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1. Introduction 

Despite good development in modern analytical instruments, direct determination of trace 
analytes at low concentrations is often a problem for analytical chemists and, as a result, a 
sample-preparation step is required. The sample preparation in analytical process typically 
consists of an extraction–separation step, which offers not only the ability to isolate target 
analytes from the matrix solution, thus reducing or even eliminating originally present 
interferences but also the opportunity for these analytes to be preconcentrated and 
determined at very low levels. Liquid–liquid extraction (LLE), based on the partitioning of 
an analyte from one liquid phase to another immiscible liquid phase, is a still widely used 
traditional sample preparation technique. However, this method is time-consuming and 
tedious. Also large amounts of high purity solvents, which are expensive and toxic, are 
inevitable to be used. The continuous quest for novel sample preparation procedures has led 
to a development of new methods, which have main advantages like rapidity and reduction 
of solvents consumption, such as cloud point extraction (CPE), solid-phase microextraction 
(SPME), single drop microextraction (SDME), hollow fiber-liquid phase microextraction 
(HF-LPME), dispersive liquid–liquid microextraction (DLLME) and others. 
Cloud point extraction is considered to be a green extraction method because the extraction 
is performed while using surfactants, which may exhibit lower toxicity, volatility and 
flammability compared with organic solvents used in other extraction techniques. This 
technique is widely used in extraction of metals (Bezerra et al., 2005; Dallali et al., 2009), 
organic compounds (Carabias-Martinez et al., 2000) and proteins (Saitoh & Hinze, 1995). 
Despite many benefits when using CPE, in rather high content of salt, background is 
increased since the enrichment phase is composed of a little aqueous sample. Also in the 
presence of more than 3 % of water-miscible organic solvents such as acetone the phase 
separation does not occur and the extraction system is destroyed (Manzoori & Karim-
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Nezhad, 2003). In addition, the application of this technique is limited by the influence of 
temperature, pressure, pH, and selection of specified surfactants (Paleologos et al., 2005).  
Solid-phase microextraction (SPME), a widely used sample preparation technique, is a 
solventless, simple and convenient method, which combines extraction, preconcentration 
and sample introduction in one step (Risticevic et al., 2009). However, it is expensive; its 
fiber is fragile and has a limited lifetime. Unfortunately, large amounts of eluents are used in 
this method. In addition, the carryover between extractions is also problematic when 
determining some analytes at very low concentrations. 
Single-drop microextraction is a type of solvent microextraction (SME) technique that is 
performed by exposing a single drop of solvent to the headspace or directly into the matrix 
of the sample (Genfa & Dasgupta, 2000; He & Lee, 1997; Jeannot & Cantwell, 1996; Liu & 
Dasgupta, 1995). It was developed as a solvent-minimized sample preparation procedure, 
which is inexpensive and advantageous. Since very little amount of the solvent is used, 
there is a minimal exposure to toxic organic solvents (Ahmadi et al., 2006; Jeannot & 
Cantwell, 1997). In comparison with solid phase microextraction, it has advantages like 
wide choice of extraction solvents, cheaper devices and simpler operation and no analyte 
carryover occurs. However, relatively small volumes of extractant drop lead to lower 
sensitivity. In addition, it is time-consuming and at fast stirring rates, the organic drop is 
broken up and air bubbles are formed. 
Hollow-fiber liquid-phase microextraction is a sample preparation technique, in which the 
analytes are extracted into an organic layer filled in pores of a suspended hollow fiber or 
further extracted back into an aqueous phase inside the fiber, depending on whether a two-
phase or three-phase system is applied (Pedersen-Bjergaard & Rasmussen, 1999; Rasmussen 
& Pedersen-Biergaard, 2004). Because of the larger contact area between the analyte aqueous 
solution and extraction phase, the extraction efficiency obtained with this method is higher 
than with SDME. However, the extraction procedure is tedious and in most cases, the 
extraction equilibrium is not attained during a short time. Moreover, carryover and 
contamination of the hollow fiber can be an outcome.  
Dispersive liquid-liquid microextraction (DLLME), another type of SME which was 
developed in 2007, is simple, fast and inexpensive. However, the amount of used disperser 
solvent is relatively high, therefore it may lead to decrease of the extraction recovery of less 
hydrophobic species. 
In recent years, room-temperature ionic liquids (RTILs) have attracted increasing interest 
and are applied more and more as the extraction solvent replacing the volatile solvent in 
sample preparation (Huddleston et al., 1998), due to their unique chemical and physical 
properties, such as negligible vapour pressure, non-flammability, good extractability for 
various organic compounds and metal ions as a neutral or charged complexes, as well as 
tunable viscosity and miscibility with water and organic solvents. However, most of them 
were conducted in the liquid–liquid extraction and as a result a large volume of ionic liquid 
was required (Smirnova et al., 2004; Xia et al., 2006), which is tedious and costly. Then the 
microextraction based on ILs was developed by Liu et al. (Liu et al., 2003). Subsequently, 
due to a combination of the viscosity and the expense of ionic liquids, we used an ionic 
liquid (IL) at the microscale for the analytical extraction and the determination of mercury 
ions in water samples by using spectrophotometric detection (Gharehbaghi et al., 2009). 
In 2008 Baghdadi and Shemirani developed a new method called cold-induced aggregation 
microextraction (CIAME), which was based on the use of ILs in homogeneous liquid–liquid 
microextraction (HLLME) (Baghdadi & Shemirani, 2008). In this method, a very small 
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amount of hydrophobic IL as an extractant solvent is dissolved in the sample solution 
containing Triton X-114. Triton X-114 prevents IL from sticking onto the surface of a 
centrifuge tube wall, therefore we have named it “anti-sticking agent”. One should be aware 
that there is no interface between the water and the extractant phases; as a result mass 
transfer from aqueous phase into separated phase has no important effect on the extraction 
step. After dissolving, the solution is cooled in the ice bath, a cloudy solution is formed due 
to the solubility reduction of IL and fine droplets of it are formed. During the formation of 
fine droplets of the extractant phase, the hydrophobic species are collected by the extractant 
molecules and the extraction process is completed after the formation of the droplets. After 
centrifuging, the fine droplets of extractant phase settle to the bottom of the conical-bottom 
glass centrifuge tube. 
This method is simple, rapid, safe and robust against high content of salt and water-miscible 
organic solvents. In comparison with CPE, background is too low in case of saline solutions, 
because of very low solubility of water in ILs. Also, owing to high viscosity of ILs, removal 
of bulk aqueous phase is easier. This method is more suitable for the extraction of heat-
susceptible species in comparison with CPE. CIAME provides a high recovery and has a low 
toxicity since only very small amounts of IL as a “green extraction solvent” is used.  

2. Importance 

2.1 Cobalt; the occurrence, benefits and applications, exposure and toxicity and 
methods of determination 

Cobalt is a natural element found throughout the environment, used in pigment 
manufacture and used to make superalloys (alloys that maintain their strength at high 
temperatures approaching their melting points). It can benefit or harm human health. Cobalt 
is an essential element in people's lives, as a constituent of vitamin B12. It has also been used 
as a treatment for anemia, because it stimulates red blood cell production. The significance 
of cobalt as a transition metal in its wide spectrum of applications is covering many frontier 
areas of study, particularly in medicine. We can be exposed to low levels of cobalt by 
breathing air, eating food or drinking water. Food and drinking water are the largest 
sources of exposure to cobalt for general population. 
Toxicological effects of large amounts of cobalt include vasodilatation, flushing and 
cardiomyopathy in men and animals (Yuzefovsky et al., 1994). Even though cobalt is not 
considered to be as toxic as most heavy metals, it is an equally harmful element. Hence 
owing to the importance of cobalt, its determination from associated elements by extractive 
spectrophotometry has been of a considerable importance.  
A wide variety of chelating agents has been reported for the spectrophotometric 
determination of cobalt (Appadoo & Bhagwat, 1994; Carvalho et al., 1996; Chaudhari & 
Sawant, 1993; Dasilva & Martins, 1992; Kalika et al., 1993; Kamburova et al., 1994; 
Khambekar & Sawant, 1997; Lokhande et al., 1996; Maheshwari & Balasubramanian, 1995; 
More & Sawant, 1992; Pillai & Shinde, 1995; R.A. Chaudhari & A.D. Sawant, 1993; Reddy & 
Sarma, 1994; Sharma & Dave, 1997; Shen et al., 1995; Taher & Puri, 1995; Toral et al., 1993; 
Umebayashi & Ishiguro, 1996). However, these methods suffer from limitations such as 
critical pH (Dasilva et al., 1992; Maheshwari et al., 1995; Pillai et al., 1995), long color 
development time (Umebayashi et al., 1996) and interference with some ions (Chaudhari et 
al., 1993; Kalika et al., 1993; Lokhande et al., 1996; Maheshwari et al., 1995; More et al., 1992; 
Pillai et al., 1995; Reddy et al., 1994; Toral et al., 1993; Umebayashi et al., 1996). 
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In addition, the preconcentration and determination of cobalt (II) has been studied in 
various extraction methods such as: liquid-liquid extraction (LLE), flow injection extraction 
(FIE), cloud point extraction (CPE), solid phase extraction (SPE) and dispersive liquid-liquid 
microextraction (DLLME). 
New LLE methods based on liquid membranes (Kakoi et al., 1998; Ribeiro et al., 2004) and 
hollow fiber contactors (Soldenhoff et al., 2005) were used for extraction and 
preconcentration of cobalt. However, it is time-consuming, tedious and uses large amounts 
of high purity solvents, which are expensive and toxic. The continuous quest for novel 
sample preparation procedures has led to a development of new methods, among which 
main advantages belong their speed and negligible volume of used solvents. Initial efforts to 
address the problem of large solvent consumption have led to a development of the FIE 
method. Some of these methods have been applied for cobalt extraction (Andac et al., 2001; 
Cao et al., 1999; Cassella et al., 2001; Dadfarnia & Jafarzadeh, 1999; Dzherayan et al., 2002; 
Fujimoto et al., 1999; Li et al., 2006a; Li et al., 2006b; Nogueira et al., 1998; Shabani et al., 
2003; Song et al., 2006; Tsakovski et al., 2002). FIE has some advantages compared with LLE 
like low cost, high extraction speed and reduced solvent and sample consumption. 
However, the amount of used solvent is still in the order of several hundred micro liters per 
analysis.  
Also preconcentration of cobalt in some CPE methods has been reported (Bezerra et al., 
2007; Chen & Teo, 2001; Donati et al., 2006; Ghaedi et al., 2008; Gil et al., 2008; Nascentes & 
Arruda, 2003; Safavi et al., 2004; Shemirani & Shokoufi, 2006; Shokoufi et al., 2007b). Despite 
many benefits from the use of CPE, in high content of salt, background is increased since the 
enrichment phase is composed of a little aqueous sample and in very high content of salt, 
the density of the sample becomes equal or even higher than that of micelles, therefore they 
can not be settled. Also in the presence of more than 3 % of water-miscible organic solvents 
such as acetone phase separation does not occur. 
Several SPE preconcentration procedures for cobalt have been reported using various 
sorbents (Blitz-Raith et al., 2007; Ghaedi et al., 2007; Praveen et al., 2005; Yang et al., 2002).  
DLLME is a type of solvent microextraction (SME), which has been developed in 2007. A 
combined method including fiber optic-linear array detection spectrophotometry (FO-
LADS) and DLLME was developed for preconcentration and determination of cobalt 
(Shokoufi et al., 2007a).  In this method 1,2-dichlorobenzene (a harmful  solvent) was used as 
an extractant.  Another DLLME method, which was applied to preconcentrate trace levels of 
cobalt as a prior step to its determination by spectrophotometric detection, was reported 
(Gharehbaghi et al., 2008). This method is simple, fast and inexpensive. However, the 
amount of used disperser solvent is relatively high, therefore it may happen that recoveries 
of relatively less hydrophobic species decrease. 
Homogeneous liquid-liquid microextraction (HLLME) utilizes the phase separation 
phenomenon from a homogeneous solution and the target solutes are extracted into a 
separated phase. However, HLLME has some problems; for instance, sometimes it is not 
compatible with some instrumental analysis and it also requires an addition of a reagent 
such as acid, base, salt, etc. As a result, some interesting compounds are probably destroyed; 
moreover, the addition of the reagent causes a release of heat during the extraction. 

2.2 Vantage points of cold-induced aggregation microextraction method 

In this research the performance of CIAME was investigated with the determination of 
cobalt in water samples using FO-LADS. The effects of various experimental parameters on 
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the extraction were investigated. This method is simple, rapid and viscosity independent for 
extraction and preconcentration of metal ions and organic compounds from water samples, 
and is robust against high content of salt and water-miscible organic solvents. Additionally, 
in comparison with the organic solvent extraction, it is much safer since only small amounts 
of surfactant and IL are used which are being considered as “green solvents” for various 
separation processes and in comparison with IL-based DLLME, the extraction recoveries of 
CIAME are relatively high  (Gharehbaghi et al., 2009). 
Another important capability of this method is that it can be operated in a continuous mode. 
If the solution is cooled during centrifuging, fine droplets of extractant phase are 
continuously formed and analytes are extracted and transferred to the bottom of the 
centrifuge tube. In order to have a good recovery in case of microextraction in which the 
volume of the extractant solvent is very small, a large distribution coefficient is necessary, 
unless the recovery is low and continuous microextraction is required. This project is 
currently being performed in our laboratory. 

3. Experimental  

3.1 Instrumentation 

A UV–vis light source, optical fiber and spectrograph model 2048 were prepared from 
Avantes (Eerbeek, Netherlands) for FOLADS. A 50 µL quartz cylindrical micro-cell (Hellma, 
Mullheim, Germany) was used as a determination cell. A Universal 320R refrigerated 
centrifuge equipped with an angle rotor (6-place, 9000 rpm, Cat. No.1620A) and a Jeio Tech 
BW-05G water bath were obtained from Hettich (Kirchlengern, Germany). 

3.2 Reagents  

All used reagents were of analytical grade. Triply distilled water was used throughout the 
experiment. 1-(2-pyridylazo)-2-naphthol (PAN), acetone, ethanol, acetic acid, 1-hexyl-3-
methylimidazolium hexafluorophosphate [Hmim][PF6] and 1- hexyl-3-methylimidazolium 
bis (trifluoromethylsulfonyl) imide [Hmim][Tf2N] and all used salts were obtained from 
Merck (Darmstadt, Germany). Triton X-100 and Triton X-114 were purchased from Fluka 
(Buchs, Switzerland). A stock solution of cobalt (II) (1000 mg L−1) was prepared by 
dissolving appropriate amount of CoCl2·6H2O and working standard solutions were 
obtained by appropriate stepwise dilution of the stock standard solutions. All stock and 
working standard solutions were stored in plastic (polypropylene) bottles with leak proof 
screw cap, which were cleaned before being used by soaking in 10% nitric acid solution for 
at least 24 h and then rinsed thoroughly with triply distilled water. A 10−3 mol L−1 PAN 
solution was prepared by dissolving the appropriate amount in absolute ethanol. The 
viscosity of ILs is high and their handling is difficult, therefore working solutions 
([Hmim][PF6], 0.8 mg µL−1 and [Hmim][Tf2N], 0.5 mg µL−1) were prepared in acetone. 

3.3 Cold-induced aggregation microextraction procedure 

The sample or standard solution containing Co(II) in the range of 1.5–65 ng mL−1, PAN 
(2.5×10−5 mol L−1), Triton X-114 (0.05 %, w/v), sodium nitrate (0.25 %, w/v), oxalate 
(4.0×10−3 mol L−1) was poured in a 10 mL conical-bottom glass centrifuge tube. After 1 or 2 
min, while greenish complex of cobalt was formed, pH of the solution was adjusted to 1 by 
concentrated HCl. [Hmim][PF6] (64mg) and [Hmim][Tf2N] (5 mg) were added and the 
volume of the solution was adjusted to 10.0 mL by triply distilled water. After that, tube was 
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kept in a thermostated bath at 35 ◦C for 4 min. After shaking, it was placed in an ice-water 
bath for 10 min and a cloudy solution was formed. Then, the mixture was centrifuged for 5 
min at 5000 rpm. As a result, fine droplets of IL settled at the bottom of the centrifuge tube 
(about 8 µL). The bulk aqueous phase was removed simply by inverting the tubes. The 
extraction steps are illustrated in Fig. 1. Afterwards, IL-phase was dissolved in 50 µL of pure 
ethanol and transferred to quartz cylindrical micro-cell. The absorbance of the complex was 
measured at 578 nm. 

4. Results and discussion 

It is necessary to investigate the effect of all parameters that can probably influence the 
extraction performance. In this methodology these parameters are the kind and amount of 
IL and anti-sticking agent, ligand concentration, pH, salt concentration, temperature and 
centrifuge conditions, which were investigated and optimized in order to achieve a high 
recovery and enrichment factor. In all optimization steps concentration of cobalt was 30 ng 
mL−1. 
 

 

Fig. 1. Photography of different steps in CIAME: (a) after adding IL in the sample solution, 
(b) after shaking and dissolving the IL, (c) after cooling and phase separation, (d) after 
centrifuging and (e) after removing the bulk aqueous phase. 

4.1 Selection of ionic liquid 

For the selection of a suitable IL some considerations were recommended, which were 
mentioned in the previous work (Baghdadi et al., 2008). In this work, we focused on ILs 
containing imidazolium cation. Imidazolium-ILs containing PF6− as an anion are 
hydrophobe, relatively inexpensive and liquid in experimental conditions, therefore they are 
suitable for LLE. From [Bmim][PF6], [Hmim][PF6] and [Omim][PF6] according to some 
physicochemical properties like density, viscosity and water solubility (Liu et al., 2005) and 
with regard to the point that the sample volume was 10 mL, [Hmim][PF6] was chosen as an 
extractant. Thus, about 75 mg of this IL was solved in the aqueous sample solution. 
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4.2 Selection of anti-sticking agent 

Like in the previous work, after centrifugation, it was observed that some of the IL-phase 
stick on the wall of the centrifuge tube. In order to overcome this problem, a non-ionic 
surfactant was added to the sample solution (Baghdadi et al., 2008). In the presence of non-
ionic surfactant and during the phase separation, molecules of the surfactant surround the 
fine droplets of IL. Hence, interactions of IL with the wall of the centrifuge tube decrease 
and consequently, IL-phase does not stick on the wall of the centrifuge tube. The effects of 
two non-ionic surfactants (Triton X-114 and Triton X-100) were investigated and compared. 
In the presence of Triton X-100 absorbance decreased, while in the case of using Triton X-114 
absorbance increased. Therefore, the Triton X-114 was chosen as the anti-sticking agent at 
the optimum concentration of 0.05 % (w/v). 

4.3 Effect of pH and PAN concentration 

In CIAME method pH plays a unique role in the metal-chelate formation and the 
subsequent extraction. The effect of pH on the extraction of cobalt from water samples was 
studied in the range of 0.5–6 after Co–PAN complex formation. Results reveal that the 
absorbance is slightly reduced by increasing pH. As well as at low pH, cations are less likely 
to precipitate; pH 1 seems a proper choice for extraction. 
The effect of PAN concentration on the absorption is shown in Fig. 2. As it is well expected, 
in accordance with ML2 stoichiometry of the complex the absorption is higher when 
increasing the PAN concentration. We investigated PAN concentration in the range of 
1.5×10–7 to 4×10–5 mol L–1. The maximum absorbance was obtained at a concentration of 
2.5×10–5 mol L–1 of the ligand and after that, the absorbance stays approximately constant. 
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Fig. 2. Effect of PAN concentration on the absorbance of complex. Utilized conditions: 
Cobalt 30 ng mL-1, pH = 1, NaNO3 0.2 % (w/v), Triton X-114 0.05 % (w/v), [Hmim][PF6] 60 
mg, [Hmim][Tf2N] 5 mg, diluting agent 50 µL. 

4.4 Effect of IL amount 

In the presence of high content of salt, the solubility of [Hmim][PF6] increases and phase 
separation does not occur. But according to the common ion effect, solubility decreases in 
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the presence of IL with a common ion (such as [Hmim][Tf2N]). This is one of the interesting 
properties of ILs. The effect of [Hmim][PF6] in the presence and absence of [Hmim][Tf2N] is 
shown in Fig. 3. In the presence of [Hmim][Tf2N], lower amount of [Hmim][PF6] was 
required for the phase separation. The optimum amount of [Hmim][PF6] for the complete 
extraction was 70 and 60 mg in the absence and presence of [Hmim][Tf2N], respectively. 
 

 

Fig. 3. Effect of the amount of [Hmim][PF6] on the absorbance of Co-PAN complex. Utilized 
conditions: Cobalt 30 ng mL-1, PAN 2.5×10-5 mol L-1, pH = 1, NaNO3 0.2 % (w/v), Triton X-
114 0.05 % (w/v), [Hmim][Tf2N] 5 mg, diluting agent 50 µL. 

4.5 Effect of salt concentration and water-miscible organic solvents 

NaNO3 was chosen in order to study the salt effect in the range of 0–1 % (w/v). The 
absorbance slightly increased as a result of the salting out effect. A concentration of 0.2% 
(w/v) NaNO3 was selected for subsequent experiments in order to increase recovery. Also 
to investigate the robustness of the method against salty solutions, various solutions with 
the concentration up to 10% were examined. As shown in Fig. 4, in the absence of 
[Hmim][Tf2N], absorbance decreased by increasing the salt concentration as a result of 
increasing in solubility of [Hmim][PF6], but in the presence of [Hmim][Tf2N] phase 
separation occurred up to 10% NaNO3.  
Since acetone and ethanol were selected as the solvents for the IL and ligand, their effects 
were investigated, too. In the presence of acetone, the absorbance was nearly constant up to 
10 % and afterwards, it decreased and in the presence of ethanol, the absorbance was almost 
constant up to 12 %. This is one of the advantages of CIAME compared to CPE. In case of 
CPE, the extraction system is destroyed in the presence of over 3% water-miscible organic 
solvents (Manzoori et al., 2003). Even in case of DLLME based on common organic solvents 
like chloroform, carbon tetrachloride, etc., the extraction efficiency was clearly reduced for 
solutions containing water-miscible organic solvents. 

www.intechopen.com



Cold-Induced Aggregation Microextraction: A Novel Sample Preparation Technique Based  
on Ionic Liquids for Preconcentration of Cobalt Prior to Its Determination by Fiber Optic-Linear Array … 

 

215 

 
Fig. 4. Effect of NaNO3 on the absorbance of Co-PAN complex in the range of 1-10 % (w/v). 
Utilized conditions: Cobalt 30 ng mL-1, PAN 2.5×10-5 mol L-1, pH = 1, Triton X-114 0.05 % 
(w/v), [Hmim][PF6] 64 mg, [Hmim][Tf2N] 5 mg, diluting agent 50 µL. 

4.6 Effect of temperature 

Before shaking the solutions containing IL, they were heated in the range of 20-60 °C. In this 

range the absorbance was constant; warming of the solution had no effect on the extraction 

process. This is another advantage of CIAME in comparison with CPE, especially if the 

species are heat-sensitive. Since ILs are dissolved more easily at the temperatures above     

30 °C, a temperature of 35 °C was chosen for the heating step. 

After dissolving of IL, samples were cooled in the temperature range of 0-25 °C. As the 

temperature decreased, the absorbance increased, as a result of decreasing IL solubility. 

Hence, a temperature of 0 °C was applied in all experiments by placing the centrifuge tubes 

in an ice bath for 10 min. 

4.7 Effect of centrifuge conditions 

The effect of centrifugation rate on the absorbance was studied in the range of 1000 - 

7000 rpm. It was found, that over 4000 rpm IL-phase completely settled,   therefore a rate of 

5000 rpm was selected as the optimum point. 

At the optimum rate, the absorbance was investigated as a function of the centrifugation 

time. Over 2 min, absorbance was constant, indicating complete transfer of IL-phase to the 

bottom of centrifuge tube. Therefore, the optimum centrifugation time was chosen as 3 min. 

4.8 Effect of coexisting ions 

The effects of coexisting ions in real water samples on the recovery of cobalt were also 

studied. In these experiments, 10mL solutions containing 30 ng mL-1 of cobalt and various 
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amounts of interfering ions were treated. A given species was considered to interfere if it 

resulted in a ± 5% variation of the absorbance. The obtained results are given in Table 1. 

Most of the examined cations and anions did not interfere with the extraction and 

determination of Co2+. However, some of the tried species, such as Fe3+, Cu2+ and Pd2+ 

interfered with the determination of Co2+ ion. These interferences were eliminated in the 

presence of proper masking agents, such as 1.5 × 10-4 mol L-1 acetylacetone for Pd2+,   4.0 × 

10-3 mol L-1 oxalate for Fe3+ (and Ca2+ ) and 2.5 × 10-3 mol L-1 ascorbic acid and 4.0× 10-3 mol 

L-1 iodide for Cu2+. In the presence of the masking agents, no interference was observed for 

Ca2+ up to 1000, Fe3+ and Cu2+ up to 100 and Pd2+ up to 10 times relative to Co2+ 

concentration. Thus, a quantitative extraction of Co2+ was possible. 

 

Interferent 
Interferent/Co(II)

(weight ratio) 
Recovery 

(%) 
Interferent 

Interferent/Co(II) 
(weight ratio) 

Recovery 
(%) 

Ba2+ 1000 98 Cu2+ 100 -c 

Mg2+ 1000 100  100 105d 

Mn2+ 1000 99 Hg2+ 100 92 

Cr3+ 1000 104  50 99 

Cd2+ 1000 100 Pd2+ 10 188 

Zn2+ 1000 103  10 95e 

Ca2+ 1000 98a I- 1000 100 

Ag+ 500 97 SO42- 1000 101 

Pb2+ 500 101 NO3- 1000 98 

Al3+ 500 102 PO43- 1000 98 

Fe3+ 100 165 CH3COO- 1000 100 

 100 98b NO2- 1000 98 

Table 1. Effect of interferents on the recovery of 30 µg L-1 Co(II) in water sample using 
CIAME 
aCa2+ masked with 4.0 × 10-3 mol L-1  oxalate . 
bFe3+ masked with 4.0 × 10-3 mol L-1  oxalate.  
cIn the presence of this interferent the shape of spectrum  is changed completely. 
dCu2+ masked with 2.8 × 10-3 mol L-1 ascorbic acid and 3.9× 10-3 mol L-1 iodide. 
ePd2+ masked with 1.9 × 10-4 mol L-1 acetylacetone.   

4.9 Figures of merit 

Table 2 summarizes analytical characteristics of the optimized method, including limit of 

detection, reproducibility and enhancement factor. The limit of detection (LOD = 0.14 ng 

mL-1) was calculated as 3 Sb/m (Sb: standard deviation of the blank signals; m: slope of 

calibration curve after the preconcentration). A good correlation coefficient (r = 0.9997) was 

obtained and only small deviations between sequential determinations (RSD = 2.32 %) were 

found. The calibration curve was investigated up to 65 ng mL-1 which was linear. 

Enhancement factor (EF = 165) was obtained from the slope ratio of calibration curve after 

and before the preconcentration. 
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Parameter Analytical Feature 

Linear  range (ng mL-1) 1.5-65 

r2 0.9995 

Limit of detection (ng mL-1) (3σ, n = 5) 0.14 

Repeatability (RSDa, %) (n = 5) 2.32 

Enhancement factorb (EF) 165 

Sample volume (mL) 10 

Extraction time (min) <20 

Table 2. Analytical characteristics of CIAME for determination of Co(II) 
aRSD was obtained for 30 µg L-1 concentration of Co(II) . 
bEnhancement factor is the slope ratio of calibration graph after and before extraction. 

The equation of the calibration curve after the preconcentration procedure is given in Eq. (1). 
Also the equation of the calibration curve before the preconcentration procedure is given at 
below in Eq. (2). (These standard samples of cobalt were chosen up to 200 ng mL-1 with 
execs PAN to measure their absorbance and obtain the equation of the calibration curve 
accurately). 

 A= 2.30 ×10-2 C (Co) + 0.0094   (r2 = 0.9995, r = 0.9997)  (1) 

 A= 1.39 ×10-4 C (Co) + 0.0323   (r2 = 0.9983, r = 0.9991) (2) 

4.10 Accuracy 

For evaluating the accuracy of the method, a certified reference material (CRM) was 
analyzed. The Reference Standard “SCP-ES-L-1” (SCP SCIENCE Canada, ground water 
(Low level)) is a ground water that has been spiked with metals. The certified value and 
analytical results are presented in Table 3. The result indicates effectiveness and accuracy of 
the proposed method. 
 

Certified reference 
material 

Certifieda  (ng mL-1) Foundb (ng mL-1) Foundc (ng mL-1) 
Recovery 

(%) 

SCP-ES-L-1 51 ± 8 48.6 ± 0.2 d 49.5 ± 0.6 d 101.8 

Table 3. Determination of cobalt in a standard reference material using DLLME 
aResults after dilution 1 : 500. 
bDetermined by  GFAAS. 
cDetermined by  CIAME/FO-LADS.  
dMean value ± standard deviation based on five replicate measurements. 

4.11 Analysis of natural water 

The proposed methodology was applied for the determination of cobalt in different water 
samples. Damavand mineral water, Tajan river water and Caspian Sea water samples were 
collected from the north of Iran and analyzed by CIAME as a prior step to its determination 
by FO-LADS. No concentration of cobalt in the tap and mineral water samples was detected. 
Moreover, the robustness of the proposed method was checked by performing recovery 
tests on a saline serum and a synthetic sample (containing Mn2+, Zn2+, Mg2+, Cd2+, Cr3+ of 
1000 ng mL−1 and Na+, K+ of 3000 ng mL−1). Each type of water was spiked with variable 
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amounts of Co(II) to assess matrix effects. The results are shown in Table 4. The relative 
recoveries of cobalt from mentioned water samples at various spiking levels were between 
96.0 and 103.0 %. These results demonstrated that matrices of these water samples, under 
presented conditions, had little effect on CIAME of cobalt. 
 

Sample Spiked (ng mL−1) Found (ng mL−1)a Recovery (%) 

Mineral water – N.Db – 

 10 10.1 ± 0.15 101.0 

 20 20.3 ± 0.32 101.5 

Tap waterc – N.Db – 

 10 10.2 ± 0.22 102.0 

 15 14.7 ± 0.35 98.0 

River water – 4.3 ± 0.39 – 

 10 13.9 ± 0.23 96.0 

 25 28.5 ± 0.33 96.8 

Sea water – 1.7 ± 0.27 – 

 10 12.0 ± 0.32 103.0 

 25 27.1 ± 0.55 101.6 

Saline Serumd 25 25.6 ± 0.2 102.4 

 45 43.9 ± 0.4 97.6 

Synthetic 
sample 

10 10.1 ± 0.18 101.0 

 15.0 14.9 ± 0.23 99.3 

Table 4. Determination of cobalt in real and synthetic samples 
aMean ± S.D. (n = 5). 
bNot detected. 
cFrom drinking water system of Tehran, Iran. 
dProduced by Daru Paksh Company for injection. 

4.12 Comparison of CIAME with other methods 

A comparison of the represented method with other reported preconcentration methods is 

given in Table 5. In comparison with other reported methods, CIAME has low LOD (0.14 ng 

mL−1), high enrichment factor (165) and relative short extraction procedure (less than 20 

min). All these results indicate that CIAME is a reproducible, simple and low cost technique 

that can be used for the preconcentration of metal ions like cobalt from water samples. 

5. Conclusions and future work 

In this study, a new mode of HLLME based on IL, named cold-induced aggregation 

microextraction (CIAME), was developed for preconcentration of cobalt from water samples 

as a prior step to its determination by FO-LADS. Cobalt was employed as a test analyte  

and 1-(2-pyridylazo)-2-naphthol (PAN) as a complexing agent to assess the extraction 

procedure. 

www.intechopen.com



Cold-Induced Aggregation Microextraction: A Novel Sample Preparation Technique Based  
on Ionic Liquids for Preconcentration of Cobalt Prior to Its Determination by Fiber Optic-Linear Array … 

 

219 

Method 
LODa    

(ng 
mL−1) 

RSD.b 
(%) 

Enhance- 
ment factor

Sample 
consumpt
-ion (mL)

Calibration 
range   

(ng mL−1) 
References 

CPE/Spectrophot
ometry 

7.5 2.2 10c 10 20–200 
(Safavi et 
al., 2004) 

CPE/FAAS 1.06 5.41 28.5 12.5 25-200 
(Nascent
es et al., 

2003) 

CPE/FAAS 0.24 2.1 57d 50 0-120 
(Chen et 
al., 2001) 

SPE/Spectrophot
ometry 

10 2.23 100e 250 10-400 
(Yang et 
al., 2002) 

DLLME/FO-
LADS 

0.2 <4 165 10 1-70 
(Shokoufi 

et al., 
2007a) 

DLLME/Spectrop
hotometry 

0.5 2.5 125 50 2-60 
(Gharehb

aghi et 
al., 2008) 

CPE/FAAS 5 1.71 20f 10 0-200 
(Giokas 

et al., 
2001) 

SPE/ETAAS 0.004 4.5 87 11.5 0.01–0.25 
(Sant'Ana 

et al., 
2002) 

CIAME/FO-
LADS 

0.14 2.32 165 10 1.5-65 This work 

Table 5. Characteristic performance data obtained by using CIAME and other techniques for 
determination of cobalt 
aLimit of detection. 
bRelative standard deviation. 
cRatio of the aqueous phase to final volume of surfactant-rich phase. 
dThe enhancement factor, as the ratio of absorbance of preconcentrated sample to that 
obtained without preconcentration. 
eRatio of the aqueous phase to final volume of eluent phase. 
fPreconcentration factor. 

This method is simple, rapid, safe and robust against high content of salt and water-miscible 

organic solvents. In comparison with CPE, background is too little in case of saline 

solutions, because of very low solubility of water in ILs. Also owing to high viscosity of ILs 

removing the bulk aqueous phase is easier. This method is more suitable for extraction of 

heat-susceptible species in comparison with CPE. CIAME provides high recovery and has 

low toxicity since only very small amounts of an IL as a “green extraction solvent” is used. 

In addition, the proposed method offers good sensitivity in comparison with other 

combination methods, which were used, FAAS or conventional UV–vis spectrophotometer 

as the detection technique. 
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Our research group is currently working on CIAME in a continuous mode and as a future 
work would like to develop a microextraction technique in which the volume of the 
extractant solvent is very small. In order to have a good recovery, in this case a large 
distribution coefficient is necessary unless a continuous microextraction, in which fine 
droplets of extractant phase are continuously formed and analytes are extracted and 
transferred to the bottom of the centrifuge tube, is applied.  
Financial support from University of Tehran, as well as proofreading by Barbora Ehrlichová 
is gratefully acknowledged. 
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