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1. Introduction      

Time delays are often encountered by practical control systems while they are acquiring, 

processing, communicating, and sending signals. Time delays may affect the system 

stability and degrade the control system performance if they are not properly dealt with. 

Taking the classical robot control problem as an example, the significant effect of time delay 

on the closed-loop system stability has been highlighted in the bilateral teleoperation, where 

the communication delay transmitted through a network medium has been received 

widespread attention and different approaches have been proposed to address this problem 

(Hokayem and Spong, 2006). In addition, examples like processing delays in visual systems 

and communication delay between different computers on a single humanoid robot are also 

main sources that may cause time delays in a robotic control system (Chopra, 2009), and the 

issue of time delay for robotic systems has been studied through the passivity property.  

For systems with time delays, both delay dependent and delay independent control 

strategies have been extensively studied in recent years, see for example (Xu and Lam, 2008) 

and references therein. For the control of nonlinear time delay systems, model based Takagi-

Sugeno (T-S) fuzzy control (Tanaka and Wang, 2001; Feng, 2006; Lin et al., 2007) is regarded 

as one of the most effective approach because some of linear control theory can be applied 

directly. Conditions for designing such kinds of controllers are generally expressed as linear 

matrix inequalities (LMIs) which can be efficiently solved by using most available software 

like Matlab LMI Toolbox, or bilinear matrix inequalities (BMIs) which could be transferred 

to LMIs by using algorithms like iteration algorithm or cone complementary linearisation 

algorithm. From the theoretical point of view, one of the current focus on the control of time 

delay systems is to develop less conservative approaches so that the controller can stabilise 

the systems or can achieve the defined control performance under bigger time delays (Chen 

et al., 2009; Liu et al., 2010). 

Tracking control of robotic manipulators is another important topic which receives 
considerable attention due to its significant applications. Over the decades, various 
approaches in tracking control of nonlinear systems have been investigated, such as 
adaptive control approach, variable structure approach, and feedback linearisation 
approach, etc. Fuzzy control technique through T-S fuzzy model approach is also one 
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effective approach in tracking control of nonlinear systems (Ma and Sun, 2000; Tong et al., 
2002; Lin et al., 2006), and in particular, for robotic systems (Tseng et al., 2001; Begovich et 
al., 2002; Ho et al., 2007).  
In spite of the significance on tracking control of robotic systems with input time delays, few 

studies have been found in the literature up to the date. This chapter attempts to propose an 

H∞ controller design approach for tracking control of robotic manipulators with input 

delays. As a robotic manipulator is a highly nonlinear system, to design a controller such 

that the tracking performance in the sense of H∞ norm can be achieved with existing input 

time delays, the T-S fuzzy control strategy is applied. Firstly, the nonlinear robotic 

manipulator model is represented by a T-S fuzzy model. And then, sufficient conditions for 

designing such a controller are derived with taking advantage of the recently proposed 

method (Li and Liu, 2009) in constructing a Lyapunov-Krasovskii functional and using a 

tighter bounding technology for cross terms and the free weighting matrix approach to 

reduce the issue of conservatism. The control objective is to stabilise the control system and 

to minimise the H∞ tracking performance, which is related to the output tracking error for 

all bounded reference inputs, subject to input time delays. With appropriate derivation, all 

the required conditions are expressed as LMIs. Finally, simulation results on a two-link 

manipulator are used to validate the effectiveness of the proposed approach. The main 

contributions of this chapter are: 1) to propose an effective controller design method for 

tracking control of robotic manipulator with input time delays; 2) to apply advanced 

techniques in deriving less conservative conditions for designing the required controller; 3) 

to derive the conditions properly so that they can be expressed as LMIs and can be solved 

efficiently. 

This chapter is organised as follows. In section 2, the problem formulation and some 

preliminaries on manipulator model, T-S fuzzy model, and tracking control problem are 

introduced. The conditions for designing a fuzzy H∞ tracking controller are derived in 

section 3. In section 4, the simulation results on stability control and tracking control of a 

nonlinear two-link robotic manipulator are discussed. Finally, conclusions are summarised 

in section 5. 

The notation used throughout the paper is fairly standard. For a real symmetric matrix W, 

the notation of W >0 (W <0) is used to denote its positive- (negative-) definiteness. . refers 

to either the Euclidean vector norm or the induced matrix 2-norm. I is used to denote the 

identity matrix of appropriate dimensions. To simplify notation, * is used to represent a 

block matrix which is readily inferred by symmetry. 

2. Preliminaries and problem statement 

2.1 Manipulator dynamics model  

To simplify the problem formulation, a two-link robot manipulator as shown in Fig. 1 is 

considered. 

The dynamic equation of the two-link robot manipulator is expressed as (Tseng, Chen and 

Uang, 2001) 

 $$ $ $M(q)q+V(q,q)q+G(q)=u  (1) 

where  
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Fig. 1. Two-link robotic manipulator. 
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2
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2

2 1 2 1 2 1 2
1

1 2 1 1

2 2 2

(m +m )l m l l (s s +c c )
M(q)=

m l l (s s +c c ) m l

0 -q
V(q,q)=m l l (c c -s c )

-q 0

-(m +m )l gs
G(q)=

-m l gs

⎡ ⎤
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥
⎣ ⎦

$
$

$  

and q=[q1,q2]T and u=[u1,u2]T denote the generalised coordinates (radians) and the control 

torques (N-m), respectively. M(q) is the moment of inertia, V(q, $q ) is the centripetal-Coriolis 

matrix, and G(q) is the gravitational vector. m1 and m2 (in kilograms) are link masses, l1 and 

l2 (in meters) are link lengths, g=9.8 (m/s2) is the acceleration due to gravity, and s1=sin (q1), 

s2=sin (q2), c1=cos (q1), and c2=cos (q2). After defining x1=q1, x2= $
1q , x3= 2q , and x4= $

2q , 

equation (1) can be rearranged as 

 

1 2 1

2 1 11 1 12 2 2

3 4 3

4 2 21 1 22 2 4

x =x w

x =f (x)+g (x)u +g (x)u w

x =x w

x =f (x)+g (x)u +g (x)u w

+
+

+
+

$
$
$
$

  (2) 

where w1, w2, w3, w4 denote external disturbances, and  

1 2 1 2
1 2 2 2 2

1 2 1 2 2 1 2 1 2 2 1 2 1 2 1 2 2 2 2 4

2
1 2 1 2 2 1 2 1 2 1 2 2 1 2 2 2 1 2 1 2

(s c -c s )
f (x)=

l l [(m +m )-m (s s +c c ) ][m l l [(s s +c c )x -m l x ]

1

l l [(m +m )-m (s s +c c ) ][(m +m )l gs -m l gs (s s +c c )]
+
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1 2 1 2
2 2 2 2 2

1 2 1 2 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 4

(s c -c s )
f (x)

l l [(m +m )-m (s s +c c ) ][-(m +m )l x +m l l (s s +c c )x ]
=  

         
2

1 2 1 2 2 1 2 1 2 1 2 1 1 1 2 1 2 1 2 1 2

1

l l [(m +m )-m (s s +c c ) ][-(m +m )l gs (s s +c c )+(m +m )l gs ]
+  

2
2 2

11 2 2 2
2 1 2 1 2 2 1 2 1 2

2 1 2 1 2 1 2
12 2 2 2

2 1 2 1 2 2 1 2 1 2

2 1 2 1 2 1 2
21 2 2 2

2 1 2 1 2 2 1 2 1 2

2
1 2 1

22 2 2
2 1 2 1 2 2 1 2

m l
g (x)=

m l l [(m +m )-m (s s +c c ) ]

-m l l (s s +c c )
g (x)=

m l l [(m +m )-m (s s +c c ) ]

-m l l (s s +c c )
g (x)=

m l l [(m +m )-m (s s +c c ) ]

(m +m )l
g (x)=

m l l [(m +m )-m (s s + 2
1 2c c ) ]

 

Note that the time variable t is omitted in the above equations for brevity. 

2.2 T-S fuzzy model 

The above described robotic manipulator is a nonlinear system. To deal with the controller 
design problem for the nonlinear system, the T-S fuzzy model is employed to represent the 
nonlinear system with input delays as follows: 
Plant rule i 
  

IF 1┠ (t) is Ni1 , …, p┠ (t)  is Nip THEN 

 

ϕ ∈

$
i i

0

x(t)=A x(t)+B u(t-τ)+Ew(t)

y(t)=Cx(t)

x(0)=x ,u(t)= (t),t [-τ,0],i=1,2,...,k

  (3) 

where Nij is a fuzzy set, T
1 p┠(t)=[┠ (t),...,┠ (t)] are the premise variables, x(t) is the state vector, 

and w(t) is external disturbance vector, Ai and Bi are constant matrices. Scalar k is the 
number of IF-THEN rules. It is assumed that the premise control variables do not depend on 

the input u(t). The input delay τ is an unknown constant time-delay, and the constant τ>0  is 

an upper bound of τ . 

Given a pair of (x(t),u(t)), the final output of the fuzzy system is inferred as follows 

 

ϕ ∈

∑$
k

i i i
i=1

0

x(t)= h (┠(t))(A x(t)+B u(t-τ)+Ew(t))

y(t)=Cx(t)

x(0)=x ,u(t)= (t),t [-τ,0]

  (4) 

where ∏∑
p

i
i i j ij jk

j=1ii=1

μ (┠(t))
h (┠(t))= , μ (┠ (t))= N (┠ (t))

μ (t))
and ij jN (┠ (t))  is the degree of the 

membership of j┠ (t) in Nij. In this paper, we assume that i jμ (┠ (t)) 0≥ for i=1,2,…,k and 

>∑k

ii=1
μ (┠(t)) 0 for all t. Therefore, ih (┠(t)) 0≥ for i=1,2,…,k, and ∑k

ii=1
h (┠(t))=1 . 
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2.1 Tracking control problem 

Consider a reference model as follows 

 
$

r r r

r r r

x (t)=A x (t)+r(t)

y (t)=C x (t)
  (5) 

where xr(t) and r(t) are reference state and energy-bounded reference input vectors, 

respectively, Ar and Cr are appropriately dimensioned constant matrices. It is assumed that 

both x(t) and xr(t) are online measurable. 

For system model (3) and reference model (5), based on the parallel distributed 

compensation (PDC) strategy, the following fuzzy control law is employed to deal with the 

output tracking control problem via state feedback. 

Control rule  
  

IF 1┠ (t) is Ni1 , …, p┠ (t)  is Nip THEN 

 1i 2i ru(t)=K x(t)+K x (t), i=1,2,...,k   (6) 

Hence, the overall fuzzy control law is represented by 

 ∑ ∑
k k

i 1i 2i r i i
i=1 i=1

u(t)= h (┠(t))[K x(t)+K x (t)]= h (┠(t))K x(t)   (7)  

where K1i, and K2i, i=1,2,…,k, are the local control gains, and Ki=[K1i, K2i] and 
T T T

rx(t)=[x (t),x (t)] . When there exists an input delay τ , we have that 
k

i 1i 2i r
i=1

u(t-τ)= h (┠(t-τ))[K x(t-τ)+K x (t-τ)]∑ , so, it is natural and necessary to make an 

assumption that the functions ih (┠(t)) , i=1,2,… ,k, are well defined for all t [-τ,0]∈ , and 

satisfy the following properties ih (┠(t-τ)) 0≥ for i=1,2,…,k and ii=1
h (┠(t-τ)) 1

k
=∑ . For 

convenience, let i ih =h (┠(t)) , i ih (τ)=h (┠(t-τ)) , x(τ)=x(t-τ) , and u(τ)=u(t-τ) . From here, unless 

confusion arises, time variable t will be omitted again for notational convenience. 
With the control law (7), the augmented closed-loop system can be expressed as follows 

 

k

i j i ij
i,j=1

x= h h (τ)[A x+B x(τ)+Ev]

e=Cx

∑$
  (8) 

where  

[ ]i i 1j i 2j i

i ij 1j 2j i j r r

r

A 0 B K B K B E 0 wˆA = ,B = = [K K ]=B K ,E= ,C= C -C ,v= ,e=y-y
0 A 0 0 0 0 I r

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. 

The tracking requirements are expressed as follows 

1. The augmented closed-loop system in (8) with v=0 is asymptotically stable; 

2. The H∞ tracking performance related to tracking error e is attenuated below a desired 
level, i.e., it is required that 

www.intechopen.com



 Time-Delay Systems 

 

216 

 
2 2

e <γ v   (9) 

 

for all nonzero 2v L [0, )∈ ∞  under zero initial condition, where γ>0 . 

Our purpose is to find the feedback gains Ki (i=1,2,…,k) such that the above mentioned two 
requirements are met. 

3. Tracking controller design 

To derive the conditions for designing the required controller, the following lemma will be 

used. 

Lemma 1: (Li and Liu, 2009) For any constant matrices 11S 0≥ , 12S , 22S 0≥ ,
11 12

22

S S
0

* S

⎡ ⎤
≥⎢ ⎥

⎣ ⎦
, 

scalar τ τ≤  and vector function nx:[-τ,0] R→$ such that the following integration is well 

defined, then   

 

T

T
22 22 12

t 11 12T T T
22 22 12t-τ

22 t t
12 12 11

t-τ t-τ

x -S S -S x
S S x(s)

-τ [x (s),x (s)] x(τ) S -S S x(τ)
* S x(s)

-S S -Sx(s)ds x(s)ds

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥≤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦ ⎣ ⎦

∫
∫ ∫

$
$   (10) 

 

We now choose a delay-dependent Lyapunov-Krasovksii functional candidate as 

 
t

T T

t-τ
V=x Px+τ (s-(t-τ)┟ (s)S┟(s)ds∫   (11) 

 

where 
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

$ T 11 12 11 12T T
11 22

22 22

S S S S
┟(s)= x (s),x (s) , P>0, S= , S >0, S >0, >0

* S * S
. 

The derivative of V along the trajectory of (8) satisfies  

 
t

T 2 T T

t-τ
V=2x Px+τ ┟ S┟-τ ┟ (s)S┟(s)ds∫$ $   (12) 

 

If follows from (8) that 

 
k

T T T T
1 2 3 4 i j i ij

i,j=1

0=2[x T +x (τ)T +x T +d v ] h h (τ)[A x+B x(τ)+Ev]-x
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠
∑$ $   (13) 

i.e., 

1

k
2T T T T

i j i ij
i,j=1 3

4

T x

T x(τ)
0=2 h h (τ)[ x x (τ) x v ] A B -I E

T x

d I v

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∑ $
$  
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1 i 1 ij 1 1

2 i 2 ij 2 2

3 i 3 ij 3 3

k 4 i 4 ij 4 4
T T T T

i j
i,j=1

1 i 1 ij 1 1

2 i 2 ij 2 2

3 i 3 ij 3 3

4 i 4 ij 4 4

T A T B -T T E

T A T B -T T E

T A T B -T T E

d A d B -d I d E
h h (τ)[ x x (τ) x v ]

T A T B -T T E

T A T B -T T E

T A T B -T T E

d A d B -d I d E

T

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥
⎜ ⎢ ⎥
⎜ ⎢ ⎥
⎜ ⎢ ⎥
⎣ ⎦⎜= ⎜
⎡ ⎤⎜
⎢ ⎥⎜
⎢ ⎥⎜+ ⎢ ⎥⎜
⎢ ⎥⎜
⎢ ⎥⎜ ⎣ ⎦⎝ ⎠

∑ $

x

x(τ)
x

v

⎟
⎟ ⎡ ⎤
⎟ ⎢ ⎥
⎟ ⎢ ⎥
⎟ ⎢ ⎥
⎟ ⎢ ⎥
⎟ ⎣ ⎦
⎟
⎟
⎟
⎟

$  (14) 

where T1, T2, and T3 are constant matrices, and d4 is a constant scalar. Note that d4 is 
introduced as a scalar not a matrix because it is convenient to get the LMI conditions later. 
Using the above given equality (14) and Lemma 1, and adding two sides of (12) by 

T 2 Te e-γ v v , it is obtained that 

 

11 12T 2 T T T T T 2 T

22

T

T
22 22 12

T
22 22 12

t t
12 12 11

t-τ t-τ

1

k
2T T T T

i j
i,j=1

xS S
V+e e-γ v v 2x Px+τ[x ,x ] +e e-γ v v

* S x

x -S S -S x

+ x(τ) S -S S x(τ)
-S S -Sx(s)ds x(s)ds

T

T
2 h h (τ)[ x x (τ) x v ]

⎡ ⎤⎡ ⎤
≤ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦ ⎣ ⎦

+

∫ ∫

∑

$ $ $
$

$
i ij

3

4

k
T

i j ij
i,j=1

x

x(τ)
A B -I E

T x

d I v

h h (τ)ξ Σ ξ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎡ ⎤⎣ ⎦ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

=∑

$

 (15) 

where ( )Tt
T T T T T

t-τ
ξ = x x (τ) x(s)ds x v

⎡ ⎤
⎢ ⎥⎣ ⎦∫ $  and  

                

22
22 1 ij 1211 22 1 i T T

12 1 4 iT TT T T T T
1 i 3i 1 i 2

22 2 ij T T T T
12 2 ij 3 2 4 ijT T

ij 2

ij 11

2
22 3

3 4T
3

T
4 4

2

S +T B P+τ Sτ S -S +T A
-S T E+d A

-T +A T+A T +C C +A T

-S +T B
* S -T +B T T E+d B

+B T

= * * -S 0 0

τ S -T
* * * T E-d I

-T

d E+d E
* * * *

-γ I

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥Σ
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

                (16) 
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It can be seen from (15) that if ij 0Σ < , then T 2 TV+e e-γ v v<0$ can be deduced and therefore 

2 2
e <γ v can be established with the zero initial condition. When the disturbance is zero, 

i.e., v=0 , it can be inferred from (15) that if ij 0Ξ < , then V<0$ , and the closed-loop system 

(8) is asymptotically stable. 

By denoting T2=d2T1,T3=d3T1, where d2 and d3 are given constants, pre and post-multiplying 

both side of (16) with diag[Q, Q, Q, I, Q] and their transpose, defining new variables -1
1Q=T , 

T
11 11S =QS Q , T

12 12S =QS Q , T
22 22S =QS Q , TP=QPQ , and T

j jK =K Q , ij 0Σ <  is equivalent to  

 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣ ⎦

2 T 2
22 i j11 22 i 12T T

12 4 iT T T T TT
i 3 i2 i

T T
22 2 i j 3 j iT T T

12 2 4 j iT T T
2 j i 2

11

2
22 3

3 4T
3

T
4 4

2

ˆS +B Kτ S -S +A Q P+τ S
-S E+d QA

+QA +QC CQ -Q +d QA+d QA

ˆ ˆ-S +d B K d K B ˆ* S d E+d K B
ˆ+d K B -d Q

* * -S 0 0

τ S -d Q
* * * d E-d Q

-d Q

d E+d E
* * * *

-γ I

<⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

0   (17) 

which is further  equivalent to ij 0Ξ <  by the Schur complement, where 

 

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢Ξ
⎢
⎢
⎢
⎢
⎢

⎣

2 2
22 i j11 22 12T T T

12 4 iT T T TT
i i 3 i2 i

T T
22 2 i j 3 j iT T T

12 2 4 j iT T T
2 j i 2

11
ij

2
22 3

3 4T
3

T
4 4

2

ˆS +B Kτ S -S P+τ S
-S E+d QA QC

+A Q +QA -Q +d QA+d QA

ˆ ˆ-S +d B K d K B ˆ* S d E+d K B 0
ˆ+d K B -d Q

* * -S 0 0 0=

τ S -d Q
* * * d E-d Q 0

-d Q

d E+d E
* * * * 0

-γ I

* * * * * -I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥

⎦

 (18) 

In terms of the above given analysis, we now summarise the proposed tracking controller 
design procedure as:  
i. define value for τ and choose appropriate values for d2, d3, and d4.  

ii. solve the following LMIs 

 ii 0Ξ <  (19) 

 ij ji 0Ξ + Ξ <  (20) 
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 11 12

22

S S
0

* S

⎡ ⎤
≥⎢ ⎥

⎢ ⎥⎣ ⎦
  (21) 

If there exist P>0 , 11S 0> , 22S 0>  and real matrices Q, 12S , jK (j=1,...k) satisfying LMIs (19-

21), then the closed-loop system (8) is asymptotically stable for any 0 τ τ≤ ≤  and the 

tracking performance defined in (9) can be achieved.  
iii. obtain the control gain matrices as 

 T -1
j jK =K (Q )  (22) 

4. Numerical example 

This section takes two-link robotic manipulator as an example and evaluates the proposed 
controller design approach through numerical simulations. In the reference (Tseng, Chen 
and Uang, 2001), the T-S fuzzy model with nine rules is used to represent the original 
nonlinear manipulator system with acceptable accuracy when link masses m1=m2=1 (kg), 

link lengths l1=l2=1 (m), and angular positions are constrained within [ - π/2 , π/2 ] , where 

triangle type membership functions are used for all the rules.  
To show the effectiveness of the proposed controller design method, the stability control of 
the robotic manipulator with and without input delays is firstly evaluated. For comparison 
purpose, we introduce a so-called robust controller from (Sun, et al., 2007), which was 
designed using a region based rule reduction approach and obtained with one rule to 
reduce the complexity caused by the number of fuzzy rules. The design result for this 
controller with a decay rate 0.5 was given as  

 
-115.6439 -49.9782 -13.4219 -3.7453

K=
14.6547 -3.4203 -62.7788 -22.1846

⎡ ⎤
⎢ ⎥
⎣ ⎦

 (23) 

The simulation results for the nonlinear model (1) with initial condition x(0)=[1.2,0,-1.2,0]T 
and controller (23) without input delays are shown in Fig. 2.  
It is seen from Fig. 2 that all the state variables converge to the equilibrium states from initial 
conditions quickly. We now introduce input delays to the two control inputs. As an 
example, input delays for both control inputs are given as 24 ms, and the simulation results 
for all state variables are shown in Fig. 3. 
It is observed that the state variables do not converge to equilibrium states in this case and 
hence controller (23) is not able to stabilise the system when input time delays are given as 
24 ms.  
Following the similar idea given in (Sun, et al., 2007), a robust controller which uses only 
one rule and considers the fuzzy model as a polytopic uncertain model can also be designed 
using the presented conditions (19-21). We now use the reference model as   

r

0 1 0 0

-6 -5 0 0
A =

0 0 0 1

0 0 6 5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

− −⎣ ⎦

,  
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Fig. 2. State responses for controller (23) without input delays.   
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Fig. 3. State responses for controller (23) with input delay as 24 ms.   
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choose τ =30 ms, d2=0.1, d3=0.1, d4=0.1, and define 
10 0 0 0 -10 0 0 0

C=
0 0 10 0 0 0 10 0

⎡ ⎤
⎢ ⎥−⎣ ⎦

, 

which aims on reducing tracking errors on state variables x1 and x3, the LMIs (19-21) are 

feasible to find a solution, and the controller gain matrix is obtained as 

 
-52.5581  -14.8674    0.7159   -0.0785  33.3479    5.8168   -5.0603   -0.6409

K=
 -0.6312   -0.5382  -31.8608   -8.5689  -1.9704   -0.2084   22.7118    3.7215

⎡ ⎤
⎢ ⎥
⎣ ⎦

 (24) 

To check the stability control performance of the designed controller (24), the reference 

input and external disturbances are all set as zero, and the initial conditions are same to the 

above used values. The simulation results with controller (24) are now shown in Fig. 4 when 

input delays are given as 30 ms.  
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Fig. 4. State responses for controller (24) with input delays as 30 ms.   

It is seen from Fig. 4 that all the state variables converge to equilibrium states no matter the 

existence of the input time delays, which shows the effectiveness of the designed controller 

(24) when the input time delays are considered in the controller design procedure.   

As controller (24) is designed using the tracking controller design conditions (19-21), its 

tracking control performance can be checked as well when the reference inputs are 

provided. As those done in (Tseng, Chen and Uang, 2001), we define reference input as 

[ ]r(t)= 0, 8sin(t), 0, 8cos(t)
T

and to validate its robustness, the external disturbances are given 
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as w1=0.1sin(2t), w2=0.1cos(2t), w3=0.1cos(2t), and w4=0.1sin(2t). The initial condition is 

assumed to be [x1(0),x2(0),x3(0),x4(0)]T=[0.5, 0, -0.5, 0]T, and the input time delays are 

assumed to be 30 ms. Under these conditions, the simulation responses for both the 

reference state variables and actual state variables are shown in Fig. 5 for x1 (left) and x3 

(right), respectively.  From Fig. 5, it is observed that the actual state variables are able to 

track the reference state variables although there is a big difference at the beginning due to 

different initial values. It proves that the designed controller (24), in spite of its simplicity in 

structure, can stabilise the nonlinear manipulator system and can basically track the 

reference state variables.   
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Fig. 5. State responses for the designed controller (24) with input delays as 30 ms.   

Nevertheless, from Fig. 5, it is also seen that the tracking performance is not really desirable 

as the differences between the reference state variables and the actual state variables can be 

easily identified, in particular, for state variable x1 (left). The poor tracking performance 

realised by controller (24) comes from the reasons that it is one rule based controller and 

therefore it is weak in achieving good performance for the original model which is 

approximated with nine rules.  

We now design a fuzzy tracking controller through PDC strategy by using the proposed 

approach. Using the same parameter values for τ , d2, d3, d4, and C , the LMIs (19-21) are 

feasible to find a solution, and the controller gain matrices for nine rules are given as 
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1

 -115.9265  -19.4020  -51.6975   -9.0525  101.1323   12.6747   45.3281    5.8894
K =

  -53.0984   -9.4817    -58.7058   -9.9765    48.3992    6.1958   51.9449    6.5429

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

2

 -141.9683  -23.5791    0.2777   -0.3129  124.8768   15.4512   -2.2731    0.0976
K =

   -3.4846   -0.5815  -88.7399  -14.9675    0.2146    0.2869   80.2204    9.8727

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

3

 -115.5704  -19.0475   55.4697    9.1381  102.6000   12.5192  -52.2332   -6.1268
K =

   54.2377    9.4285  -55.4358   -9.5060  -51.7672   -6.2518   52.6118    6.3387

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

4

-146.4229  -23.9600    0.6201   -0.1205 126.9068   15.6729   -3.3843   -0.0513
K =

1.2587   -0.3380  -90.8831  -15.0851   -0.9041    0.1750   80.8721    9.9366

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

5

-121.6095  -19.5529  -50.2643   -8.9250 101.9231   12.7272   44.6201    5.8019
K =

  -51.8299   -9.3220  -62.0814  -10.0800   47.5336    6.0782   52.4858    6.5645

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

6

-145.5178  -23.8434   -0.1544   -0.2041 126.2843   15.5980   -2.9193    0.0002
K =

    0.3571   -0.4417  -90.2942  -15.0410   -0.5286    0.2197   80.6263    9.9110

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

7

-115.6616  -19.0441   55.1637    9.1441 102.6047   12.5166  -52.2722   -6.1372
K =

   54.5435    9.4487  -55.3558   -9.5095  -51.7828   -6.2513   52.6340    6.3439

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

8

-142.5607  -23.6137    0.4674   -0.2926 125.0556   15.4695   -2.3887    0.0840
K =

   -2.8051   -0.5295  -89.1068  -14.9940    0.1127    0.2772   80.3652    9.8887

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

9

-116.9415  -19.5309  -50.5115   -8.8252 101.8508   12.7564   44.0836    5.7350
K =

  -52.3753   -9.3980  -59.5804  -10.1199   47.9301    6.1423   52.7279    6.6383

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 

The tracking performance implemented by this fuzzy controller is shown in Fig. 6. It can be 

seen that the differences between the reference state variables and the actual state variables 

are largely reduced for both state variables. The tracking performance is therefore improved 

even with the existence of input time delays. 

It is noted that in the proposed controller design approach, several parameters like d2, d3, 

and d4, need to be defined before starting to solve the LMIs. These parameters could be 

optimised in terms of the tolerable maximum input delays τ , tracking performance γ , and 

feasible solutions to LMIs (19-21), etc. The weights on matrix C  will also play an important 

role in obtaining a good tracking performance. Higher weight value on one state variable 

will generally result in a controller which can reduce the tracking error on this state variable 

in comparison to other variables. However, these parameters need to be considered 

altogether and some possible optimisation algorithms, such as genetic algorithms (GAs), 

could be used to find the sub-optimal parameters, which, however, is beyond the scope of 

this chapter, and will not be further discussed. 
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Fig. 6. State responses for the proposed fuzzy tracking controller with input delays as 30 ms.   
 

5. Conclusions 

In this chapter, the tracking control problem for a robotic manipulator with input time 

delays is studied. To deal with the nonlinear dynamics of robotic manipulator, the T-S fuzzy 

control strategy is applied. To reduce the conservativeness in deriving conditions for 

designing such a tracking controller, the most advanced techniques in defining Lyapunov-

Krasovskii functional and in solving cross terms are used. To achieve good tracking 

performance, the tracking error in the sense of H∞ norm is minimised. The sufficient 

conditions are derived as delay-dependent LMIs, which can be solved efficiently using 

currently available software like Matlab LMI Toolbox. The solution is also dependent to the 

values of d2, d3, d4, and the weights on matrix C , which may further provide the space to 

improve the performance of the designed controller. Numerical simulations are applied to 

validate the performance of the proposed approach. The results show that the designed 

controller can achieve good tracking performance regardless of the existence of input time 
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delays. This topic is going to be further studied with considering modelling errors, 

parameter uncertainties, and actuator saturations.  
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