n×n denotes the space of all matrices of n × n-dimensions. AT denotes

the transpose of A. I denotes the identity matrix. λ(A), λM(A), λm(A) denote the set of
all eigenvalues of A, the maximum eigenvalue of A, and the minimum eigenvalue of A,
respectively. For all real symmetric matrix X, the notation X > 0(X ≥ 0, X < 0, X ≤ 0) means
that X is positive definite (positive semidefinite, negative definite, negative semidefinite,
respectively.) For a vector x, ‖xt‖ = sups∈[−hM,0] ‖x(t + s)‖ with ‖x‖ being the Euclidean

norm of vector x.
The switched system under the consideration is described by

ẋ(t) = [Aσ + ∆Aσ(t)]x(t) + [Bσ + ∆Bσ(t)]x(t − h(t))

+ fσ(t, x(t), x(t − h(t))), t > 0,

x(t) = φ(t), t ∈ [−hM, 0], (1)

where x(t) ∈ R
n is the state vector. σ(·) : R

n → S = {1, 2, ..., N} is the switching function.
Let i ∈ S = Su ∪ Ss such that Su = {1, 2, ..., r} and Ss = {r + 1, r + 2, ..., N} be the set of the
unstable and stable modes, respectively. N denotes the number of subsystems. Ai, Bi ∈ R

n×n

are given constant matrices. ∆Ai(t), ∆Bi(t) are uncertain matrices satisfying the following
conditions:

∆Ai(t) = E1iF1i(t)H1i, ∆Bi(t) = E2iF2i(t)H2i, (2)

where Eji, Hji, j = 1, 2, i = 1, 2, ..., N are given constant matrices with appropriate dimensions.
Fji(t) are unknown, real matrices satisfying:

FT
ji (t)Fji(t) ≤ I, j = 1, 2, i = 1, 2, ..., N, ∀t ≥ 0, (3)

where I is the identity matrix of appropriate dimension.
The nonlinear perturbation fi(t, x(t), x(t − h(t))), i = 1, 2, ..., N satisfies the following
condition:

‖ fi(t, x(t), x(t − h(t))) ‖≤ γi ‖ x(t) ‖ +δi ‖ x(t − h(t)) ‖ (4)

for some γi, δi > 0. The time-varying delay function h(t) is assumed to satisfy one of the
following conditions:
(i) when ∆Ai(t) = 0 and ∆Bi(t) = 0 and fi(t, x(t), x(t − h(t))) = 0
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0 ≤ hm ≤ h(t) ≤ hM, ḣ(t) ≤ µ, t ≥ 0,

(ii) when ∆Ai(t) 	= 0 or ∆Bi(t) 	= 0 or fi(t, x(t), x(t − h(t))) 	= 0

0 ≤ hm ≤ h(t) ≤ hM, ḣ(t) ≤ µ < 1, t ≥ 0,

where hm, hM and µ are given constants.
Definition 2.1 (Hien et al., 2009) Given β > 0. The system (1) is β−exponentially stable if
there exists a switching function σ(·) and positive number γ such that any solution x(t, φ) of
the system satisfies

‖ x(t, φ) ‖≤ γe−βt ‖ φ ‖, ∀t ∈ R
+,

for all the uncertainties.
Lemma 2.1 (Hien et al., 2009) For any x, y ∈ R

n, matrices W, E, F, H with W > 0, FTF ≤ I, and
scalar ε > 0, one has
(1.) EFH + HT FTET ≤ ε−1EET + εHT H,
(2.) 2xTy ≤ xTW−1x + yTWy.
Lemma 2.2 (Alan & Lib, 2008) Let u : [t0, ∞] → R satisfy the following delay differential
inequality:

u̇(t) ≤ αu(t) + β sup
θ∈[t−τ,t]

u(θ), t ≥ t0.

Assume that α + β > 0. Then, there exist positive constant ξ and k such that

u(t) ≤ keξ(t−t0), t ≥ t0,

where ξ = α + β and k = sup
θ∈[t0−τ,t0]

u(θ).

Lemma 2.3 (Alan & Lib, 2008) Let the following differential inequality:

u̇ ≤ −αu(t) + β sup
θ∈[t−τ,t]

u(θ), t ≥ t0,

hold. If α > β > 0, then there exist positive k and ζ such that

u(t) ≤ ke−ζ(t−t0), t ≥ t0,

where ζ = α − β and k = sup
θ∈[t0−τ,t0]

u(θ).

Lemma 2.4 (Schur Complement Lemma) (Boyd et al., 1985) Given constant symmetric Q, S
and R ∈ R

n×n where R > 0, Q = QT and R = RT we have
[

Q S
ST −R

]

< 0 ⇔ Q + SR−1ST
< 0.

3. Main results

In this section, we establish exponential stability of uncertain switched system with
time-varying delay. For simplicity of later presentation, we use the following notations:

λ+ = max
i

{ξi, ∀i ∈ Su}, ξi denotes the growth rates of the unstable modes.

λ− = min
i
{ζi, ∀i ∈ Ss}, ζi denotes the decay rates of the stable modes.
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T+(t0, t) denotes the total activation times of the unstable modes over [t0, t).
T−(t0, t) denotes the total activation times of the stable modes over [t0, t).
N(t) denotes the number of times the system is switched on [t0, t).
l(t) denotes the number of times the unstable subsystems are activated on [t0, t).
N(t)− l(t) denotes the number of times the stable subsystems are activated on [t0, t).

ψ =
max

i
{λM(Pi)}

min
j
{λm(Pj)}

.

α1 = min
i
{λm(Pi)}.

α2 = max
i

{λM(Pi)}+ hM max
i

{λM(Qi)}+
h2

M

2
max

i
{λM(Ri)}

+ h2
M max

i
{λM(

[

S11,i S12,i

ST
12,i S22,i

]

)}

+ 2h2
M max

i
{λM(AT

i Ti Ai), λM(AT
i TiBi), λM(BT

i Ti Ai), λM(BT
i TiBi)},

α3 = max
i

{λM(Pi)}+ hM max
i

{λM(Qi)}+
h2

M

2
max

i
{λM(Ri)}

+ h2
M max

i
{λM(

[

S11,i S12,i

ST
12,i S22,i

]

)}.

Ω1,i =

[

Φ11,i Φ12,i

∗ Φ13,i

]

,

Φ11,i = AT
i Pi + Pi Ai + Qi + hMRi + hMS11,i + hM AT

i Ti Ai,

Φ12,i = BT
i Pi + hMS12,i + hM AT

i TiBi,

Φ13,i = −(1 − µ)e−2βhM Qi + hMS22,i + hMBT
i TiBi.

Ω2,i =

[

Φ21,i Φ22,i

∗ Φ23,i

]

,

Φ21,i = AT
i Pi + Pi Ai + Qi + hMRi + hMS11,i + hM AT

i Ti Ai + hMX11,i + Yi + YT
i ,

Φ22,i = BT
i Pi + hMS12,i + hM AT

i TiBi + hMX12,i − Yi + ZT
i ,

Φ23,i = −(1 − µ)e−2βhM Qi + hMS22,i + hMBT
i TiBi + hMX22,i − Zi − ZT

i .

Ω3,i =

⎡

⎣

X11,i X12,i Yi

∗ X22,i Zi

∗ ∗ Ti
2

⎤

⎦ .

Ξi =

[

Φ31,i Φ32,i

∗ Φ33,i

]

,

Φ31,i = AT
i Pi + Pi Ai + Qi + hMRi + hMS11,i + ε−1

1i HT
1i H1i + ε1iPiE

T
1iE1iPi + ε2iPiE

T
2iE2iPi,

Φ32,i = BT
i Pi + hMS12,i,

Φ33,i = −(1 − µ)e−2βhM Qi + hMS22,i + ε−1
2i HT

2iH2i.

Θi =

[

Φ41,i Φ42,i

∗ Υ43,i

]

,

Φ41,i = AT
i Pi + Pi Ai + Qi + hMRi + hMS11,i + ε−1

3i γi I + ε3iPiPi + ε−1
4i HT

4iH4i

+ ε4iPiE
T
4iE4iPi + ε6iPiE

T
5iE5iPi,

Φ42,i = BT
i Pi + hMS12,i,
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Φ43,i = −(1 − µ)e−2βhM Qi + hMS22,i + ε−1
3i δi I + ε−1

5i HT
5i H5i.

3.1 Exponential stability of linear switched system with time-varying delay

In this section, we deal with the problem for exponential stability of the zero solution
of system (1) without the uncertainties and nonlinear perturbation (∆Ai(t) = ∆Bi(t) =
0, fi(t, x(t), x(t − h(t))) = 0).
Theorem 3.1 The zero solution of system (1) with ∆Ai(t) = ∆Bi(t) = 0 and fi(t, x(t), x(t −
h(t))) = 0 is exponentially stable if there exist symmetric positive definite matrices Pi, Qi, Ri,
[

S11,i S12,i

ST
12,i S22,i

]

, Ti and appropriate dimension matrices Yi, Zi such that the following conditions hold:

A1. (i) For i ∈ Su,
Ω1,i > 0. (5)

(ii) For i ∈ Ss,
Ω2,i < 0 and Ω3,i ≥ 0. (6)

A2. Assume that, for any t0 the switching law guarantees that

inf
t≥t0

T−(t0, t)

T+(t0, t)
≥

λ+ + λ∗

λ− − λ∗ (7)

where λ∗ ∈ (0, λ−). Furthermore, there exists 0 < ν < λ∗ such that
(i) If the subsystem i ∈ Su is activated in time intervals [tik−1, tik

), k = 1, 2, ...,
then

ln ψ − ν(tik
− tik−1) ≤ 0, k = 1, 2, ..., l(t). (8)

(ii) If the subsystem j ∈ Ss is activated in time intervals [tjk−1, tjk
), k = 1, 2, ...,

then
ln ψ + ζ jhM − ν(tjk

− tjk−1) ≤ 0, k = 1, 2, ..., N(t)− 1. (9)

Proof. Consider the following Lyapunov functional:

Vi(xt) = V1,i(x(t)) + V2,i(xt) + V3,i(xt) + V4,i(xt) + V5,i(xt)

where xt ∈ C([−hM, 0], R
n), xt(s) = x(t + s), s ∈ [−hM, 0] and

V1,i(x(t)) = xT(t)Pix(t),

V2,i(xt) =
∫ t

t−h(t)
e2β(s−t)xT(s)Qix(s)ds,

V3,i(xt) =
∫ 0

−h(t)

∫ t

t+s
e2β(ξ−t)xT(ξ)Rix(ξ)dξds,

V4,i(xt) =
∫ 0

−h(t)

∫ t

t+s
e2β(ξ−t)

[

x(ξ)
x(ξ − h(ξ))

]T [

S11,i S12,i

ST
12,i S22,i

] [

x(ξ)
x(ξ − h(ξ))

]

dξds,

V5,i(xt) =
∫ 0

−h(t)

∫ t

t+s
ẋT(ξ)Ti ẋ(ξ)dξds.

It is easy to verify that

α1 ‖ x(t) ‖2≤ Vi(xt) ≤ α2 ‖ xt ‖
2, t ≥ 0. (10)
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We have

V1,i(x(t)) ≤ max
i

{λM(Pi)} ‖ x(t) ‖2

=
max

i
{λM(Pi)}

min
j
{λm(Pj)}

min
j
{λm(Pj)}xT(t)x(t)

≤
max

i
{λM(Pi)}

min
j
{λm(Pj)}

xT(t)Pjx(t)

=
max

i
{λM(Pi)}

min
j
{λm(Pj)}

V1,j(x(t)).

Let ψ =
max

i
{λM(Pi)}

min
j
{λm(Pj)}

. Obviously ψ ≥ 1 and we get

Vi(xt) ≤ ψVj(xt), ∀i, j ∈ S. (11)

Taking derivative of V1,i(x(t)) along trajectories of any subsystem ith we have

V̇1,i(x(t)) = ẋT(t)Pix(t) + xT(t)Pi ẋ(t)

=
N

∑
i=1

λi(t)[x
T(t)AT

i Pix(t) + xT(t − h(t))BT
i Pix(t)

+xT(t)Pi Aix(t) + xT(t)PiBix(t − h(t))].

Next, by taking derivative of V2,i(xt), V3,i(xt), V4,i(xt) and V5,i(xt), respectively, along the
system trajectories yields

V̇2,i(xt) = xT(t)Qix(t)− (1 − ḣ(t))e−2βh(t)xT(t − h(t))Qix(t − h(t))− 2βV2,i(xt)

≤ xT(t)Qix(t)− (1 − µ)e−2βh(t)xT(t − h(t))Qix(t − h(t))− 2βV2,i(xt),

V̇3,i(xt) =
∫ 0

−h(t)
[xT(t)Rix(t)− e2βsxT(t + s)Rix(t + s)]ds − 2βV3,i(xt)

≤ hMxT(t)Rix(t)−
∫ t

t−h(t)
e2β(s−t)xT(s)Rix(s)ds − 2βV3,i(xt),

80 Time-Delay Systems

www.intechopen.com



V̇4,i(xt) =
∫ 0

−h(t)
[

[

x(ξ)
x(ξ − h(ξ))

]T [

S11,i S12,i

ST
12,i S22,i

] [

x(ξ)
x(ξ − h(ξ))

]

−e2βs

[

x(t + s)
x(t + s − h(t + s))

]T [

S11,i S12,i

ST
12,i S22,i

] [

x(t + s)
x(t + s − h(t + s))

]

]ds

−e2βs

[

x(t + s)
x(t + s − h(t + s))

]T [

S11,i S12,i

ST
12,i S22,i

] [

x(t + s)
x(t + s − h(t + s))

]

]ds

−2βV4,i(xt)

≤ hM

[

x(t)
x(t − h(t))

]T [

S11,i S12,i

ST
12,i S22,i

] [

x(t)
x(t − h(t))

]

−
∫ t

t−h(t)
e2β(s−t)

[

x(s)
x(s − h(s))

]T [

S11,i S12,i

ST
12,i S22,i

] [

x(s)
x(s − h(s))

]

ds

−e2βs

[

x(t + s)
x(t + s − h(t + s))

]T [

S11,i S12,i

ST
12,i S22,i

] [

x(t + s)
x(t + s − h(t + s))

]

]ds

−2βV4,i(xt)

≤ hM

[

x(t)
x(t − h(t))

]T [

S11,i S12,i

ST
12,i S22,i

] [

x(t)
x(t − h(t))

]

−
∫ t

t−h(t)
e2β(s−t)

[

x(s)
x(s − h(s))

]T [

S11,i S12,i

ST
12,i S22,i

] [

x(s)
x(s − h(s))

]

ds

−2βV4,i(xt),

V̇5,i(xt) =
∫ 0

−h(t)
[ẋT(t)Ti ẋ(t)− ẋT(t + s)Ti ẋ(t + s)]ds

≤ hM ẋT(t)Ti ẋ(t)−
∫ t

t−h(t)
ẋT(s)Ti ẋ(s)ds

= hM ẋT(t)Ti ẋ(t)−
1

2

∫ t

t−h(t)
ẋT(s)Ti ẋ(s)ds −

1

2

∫ t

t−h(t)
ẋT(s)Ti ẋ(s)ds.

Then, the derivative of Vi(xt) along the any trajectory of solution of (1) is estimated by

V̇i(xt) ≤
N

∑
i=1

λi(t)

[

x(t)
x(t − h(t))

]T

Ω⋆

1,i

[

x(t)
x(t − h(t))

]

− 2βV2,i(xt)

−
∫ t

t−h(t)
e2β(s−t)xT(s)Rix(s)ds − 2βV3,i(xt)

−
∫ t

t−h(t)
e2β(s−t)

[

x(s)
x(s − h(s))

]T [

S11,i S12,i

ST
12,i S22,i

] [

x(s)
x(s − h(s))

]

ds

−2βV4,i(xt) + hM ẋ(t)TTi ẋ(t)−
1

2

∫ t

t−h(t)
ẋT(s)Ti ẋ(s)ds

−
1

2

∫ t

t−h(t)
ẋT(s)Ti ẋ(s)ds, (12)
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where

Ω⋆

1,i =

[

AT
i Pi + Pi Ai + Qi + hMRi + hMS11,i BT

i Pi + hMS12,i

∗ −(1 − µ)e−2βhM Qi + hMS22,i

]

Since

∫ 0

−h(t)

∫ t

t+s
e2β(ξ−t)xT(ξ)Rix(ξ)dξds ≤

∫ 0

−h(t)

∫ t

t−h(t)
e2β(ξ−t)xT(ξ)Rix(ξ)dξds

≤ hM

∫ t

t−h(t)
e2β(s−t)xT(s)Rix(s)ds,

we have

−
∫ t

t−h(t)
e2β(s−t)xT(s)Rix(s)ds ≤ −

1

hM

∫ 0

−h(t)

∫ t

t+s
e2β(ξ−t)xT(ξ)Rix(ξ)dξds

= −
1

hM
V3,i(xt). (13)

Similarly, we have

−
∫ t

t−h(t)
e2β(s−t)

[

x(s)
x(s − h(s))

]T [

S11,i S12,i

ST
12,i S22,i

] [

x(s)
x(s − h(s))

]

ds ≤ −
1

hM
V4,i(xt), (14)

and

−
1

2

∫ t

t−h(t)
ẋ(s)Ti ẋ(s)ds ≤ −

1

2hM
V5,i(xt). (15)

From (12), (13), (14) and (15), we obtain

V̇i(xt) ≤
N

∑
i=1

λi(t)

[

x(t)
x(t − h(t))

]T

Ω1,i

[

x(t)
x(t − h(t))

]

− 2βV2,i(xt)

−(2β +
1

hM
)(V3,i(xt) + V4,i(xt))−

1

2hM
V5,i(xt)

−
1

2

∫ t

t−h(t)
ẋ(s)Ti ẋ(s)ds. (16)

For i ∈ Su, we have

V̇i(xt) ≤
N

∑
i=1

λi(t)

[

x(t)
x(t − h(t))

]T

Ω1,i

[

x(t)
x(t − h(t))

]

.

By (5), (16) and Lemma 2.2, there exists ξi > 0 such that

Vi(xt) ≤
N

∑
i=1

λi(t) ‖ Vi(xt0
) ‖ eξ i(t−t0), t ≥ t0. (17)

82 Time-Delay Systems

www.intechopen.com



where ξi =
2 max

i
{λM(Ω1,i)}

min
i
{λm(Pi)}

.

For i ∈ Ss, we have that when Xi =

[

X11,i X12,i

∗ X22,i

]

≥ 0, the following holds:

hM

[

x(t)
x(t − h(t))

]T

Xi

[

x(t)
x(t − h(t))

]

−
∫ t

t−h(t)
e2β(s−t)

[

x(t)
x(t − h(t))

]T

Xi

[

x(t)
x(t − h(t))

]

ds ≥ 0. (18)

Using the Newton-Leibniz formula, (Wu et al., 2004), we can write

x(t − h(t)) = x(t)−
∫ t

t−h(t)
ẋ(s)ds.

Then, for any appropriate dimension matrices Yi and Zi, we have

2[xT(t)Yi + xT(t − h(t))Zi][x(t)−
∫ t

t−h(t)
ẋ(s)ds − x(t − h(t))] = 0.

It follows that

2xT(t)Yix(t)− 2xT(t)Yi

∫ t

t−h(t)
ẋ(s)ds − 2xT(t)Yix(t − h(t)) + 2xT(t − h(t))Zix(t)

−2xT(t − h(t))Zi

∫ t

t−h(t)
ẋ(s)ds − 2xT(t − h(t))Zix(t − h(t)) = 0. (19)

From (16) with (18) and (19), we have

V̇i(xt) ≤
N

∑
i=1

λi(t)

[

x(t)
x(t − h(t))

]T

Ω2,i

[

x(t)
x(t − h(t))

]

− 2βV2,i(xt)

−(2β +
1

hM
)(V3,i(xt) + V4,i(xt))−

1

2hM
V5,i(xt)

−
∫ t

t−h(t)

⎡

⎣

x(t)
x(t − h(t))

ẋ(s)

⎤

⎦

T

Ω3,i

⎡

⎣

x(t)
x(t − h(t))

ẋ(s)

⎤

⎦ ds. (20)

By (6), (20) and Lemma 2.3, there exist ζi > 0 such that

Vi(xt) ≤
N

∑
i=1

λi(t) ‖ Vi(xt0
) ‖ e−ζ i(t−t0), t ≥ t0. (21)

where ζi = min{
min

i
{λm(−Ω2,i)}

max
i

{λM(Pi)}
, 2β,

1

2hM
}.

Let N(t) denotes the number of times the system is switched on [t0, t) such that lim
t→+∞

N(t) =

+∞. Suppose that σ(t0) = i0, σ(t1) = i1, ... and σ(t) = i.
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Let l(t) denotes the number of times the unstable subsystems are activated on [t0, t) and
N(t)− l(t) denotes the number of times the stable subsystems are activated on [t0, t). Suppose
that t0 < t1 < t2 < ... and lim

n→+∞
tn = +∞.

From (11), (17) and (21), suppose that the j th subsystem of unstable mode is activated on the
interval [tl , tl+1),
- if the i th subsystem of unstable mode is activated on the interval [tl−1, tl), then

Vj(xt) ≤ ψ ‖ Vi(xtl−1
) ‖ eξ i(tl−tl−1)eξ j(t−tl), t ∈ [tl, tl+1).

- if the i th subsystem of stable mode is activated on the interval [tl−1, tl), then

Vj(xt) ≤ ψ ‖ Vi(xtl−1
) ‖ e−ζ i(tl−tl−1)eξ j(t−tl), t ∈ [tl , tl+1).

Suppose that the j th subsystem of stable mode is activated on the interval [tl , tl+1),
- if the i th subsystem of unstable mode is activated on the interval [tl−1, tl), then

Vj(xt) ≤ ψ ‖ Vi(xtl−1
) ‖ eξ i(tl−tl−1)e−ζ j(t−tl), t ∈ [tl , tl+1).

- if the i th subsystem of stable mode is activated on the interval [tl−1, tl), then

Vj(xt) ≤ ψ ‖ Vi(xtl−1
) ‖ e−ζ i(tl−tl−1)e−ζ j(t−tl), t ∈ [tl, tl+1).

In general, we get

Vi(xt) ≤
l(t)

∏
m=1

ψeξ im (tm−tm−1) ×
N(t)−1

∏
n=l(t)+1

ψeζ in hM e−ζ in (tn−tn−1)× ‖ Vi0
(xt0

) ‖ e−ζ i(t−tN(t)−1)

≤
l(t)

∏
m=1

ψeλ+(tm−tm−1) ×
N(t)−1

∏
n=l(t)+1

ψeζ in hM e−λ−(tn−tn−1)× ‖ Vi0
(xt0

) ‖ e−λ−(t−tN(t)−1),

t ≥ t0. Using (7), we have

Vi(xt) ≤
l(t)

∏
m=1

ψ ×
N(t)−1

∏
n=l(t)+1

ψeζ in hM× ‖ Vi0
(xt0

) ‖ e−λ∗(t−t0), t ≥ t0.

By (8) and (9), we get

Vi(xt) ≤‖ Vi0
(xt0

) ‖ e−(λ∗−ν)(t−t0), t ≥ t0.

Thus, by (10), we have

‖ x(t) ‖≤

√

α2

α1
‖ xt0

‖ e−
1
2 (λ∗−ν)(t−t0), t ≥ t0,

which concludes the proof of the Theorem 3.1. �

3.2 Robust exponential stability of linear switched system with time-varying delay

In this section, we give conditions for robust exponential stability of the zero solution of
system (1) without nonlinear perturbation, namely fi(t, x(t), x(t − h(t))) = 0. The following
is the main result.
Theorem 3.2 The zero solution of system (1) with fi(t, x(t), x(t− h(t))) = 0 is robustly exponentially

stable if there exist positive real numbers ε1i, ε2i, positive definite matrices Pi, Qi, Ri and

[

S11,i S12,i

ST
12,i S22,i

]

such that the following conditions hold:
A1. (i) For i ∈ Su,

Ξi > 0. (22)
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(ii) For i ∈ Ss,
Ξi < 0. (23)

A2. Assume that, for any t0 the switching law guarantees that

inf
t≥t0

T−(t0, t)

T+(t0, t)
≥

λ+ + λ∗

λ− − λ∗ (24)

where λ∗ ∈ (0, λ−). Furthermore, there exists 0 < ν < λ∗ such that
(i) If the subsystem i ∈ Su is activated in time intervals [tik−1, tik

), k = 1, 2, ...,
then

ln ψ − ν(tik
− tik−1) ≤ 0, k = 1, 2, ..., l(t). (25)

(ii) If the subsystem j ∈ Ss is activated in time intervals [tjk−1, tjk
), k = 1, 2, ...,

then
ln ψ + ζ jhM − ν(tjk

− tjk−1) ≤ 0, k = 1, 2, ..., N(t)− 1. (26)

Proof. Consider the following Lyapunov functional:

Vi(xt) = V1,i(x(t)) + V2,i(xt) + V3,i(xt) + V4,i(xt)

where xt ∈ C([−hM, 0], R
n), xt(s) = x(t + s), s ∈ [−hM, 0], and V1,i(x(t)) = xT(t)Pix(t),

V2,i(xt) =
∫ t

t−h(t)
e2β(s−t)xT(s)Qix(s)ds,

V3,i(xt) =
∫ 0

−h(t)

∫ t

t+s
e2β(ξ−t)xT(ξ)Rix(ξ)dξds,

V4,i(xt) =
∫ 0

−h(t)

∫ t

t+s
e2β(ξ−t)

[

x(ξ)
x(ξ − h(ξ))

]T [

S11,i S12,i

ST
12,i S22,i

] [

x(ξ)
x(ξ − h(ξ))

]

dξds.

It is easy to verify that

α1 ‖ x(t) ‖2≤ Vi(xt) ≤ α3 ‖ xt ‖
2, t ≥ 0. (27)

Similar to (11), we have
Vi(xt) ≤ ψVj(xt), ∀i, j ∈ S. (28)

Taking derivative of V1,i(x(t)) along trajectories of any subsystem ith, we have

V̇1,i(x(t)) = ẋT(t)Pix(t) + xT(t)Pi ẋ(t)

=
N

∑
i=1

λi(t)[x
T(t)AT

i Pix(t) + xT(t)∆AT
i (t)Pix(t) + xT(t − h(t))BT

i Pix(t)

+xT(t − h(t))∆BT
i (t)Pix(t) + xT(t)Pi Aix(t) + xT(t)Pi∆Ai(t)x(t)

+xT(t)PiBix(t − h(t)) + xT(t)Pi∆Bi(t)x(t − h(t))].

Applying Lemma 2.1 and from (2) and (3), we get

2xT(t)∆AT
i (t)Pix(t) ≤ ε−1

1i xT(t)HT
1i H1ix(t) + ε1ix

T(t)PiE
T
1iE1iPix(t),

2xT(t − h(t))∆BT
i (t)Pix(t) ≤ ε−1

2i xT(t − h(t))HT
2i H2ix(t − h(t)) + ε2ix

T(t)PiE
T
2iE2iPix(t).
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Next, by taking derivative of V2,i(xt), V3,i(xt) and V4,i(xt), respectively, along the system
trajectories yields

V̇2,i(xt) ≤ xT(t)Qix(t)− (1 − µ)e−2βh(t)xT(t − h(t))Qix(t − h(t))− 2βV2,i(xt),

V̇3,i(xt) ≤ hMxT(t)Rix(t)−
∫ t

t−h(t)
e2β(s−t)xT(s)Rix(s)ds − 2βV3,i(xt),

V̇4,i(xt) ≤ hM

[

x(t)
x(t − h(t))

]T [

S11,i S12,i

ST
12,i S22,i

] [

x(t)
x(t − h(t))

]

−
∫ t

t−h(t)
e2β(s−t)

[

x(s)
x(s − h(s))

]T [

S11,i S12,i

ST
12,i S22,i

] [

x(s)
x(s − h(s))

]

ds

−2βV4,i(xt).

Therefore, the estimation of derivative of Vi(xt) along any trajectory of solution of (1) is given
by

V̇i(xt) ≤
N

∑
i=1

λi(t)

[

x(t)
x(t − h(t))

]T

Ξi

[

x(t)
x(t − h(t))

]

− 2βV2,i(xt)

−
∫ t

t−h(t)
e2β(s−t)xT(s)Rix(s)ds − 2βV3,i(xt)

−
∫ t

t−h(t)
e2β(s−t)

[

x(s)
x(s − h(s))

]T [

S11,i S12,i

ST
12,i S22,i

] [

x(s)
x(s − h(s))

]

ds

−2βV4,i(xt). (29)

For i ∈ Su, we have

V̇i(xt) ≤
N

∑
i=1

λi(t)

[

x(t)
x(t − h(t))

]T

Ξi

[

x(t)
x(t − h(t))

]

.

Similar to Theorem 3.1, from (22) and (29), we get

Vi(xt) ≤
N

∑
i=1

λi(t) ‖ Vi(xt0
) ‖ eξ i(t−t0), t ≥ t0, (30)

where ξi =
2 max

i
{λM(Ξi)}

min
i
{λm(Pi)}

.

For i ∈ Ss, from (13), (14) and (29), we have

V̇i(xt) ≤
N

∑
i=1

λi(t)

[

x(t)
x(t − h(t))

]T

Ξi

[

x(t)
x(t − h(t))

]

− 2βV2,i(xt)

−(2β +
1

hM
)(V3,i(xt) + V4,i(xt)) (31)
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Similar to Theorem 3.1, from (23) and (31), we get

Vi(xt) ≤
N

∑
i=1

λi(t) ‖ Vi(xt0
) ‖ e−ζ i(t−t0), t ≥ t0. (32)

where ζi = min{
min

i
{λm(−Ξi)}

max
i

{λM(Pi)}
, 2β}.

In general, from (28), (30) and (32), with the same argument as in the proof of Theorem 3.1, we
get

Vi(xt) ≤
l(t)

∏
m=1

ψeλ+(tm−tm−1) ×
N(t)−1

∏
n=l(t)+1

ψeζ in hM e−λ−(tn−tn−1)× ‖ Vi0
(xt0

) ‖ e−λ−(t−tN(t)−1),

t ≥ t0. Using (24), we have

Vi(xt) ≤
l(t)

∏
m=1

ψ ×
N(t)−1

∏
n=l(t)+1

ψeζ in hM× ‖ Vi0
(xt0

) ‖ e−λ∗(t−t0), t ≥ t0.

By (25) and (26), we get

Vi(xt) ≤‖ Vi0
(xt0

) ‖ e−(λ∗−ν)(t−t0), t ≥ t0.

Thus, by (27), we have

‖ x(t) ‖≤

√

α3

α1
‖ xt0

‖ e−
1
2 (λ∗−ν)(t−t0), t ≥ t0,

which concludes the proof of the Theorem 3.2. �

3.3 Robust exponential stability of switched system with time-varying delay and nonlinear

perturbation

In this section, we deal with the problem for robust exponential stability of the zero solution
of system (1).

Theorem 3.3 The zero solution of system (1) is robust exponentially stable if there exist positive

real numbers ε3i, ε4i , ε5i, positive definite matrices Pi, Qi, Ri and

[

S11,i S12,i

ST
12,i S22,i

]

such that the following

conditions hold:

A1. (i) For i ∈ Su,
Θi > 0. (33)

(ii) For i ∈ Ss,
Θi < 0. (34)

A2. Assume that, for any t0 the switching law guarantees that

inf
t≥t0

T−(t0, t)

T+(t0, t)
≥

λ+ + λ∗

λ− − λ∗ (35)
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where λ∗ ∈ (0, λ−). Furthermore, there exists 0 < ν < λ∗ such that
(i) If the subsystem i ∈ Su is activated in time intervals [tik−1, tik

), k = 1, 2, ..., then

ln ψ − ν(tik
− tik−1) ≤ 0, k = 1, 2, ..., l(t). (36)

(ii) If the subsystem j ∈ Ss is activated in time intervals [tjk−1, tjk
), k = 1, 2, ..., then

ln ψ + ζ jhM − ν(tjk
− tjk−1) ≤ 0, k = 1, 2, ..., N(t)− 1. (37)

Proof. Consider the following Lyapunov functional:

Vi(xt) = V1,i(x(t)) + V2,i(xt) + V3,i(xt) + V4,i(xt)

where xt ∈ C([−hM, 0], R
n), xt(s) = x(t + s), s ∈ [−hM, 0] and

V1,i(x(t)) = xT(t)Pix(t),

V2,i(xt) =
∫ t

t−h(t)
e2β(s−t)xT(s)Qix(s)ds,

V3,i(xt) =
∫ 0

−h(t)

∫ t

t+s
e2β(ξ−t)xT(ξ)Rix(ξ)dξds,

V4,i(xt) =
∫ 0

−h(t)

∫ t

t+s
e2β(ξ−t)

[

x(ξ)
x(ξ − h(ξ))

]T [

S11,i S12,i

ST
12,i S22,i

] [

x(ξ)
x(ξ − h(ξ))

]

dξds.

It is easy to verify that

α1 ‖ x(t) ‖2≤ Vi(xt) ≤ α3 ‖ xt ‖
2, t ≥ 0. (38)

Similar to (11), we have
Vi(xt) ≤ ψVj(xt), ∀i, j ∈ S. (39)

Taking derivative of V1,i(x(t)) along trajectories of any subsystem ith we have

V̇1,i(x(t)) = ẋT(t)Pix(t) + xT(t)Pi ẋ(t)

=
N

∑
i=1

λi(t)[x
T(t)AT

i Pix(t) + xT(t)∆AT
i (t)Pix(t) + xT(t − h(t))BT

i Pix(t)

+xT(t − h(t))∆BT
i (t)Pix(t) + f T

i (t, x(t), x(t − h(t)))Pix(t) + xT(t)Pi Aix(t)

+xT(t)Pi∆Ai(t)x(t) + xT(t)PiBix(t − h(t)) + xT(t)Pi∆Bi(t)x(t − h(t))

+xT(t)Pi fi(t, x(t), x(t − h(t)))].

From lemma 2.1, we have

2 f T
i (t, x(t), x(t − h(t)))Pix(t) ≤ f T

i (t, x(t), x(t − h(t)))W−1
i fi(t, x(t), x(t − h(t)))

+xT(t)PiWiPix(t).

By choosing Wi = ε3i Ii and from (4), we have

2 f T
i (t, x(t), x(t − h(t)))Pix(t) ≤ ε−1

3i f T
i (t, x(t), x(t − h(t))) fi(t, x(t), x(t − h(t)))

+ε3ix
T(t)PiPix(t)

≤ ε−1
3i [γix

T(t)x(t) + δix
T(t − h(t))x(t − h(t))]

+ε3ix
T(t)PiPix(t).
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Applying Lemma 2.1 and from (2) and (3), we get

2xT(t)∆AT
i (t)Pix(t) ≤ ε−1

4i xT(t)HT
4i H4ix(t) + ε4ix

T(t)PiE
T
4iE4iPix(t),

2xT(t − h(t))∆BT
i (t)Pix(t) ≤ ε−1

5i xT(t − h(t))HT
5i H5ix(t − h(t)) + ε5ix

T(t)PiE
T
5iE5iPix(t).

Next, by taking derivative of V2,i(xt), V3,i(xt) and V4,i(xt), respectively, along the system
trajectories yields

V̇2,i(xt) ≤ xT(t)Qix(t)− (1 − µ)e−2βh(t)xT(t − h(t))Qix(t − h(t))− 2βV2,i(xt),

V̇3,i(xt) ≤ hMxT(t)Rix(t)−
∫ t

t−h(t)
e2β(s−t)xT(s)Rix(s)ds − 2βV3,i(xt),

V̇4,i(xt) ≤ hM

[

x(t)
x(t − h(t))

]T [

S11,i S12,i

ST
12,i S22,i

] [

x(t)
x(t − h(t))

]

−
∫ t

t−h(t)
e2β(s−t)

[

x(s)
x(s − h(s))

]T [

S11,i S12,i

ST
12,i S22,i

] [

x(s)
x(s − h(s))

]

ds

−2βV4,i(xt).

Then, the derivative of Vi(xt) along any trajectory of solution of (1) is estimated by

V̇i(xt) ≤
N

∑
i=1

λi(t)

[

x(t)
x(t − h(t))

]T

Θi

[

x(t)
x(t − h(t))

]

− 2βV2,i(xt)

−
∫ t

t−h(t)
e2β(s−t)xT(s)Rix(s)ds − 2βV3,i(xt)

−
∫ t

t−h(t)
e2β(s−t)

[

x(s)
x(s − h(s))

]T [

S11,i S12,i

ST
12,i S22,i

] [

x(s)
x(s − h(s))

]

ds

−2βV4,i(xt). (40)

For i ∈ Su, it follows from (40) that

V̇i(xt) ≤
N

∑
i=1

λi(t)

[

x(t)
x(t − h(t))

]T

Θi

[

x(t)
x(t − h(t))

]

. (41)

Similar to Theorem 3.1, from (33) and (41), we get

Vi(xt) ≤
N

∑
i=1

λi(t) ‖ Vi(xt0
) ‖ eξ i(t−t0), t ≥ t0. (42)

where ξi =
2 max

i
{λM(Θi)}

min
i
{λm(Pi)}

.
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For i ∈ Ss, from (13), (14) and (40), we have

V̇i(xt) ≤
N

∑
i=1

λi(t)

[

x(t)
x(t − h(t))

]T

Θi

[

x(t)
x(t − h(t))

]

− 2βV2,i(xt)

−(2β +
1

hM
)(V3,i(xt) + V4,i(xt)). (43)

Similar to Theorem 3.1, from (34) and (43), we get

Vi(xt) ≤
N

∑
i=1

λi(t) ‖ Vi(xt0
) ‖ e−ζ i(t−t0), t ≥ t0. (44)

where ζi = min{
min

i
{λm(−Θi)}

max
i

{λM(Pi)}
, 2β}.

In general, from (39), (42) and (44), with the same argument as in the proof of Theorem 3.1, we
get

Vi(xt) ≤
l(t)

∏
m=1

ψeλ+(tm−tm−1) ×
N(t)−1

∏
n=l(t)+1

ψeζ in hM e−λ−(tn−tn−1)× ‖ Vi0
(xt0

) ‖ e−λ−(t−tN(t)−1),

t ≥ t0. Using (35), we have

Vi(xt) ≤
l(t)

∏
m=1

ψ ×
N(t)−1

∏
n=l(t)+1

ψeζ in hM× ‖ Vi0
(xt0

) ‖ e−λ∗(t−t0), t ≥ t0.

By (36) and (37), we get

Vi(xt) ≤‖ Vi0
(xt0

) ‖ e−(λ∗−ν)(t−t0), t ≥ t0.

Thus, by (38), we have

‖ x(t) ‖≤

√

α3

α1
‖ xt0

‖ e−
1
2
(λ∗−ν)(t−t0), t ≥ t0,

which concludes the proof of the Theorem 3.3. �

4. Numerical examples

Example 4.1 Consider linear switched system (1) with time-varying delay but without matrix
uncertainties and without nonlinear perturbations. Let N = 2, Su = {1}, Ss = {2}. Let
the delay function be h(t) = 0.51 sin2 t. We have hM = 0.51, µ = 1.02, λ(A1 + B1) =
0.0046, −0.0399, λ(A2) = −0.2156, 0.0007. Let β = 0.5.
Since one of the eigenvalues of A1 + B1 is negative and one of eigenvalues of A2 is positive,
we can’t use results in (Alan & Lib, 2008) to consider stability of switched system (1). By using
the LMI toolbox in Matlab, we have matrix solutions of (5) for unstable subsystems and (6) for
stable subsystems as the following:
For unstable subsystems, we get
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P1 =

[

41.6819 0.0001
0.0001 41.5691

]

, Q1 =

[

24.7813 −0.0002
−0.0002 24.7848

]

, R1 =

[

33.1027 −0.0001
−0.0001 33.1044

]

,

S11,1 =

[

33.1027 −0.0001
−0.0001 33.1044

]

, S12,1 =

[

−0.0372 −0.0023
−0.0023 0.7075

]

, S22,1 =

[

50.0412 0.0001
0.0001 50.0115

]

,

T1 =

[

41.7637 −0.0001
−0.0001 41.7920

]

.

For stable subsystems, we get

P2 =

[

71.8776 2.3932
2.3932 110.8889

]

, Q2 =

[

7.2590 −0.3265
−0.3265 0.8745

]

, R2 =

[

10.4001 −0.4667
−0.4667 1.2806

]

,

S11,2 =

[

12.7990 −0.4854
−0.4854 3.5031

]

, S12,2 =

[

−3.1787 0.0240
0.0240 −2.8307

]

, S22,2 =

[

4.6346 −0.0289
−0.0289 4.0835

]

,

T2 =

[

16.9964 0.0394
0.0394 17.7152

]

, X11,2 =

[

17.2639 −0.1536
−0.1536 14.2310

]

, X12,2 =

[

−9.6485 −0.1466
−0.1466 −12.5573

]

,

X22,2 =

[

16.9716 −0.1635
−0.1635 13.8095

]

, Y2 =

[

−3.4666 −0.1525
−0.1525 −6.3485

]

, Z2 =

[

6.8776 −0.0574
−0.0574 5.7924

]

.

By straight forward calculation, the growth rate is λ+ = ξ = 2.8291, the decay rate is λ− =
ζ = 0.0063, λ(Ω1,1) = 25.8187, 25.8188, 58.7463, 58.8011, λ(Ω2,2) = −10.1108,−3.7678,
− 2.0403,−0.7032 and λ(Ω3,2) = 1.4217, 4.2448, 5.4006, 9.1514, 29.3526, 30.0607. Thus, we may
take λ∗ = 0.0001 and ν = 0.00001. Thus, from inequality (7), we have T− ≥ 456.3226 T+. By
choosing T+ = 0.1, we get T− ≥ 45.63226. We choose the following switching rules:
(i) for t ∈ [0, 0.1) ∪ [50, 50.1) ∪ [100, 100.1) ∪ [150, 150.1) ∪ ..., subsystem i = 1 is activated.
(ii) for t ∈ [0.1, 50) ∪ [50.1, 100) ∪ [100.1, 150) ∪ [150.1, 200) ∪ ..., subsystem i = 2 is activated.
Then, by Theorem 3.1, the switching system (1) is exponentially stable. Moreover, the solution
x(t) of the system satisfies

‖ x(t) ‖≤ 11.8915e−0.000045t , t ∈ [0, ∞).

The trajectories of solution of switched system switching between the subsystems i = 1 and
i = 2 are shown in Figure 1, Figure 2 and Figure 3, respectively.
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Fig. 1. The trajectories of solution of linear switched system.
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Fig. 2. The trajectories of solution of subsystem i = 1.
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Fig. 3. The trajectories of solution of subsystem i = 2.

Example 4.2 Consider uncertain switched system (1) with time-varying delay and nonlinear
perturbation. Let N = 2, Su = {1}, Ss = {2} where

A1 =

[

0.1130 0.00013
0.00015 −0.0033

]

, B1 =

[

0.0002 0.0012
0.0014 −0.5002

]

,

A2 =

[

−5.5200 1.0002
1.0003 −6.5500

]

, B2 =

[

0.0245 0.0001
0.0001 0.0237

]

,

E1i = E2i =

[

0.2000 0.0000
0.0000 0.2000

]

, H1i = H2i =

[

0.1000 0.0000
0.0000 0.1000

]

, i = 1, 2,

F1i = F2i =

[

sin t 0
0 sin t

]

, i = 1, 2,
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f1(t, x(t), x(t − h(t))) =

[

0.1x1(t) sin(x1(t))
0.1x2(t − h(t)) cos(x2(t))

]

,

f2(t, x(t), x(t − h(t))) =

[

0.5x1(t) sin(x1(t))
0.5x2(t − h(t)) cos(x2(t))

]

.

From

‖ f1(t, x(t), x(t − h(t))) ‖2 = [0.1x1(t) sin(x1(t))]
2 + [0.1x2(t − h(t)) cos(x2(t))]

2

≤ 0.01x2
1(t) + 0.01x2

2(t − h(t))

≤ 0.01 ‖ x(t) ‖2 +0.01 ‖ x(t − h(t)) ‖2

≤ 0.01[‖ x(t) ‖ + ‖ x(t − h(t)) ‖]2,

we obtain
‖ f1(t, x(t), x(t − h(t))) ‖≤ 0.1 ‖ x(t) ‖ +0.1 ‖ x(t − h(t)) ‖ .

The delay function is chosen as h(t) = 0.25 sin2 t. From

‖ f2(t, x(t), x(t − h(t))) ‖2 = [0.5x1(t) sin(x1(t))]
2 + [0.5x2(t − h(t)) cos(x2(t))]

2

≤ 0.25x2
1(t) + 0.25x2

2(t − h(t))

≤ 0.25 ‖ x(t) ‖2 +0.25 ‖ x(t − h(t)) ‖2

≤ 0.25[‖ x(t) ‖ + ‖ x(t − h(t)) ‖]2,

we obtain
‖ f2(t, x(t), x(t − h(t))) ‖≤ 0.5 ‖ x(t) ‖ +0.5 ‖ x(t − h(t)) ‖ .

We may take hM = 0.25, and from (4), we take γ1 = 0.1, δ1 = 0.1, γ2 = 0.5, δ2 = 0.5. Note that
λ(A1) = 0.11300016, −0.00330016. Let β = 0.5, µ = 0.5. Since one of the eigenvalues of A1 is
negative, we can’t use results in (Alan & Lib, 2008) to consider stability of switched system
(1). From Lemma 2.4 , we have the matrix solutions of (33) for unstable subsystems and of
(34) for stable subsystems by using the LMI toolbox in Matlab as the following:
For unstable subsystems, we get
ε31 = 0.8901, ε41 = 0.8901, ε51 = 0.8901,

P1 =

[

0.2745 −0.0000
−0.0000 0.2818

]

, Q1 =

[

0.4818 −0.0000
−0.0000 0.5097

]

, R1 =

[

0.8649 −0.0000
−0.0000 0.8729

]

,

S11,1 =

[

0.8649 −0.0000
−0.0000 0.8729

]

, S12,1 = 10−4 ×

[

−0.1291 −0.8517
−0.8517 0.1326

]

,

S22,1 =

[

1.0877 −0.0000
−0.0000 1.0902

]

.

For stable subsystems, we get
ε32 = 2.0180, ε42 = 2.0180, ε52 = 2.0180,

P2 =

[

0.2741 0.0407
0.0407 0.2323

]

, Q2 =

[

1.3330 −0.0069
−0.0069 1.3330

]

, R2 =

[

1.0210 −0.0002
−0.0002 1.0210

]

,

S11,2 =

[

1.0210 −0.0002
−0.0002 1.0210

]

, S12,2 =

[

−0.0016 −0.0002
−0.0002 −0.0016

]

,

S22,2 =

[

0.8236 −0.0006
−0.0006 0.8236

]

.

By straight forward calculation, the growth rate is λ+ = ξ = 8.5413, the decay
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rate is λ− = ζ = 0.1967, λ(Θ1) = 0.1976, 0.2079, 1.1443, 1.1723 and λ(Θ2) =
−0.7682,−0.6494,−0.0646,−0.0588. Thus, we may take λ∗ = 0.0001 and ν = 0.00001.
Thus, from inequality (35), we have T− ≥ 43.4456 T+. By choosing T+ = 0.1, we get
T− ≥ 4.34456. We choose the following switching rules:
(i) for t ∈ [0, 0.1) ∪ [5.0, 5.1) ∪ [10.0, 10.1) ∪ [15.0, 15.1) ∪ ..., system i = 1 is activated.
(ii) for t ∈ [0.1, 5.0) ∪ [5.1, 10.0) ∪ [10.1, 15.0) ∪ [15.1, 20.0) ∪ ..., system i = 2 is activated.
Then, by theorem 3.3.1, the switched system (1) is exponentially stable. Moreover, the solution
x(t) of the system satisfies

‖ x(t) ‖≤ 1.8770e−0.000045t , t ∈ [0, ∞).

The trajectories of solution of switched system switching between the subsystems i = 1 and
i = 2 are shown in Figure 4, Figure 5 and Figure 6, respectively.
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Fig. 4. The trajectories of solution of switched system with nonlinear perturbations

5. Conclusion

In this paper, we have studied the exponential stability of uncertain switched system with
time varying delay and nonlinear perturbations. We allow switched system to contain stable
and unstable subsystems. By using a new Lyapunov functional, we obtain the conditions for
robust exponential stability for switched system in terms of linear matrix inequalities (LMIs)
which may be solved by various algorithms. Numerical examples are given to illustrate the
effectiveness of our theoretical results.
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