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1. Introduction

The phenomenon of synchronization of dynamical systems was reported by the famous
Dutch scientist Christiaan Huygens in 1665 on his observation of synchronization of two
pendulum clocks. And, chaos theory has been aroused and developed very early (since
1960s) with efforts in many different research fields, such as mathematics (Li & Yorke, 1975;
Ruelle, 1980; Sharkovskii, 1964; 1995), physics (Feigenbaum, 1978; Hénon, 1976; Rossler,
1976), chemistry (Zaikin & Zhabotinsky, 1970; Zhabotinsky, 1964), biology (May, 1976) and
engineering (Lorenz, 1963a;b; Nakagawa, 1999), etc (Gleick, 1987; Stewart, 1990). However,
until 1983, the idea of synchronization of chaotic systems was raised by Fujisaka and
Yamada (Fujisaka & Yamada, 1983). There, the general stability theory of the synchronized
motions of the coupled-oscillator systems with the use of the extended Lyapunov matrix
approach, and the coupled Lorenz model was investigated as an typical example. A typical
synchronous system can be seen in Fig.1. In 1990, Pecora and Carroll (Pecora & Carroll, 1990)
realized chaos synchronization in the form of drive-response under the identical synchronous
scheme. Since then, chaos synchronization has been aroused and it has become the subject
of active research, mainly due to its potential applications in several engineering fields such
as communications (Kocarev et al., 1992; Parlitz et al., 1992; Parlitz, Kocarev, Stojanovski &
Preckel, 1996), lasers (Fabiny et al., 1993; Roy & Thornburg, 1994), ecology (Blasius et al., 1999),
biological systems (Han et al., 1995), system identification (Parlitz, Junge & Kocarev, 1996),
etc. The research evolution on chaos synchronization has led to several schemes of chaos
synchronization proposed successively and pursued, i.e., generalized (Rulkov et al., 1995),
phase (Rosenblum et al., 1996), lag (Rosenblum et al., 1997), projective (Mainieri & Rehacek,
1999), and anticipating (Voss, 2000) synchronizations. Roughly speaking, synchronization
of coupled dynamical systems can be interpreted to mean that the master sends the driving
signal to drive the slave, and there exists some functional relations in their trajectories during
interaction. In fact, the difference between synchronous schemes is lied in the difference of
functional relations in trajectories. In other words, a certain functional relation expresses the
particular characteristic of corresponding synchronous scheme. When a synchronous regime
is established, the expected functional relation is achieved and synchronization manifold is
usually used to refer to such specific relation in a certain coupled systems.
Time delay systems have been studied in both theory (Krasovskii, 1963) and
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application (Loiseau et al., 2009). The prominent feature of chaotic time-delay systems
is that they have very complicated dynamics (Farmer, 1982). Analytical investigation on
time-delay systems by Farmer has showed that it is very easy to generate chaotic behavior
even in systems with a single equation with a single delay such as Mackey-Glass’s, Ikeda’s.
Recently, researchers have been attracted by synchronization issues in coupled time-delay
systems. Accordingly, several synchronous schemes have been proposed and pursued.
However, up-to-date research works have been restricted to the synchronization models of
single-delay (Pyragas, 1998a; Senthilkumar & Lakshmanan, 2005) and multiple time delay
systems (MTDSs) (Shahverdiev, 2004; Shahverdiev et al., 2005; Shahverdiev & Shore, 2005).
There, coupling (or driving) signals are in the form of either linear or single nonlinear
transform of state variable. Those models of synchronization in coupled time-delay systems
can be used in secure communications (Pyragas, 1998b), however, the security is not
assured (Ponomarenko & Prokhorov, 2002; Zhou & Lai, 1999) due that there are several
advanced reconstruction techniques which can infer the system’s dynamics. From such the
fact, synchronization of MTDSs has been intensively investigated (Hoang et al., 2005). In
this chapter, recent development for synchronization in coupled MTDSs has been reported.
The examples will illustrate the existence and transition in various synchronous schemes in
coupled MTDSs.
The remainder of the chapter is organized as follows. Section 2 introduces the MTDSs
and its complexity. The proposed synchronization models of coupled MTDSs with various
synchronous schemes are described in Section 3. Numerical simulation for proposed
synchronization models is illustrated in Section 4. The discussions and conclusions for the
proposed models are given in the last two sections.

Fig. 1. A typical synchronous system.

2. Multiple time-delay systems

2.1 Overview of time-delay feedback systems

Let us consider the equation representing for a single time-delay system (STDS) as below

dx

dt
= −αx+ f (x(t− τ)) (1)

where α and τ are positive real numbers, τ is a time length of delay applied to the
state variable. f (x) = x

1+x10 and f (x) = sin(x) are well-known time-delay feedback
systems; Mackey-Glass (Mackey & Glass, 1977) and Ikeda (Ikeda & Matsumoto, 1987)
systems, respectively. α and/or τ can be used for controlling the complexity of chaotic
dynamics (Farmer, 1982). An analog circuit model (Namajūnas et al., 1995) of STDSs is
depicted in Fig. 2. The dynamical model of the circuit can be written as

dU

dt
=

UND(t)−U(t)

C0R0
(2)

where UND(t) = f (U(t− τ)). Apparently, the equations given in Eqs. (1) and (2) has the same
form.
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Chaos synchronization of coupled STDSs has been studied and experimented in several

Fig. 2. Circuit model of single delay feedback systems

fields such as circuits (Kim et al., 2006; Kittel et al., 1998; Namajūnas et al., 1995; Sano
et al., 2007; Voss, 2002), lasers (Celka, 1995; Goedgebuer et al., 1998; Lee et al., 2006;
Masoller, 2001; S. Sivaprakasam et al., 2002; Zhu & WU, 2004), etc. So far, most of research
works in this context have focused on synchronization models of STDSs (Pyragas, 1998a;
Senthilkumar & Lakshmanan, 2005), in which Mackey-Glass (Mackey & Glass, 1977) and
Ikeda (Ikeda & Matsumoto, 1987) systems have been employed as dynamical equations for
specific examples. Up to date, there have been several coupling methods for synchronization
models of STDSs, i.e., linear (Mensour & Longtin, 1998; Pyragas, 1998a) and single nonlinear
coupling (Shahverdiev & Shore, 2005). In other words, the form of driving signals is either
x(t) or f (x(t− τ)).
Recently, MTDSs have been interested and aroused (Shahverdiev, 2004). That is because of
their potential applications in various fields. A general equation representing for MTDSs is as

dx

dt
= −αx+

P

∑
i=1

mi f (x(t− τi)) (3)

where mi, τi ∈ (τi ≥ 0)ℜ. It is clear that MTDSs can been seen as an extension of STDSs.
STDSs, MTDSs exhibit chaos.
Chaos synchronization models of MTDSs has been aroused by Shahverdiev et
al. (Shahverdiev, 2004; Shahverdiev et al., 2005). So far, the studies are constrained to
the cases that the coupling (or driving) signal is in the form of linear (x(t)) or single nonlinear
transform of delayed state variable ( f (x(t− τ))). A synchronization model using STDSs with
linear form of driving signal can be expressed by
Master:

dx

dt
= −αx+ f (x(t− τ)) (4)

Driving signal:
DS(t) = kx (5)

Slave:
dy

dt
= −αy+ f (y(t− τ)) + DS(t) (6)

where k is coupling strength. A synchronization model using MTDSs with linear form of
driving signal can be expressed by

183Recent Progress in Synchronization of Multiple Time Delay Systems

www.intechopen.com



Master:
dx

dt
= −αx+

P

∑
i=1

mi f (x(t− τi)) (7)

Driving signal:
DS(t) = kx (8)

Slave:
dy

dt
= −αy+

P

∑
i=1

ni f (y(t− τi)) + DS(t) (9)

In the synchronous system given in Eqs. (7)-(9), if the driving signal is in the form of
DS(t) = k f (x(t − τ)), the synchronous system becomes synchronization of MTDSs with
single nonlinear driving signal.
In theoretical, such above synchronization models do not offer advantages for the secure
communication application due to the fact that their dynamics can be inferred easily by
using conventional reconstruction methods (Prokhorov et al., 2005; Voss & Kurths, 1997).
By such the reason, seeking for a non-reconstructed time-delay system is important for
the chaotic secure communication application. One of the disadvantages of state-of-the-art
reconstruction methods is that MTDSs can not be reconstructed if the measured time series
is sum of multiple nonlinear transforms of delayed state variable, i.e. ∑

j
f (x(t − τj)). This

is the key hint for proposing a new synchronization model of MTDSs. In the next section,
the synchronization models of coupled MTDSs are investigated, in which the driving signal

is sum of nonlinearly transformed components of delayed state variable, ∑
j
f (x(t− τj)). The

conditions for synchronization in particular synchronous schemes are considered and proved
under the Krasovskii-Lyapunov theory. The numerical simulation will demonstrate and verify
the prediction in these contexts.

2.2 The complexity analysis for MTDSs

The complexity degree of MTDSs is confirmed that MTDSs not only exhibit hyperchaos, but
also bring much more complicated dynamics in comparison with that in single delay systems.
This will emphasis significances of MTDSs to the secure communication application. In order
to illustrate the complicated dynamics of MTDSs, the Lyapunov spectrum and metric entropy
are calculated. Lyapunov spectrum shows the complexity measure while metric entropy
presents the predictability to chaotic systems. Here, Kolmogorov-Sinai entropy (Cornfeld
et al., 1982) is estimated with

KS = ∑
i

λi f or λi > 0 (10)

The two-delays Mackey-Glass system given in Eq. (11) is studied for this purpose. The
complexity degree with respect to values of parameters and of delays is shown by varying
α, mi and τi. There are several algorithms to calculate the Lyapunov exponents of dynamical
systems as presented in (Christiansen & Rugh, 1997; Grassberger & Procaccia, 1983; Sano &
Sawada, 1985; Zeng et al., 1991) and others. However, so far , all of the existing algorithms
are inappropriate to deal with the case of MTDSs. Here, estimation of Lyapunov spectrum is
based on the algorithm proposed by Masahiro Nakagawa (Nakagawa, 2007)

dx

dt
= −αx+m1

xτ1

1 + x10
τ1

+m2
xτ2

1 + x10
τ2

(11)
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Shown in Fig. 3(a) is largest Lyapunov exponents (LLE) and Kolmogorov-Sinai entropy with
some couples of value of m1 and m2. In this case, the value of τ1 and τ2 is set at 2.5 and 5.0,
respectively. The chaotic behavior exhibits in the specific value range of α. Moreover, the
range seems to be wider with the increase in the value of |m1| + |m2|. It is clear to be seen
from Fig.3 that the possible largest LEs and metric entropy in this system (approximately 0.3
for largest LEs and 1.4 for metric entropy) are larger in comparison with those of the single
delay Mackey-Glass system studied by J.D. Farmer (Farmer, 1982) (approximately 0.07 for
largest LEs and 0.1 for metric entropy). It means that the chaotic dynamics of MTDSs is much
more complicated than that of single delay systems. As a result, it is hard to reconstruct and
predict the motion of MTDSs.
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Fig. 3. Largest LEs and Kolmogorov-Sinai entropy versus α of the two delays Mackey-Glass
system.

Illustrated in Figs. 4 and 5 is the largest LEs as well as Kolmogorov-Sinai entropy with respect
to the value of m1 and m2. There, the value of α, τ1 and τ2 is kept constant at 2.1, 2.5 and
5.0, respectively. Noticeably, the two-delays system is with weak feedback in the range of
small value of m1, or the two-feedbacks system tends to single feedback one. In such the
range, the curves of largest LEs and Kolmogorov-Sinai entropy are in ‘V’ shape for negative
value of m2 as depicted in Figs. 4(a) and 4(b). This is also observed in the curves of metric
entropy in Fig. 4(b). In other words, the dynamics of MTDSs are intuitively more complicated
than that of STDSs. By observing the curves in Figs. 5(a) and 5(b), these characteristics in the
case of changing the value of m2 are a bit different. The range of m2 offers the ‘V’ shape is
around 3.0 for large negative values of m1, i.e., −14.5 and −9.5. It can be interpreted that this
characteristic depends on the value of delays associated with mi. As a particular case, the
result shows that the trend of largest LEs and metric entropy depends on the value of m1 and
m2.
In Fig. 6, the largest LEs and Kolmogorov-Sinai entropy related to the value of τ1 and τ2 are
presented, and it is clear that they strongly depend on the value of τ1 and τ2. There, the value
of other parameters is set at m1 = −15.0, m2 = −10.0 and α = 2.1. The system still exhibits
chaotic dynamics even though the dependence of largest LEs and metric entropy on the value
of τ1 and τ2 is observed.
In summary, the dynamics of MTDSs is firmly more complicated than that of STDSs. In other
words, MTDSs present significances to the secure communication application.
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Fig. 4. Largest LEs and Kolmogorov-Sinai entropy versus m1 of the two-delays Mackey-Glass
system.
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Fig. 5. Largest LEs and Kolmogorov-Sinai entropy versus m2 of the two-delays Mackey-Glass
system.

3. The proposed synchronization models of coupled MTDSs

We consider synchronization models of coupled MTDSs with restriction to the only one
state variable. In addition, various schemes of synchronization are investigated on such
the synchronization models. The main differences between these proposed models and
conventional ones are that dynamical equations for the master and slave are in the
form of multiple time delays and the driving signal is constituted by sum of nonlinear
transforms of delayed state variable. The condition for synchronization is still based on the
Krasovskii-Lyapunov theory. Proofs of the sufficient condition for considered synchronous
schemes will also be shown.

3.1 Synchronization of coupled identical MTDSs

We start considering the synchronization of MTDSs with the dynamical equations in the form
of one dimension defined by
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Fig. 6. Largest LEs and Kolmogorov-Sinai entropy versus τ1 and τ2 of the two-delays
Mackey-Glass system.

Master:
dx

dt
= −αx+

P

∑
i=1

mi f (xτi
) (12)

Driving signal:

DS(t) =
Q

∑
j=1

kj f (xτP+j
) (13)

Slave:
dy

dt
= −αy+

P

∑
i=1

ni f (yτi
) + DS(t) (14)

where α,mi, ni, kj, τi(τi ≥ 0) ∈ ℜ; integers P, Q (Q ≤ P), f (.) is the differentiable generic
nonlinear function. xτi

and yτi
stand for delayed state variables x(t − τi) and y(t − τi),

respectively. Note that, the form of f (.) and the value of P are shared in both the master’s
and slave’s equations. As shown in Eq. (13), the driving signal is constituted by sum of
multiple nonlinear transforms of delayed state variable, and it is generated by driving signal
generator (DSG) as illustrated in Fig. 7. The master’s and slave’s equations in Eqs. (12)
and (14) with {P = 1, f (x) = x

1+xb
} and {P = 1, f (x) = sin(x)} turn out being the

well-known Mackey-Glass (Mackey & Glass, 1977) and Ikeda systems (Ikeda & Matsumoto,
1987), respectively.

It is clear to observe from the proposed synchronization model given in Eqs. (12)-(14) that

DS(t)x(t)

Fig. 7. The proposed synchronization model of MTDSs.

the structure of slave is identical to that of master, except for the presence of driving signal in
the dynamical equation of slave.
In consideration to the synchronization condition, so far, there are two strategies (Pyragas,
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1998a) which are used for dealing with synchronization of time-delay systems. The first one
is based on the Krasovskii-Lyapunov theory (Hale & Lunel, 1993; Krasovskii, 1963) while
the other one is based on the perturbation theory (Pyragas, 1998a). Note that, perturbation
theory is used suitably for the case that the delay length is large (τi → ∞). And, the
Krasovskii-Lyapunov theory can be used for the case of multiple time-delays as in this context.
In the following subsections, this model is investigated with different synchronous schemes,
i.e., lag, anticipating, projective-lag, and projective-anticipating.

3.1.1 Lag synchronization

As a general case, lag synchronization refers to the means that the slave’s state variable is
retarded with a time length in compared to the master’s. Here, lag synchronization has
been studied in coupled MTDSs described in Eqs. (12)-(14) with the desired synchronization
manifold defined by

y(t) = x(t− τd) (15)

where τd ∈ ℜ+ is a time-delay, called a manifold’s delay. We define the synchronization error
upon expected synchronization manifold in Eq. (15) as

∆(t) = y(t)− x(t− τd) (16)

And, the dynamics of synchronization error is

d∆

dt
=

dy

dt
−

dx(t− τd)

dt
(17)

By applying the delay of τd to Eq. (12), we get
dx(t−τd)

dt = −αx(t − τd) +
P
∑
i=1

mi f (xτi+τd
).

Then, substituting
dx(t−τd)

dt , yτi
= xτi+τd

+ ∆τi
, and Eq. (14) into Eq. (17), the dynamics of

synchronization error becomes

d∆

dt
=

dy

dt
−

dx(t− τd)

dt

=

⎡

⎣−αy+
P

∑
i=1

ni f (yτi
) +

Q

∑
j=1

kj f (xτP+j
)

⎤

⎦−

[

−αx(t− τd) +
P

∑
i=1

mi f (xτi+τd
)

]

= −α∆ +
P

∑
i=1

ni f (xτi+τd
+ ∆τi

) +
Q

∑
j=1

kj f (xτP+j
)−

P

∑
i=1

mi f (xτi+τd
)

(18)

τP+j = τi + τd (19)

It is assumed that delays in Eq. (18) are chosen so that Eq. (19) is satisfied. Hence, Eq. (18) is
rewritten as

d∆

dt
= −α∆ +

P

∑
i=1

ni f (xτi+τd
+ ∆τi

)−
P,Q

∑
i=1,j=1

[

mi − kj

]

f (xτi+τd
) (20)

mi − kj = ni (21)

It is easy to realize that the derivative of f (x+ δ)− f (x) = f ′(x)δ exists if f (.) is differentiable,
bounded, and δ is small enough. Also suppose that the value of coefficients in Eq. (20) is
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adopted so as the relation in Eq. (21) is fulfilled in pair. Note from Eqs. (19) and (21) that only
some components in the master’s and slave’s equations are selected for such the relations.
Therefore, Eq. (20) reduces to

d∆

dt
= −α∆ +

P

∑
i=1

ni f
′(xτi+τd

+ ∆τi
)∆τi

(22)

By applying the Krasovskii-Lyapunov theory (Hale & Lunel, 1993; Krasovskii, 1963) to the
case of multiple time-delays, the sufficient condition to achieve limt→∞ ∆(t) = 0 from Eq. (22)
is expressed as

α >

P

∑
i=1

|ni| sup
∣

∣ f ′(xτi+τd
)
∣

∣ (23)

where sup | f ′(.)| stands for the supreme limit of | f ′(.)|. It is easy to see that the sufficicent
condition for synchronization is obtained under a series of assumptions. Noticably, the linear
delayed system of ∆ given in Eq. (22) is with time-dependent coefficients. The specific
example shown in Section 4 with coupled modified Mackey-Glass systems will demonstrate
and verify for the case.
Next, combination synchronous scheme will be presented, there, the mentioned synchronous
scheme of coupled MTDSs is associated with projective one.

3.1.2 Projective-lag synchronization

In this section, the lag synchronization of coupled MTDSs is investigated in a way that the
master’s and slave’s state variables correlate each other upon a scale factor. The dynamical
equations for synchronous system are defined in Eqs. (12)- (14). The desired projective-lag
manifold is described by

ay(t) = bx(t− τd) (24)

where a and b are nonzero real numbers, and τd is the time lag by which the state variable of
the master is retarded in comparison with that of the slave. The synchronization error can be
written as

∆(t) = ay(t)− bx(t− τd), (25)

And, dynamics of synchronization error is

d∆

dt
= a

dy

dt
− b

dx(t− τd)

dt
. (26)

By substituting appropriate components to Eq. (26), the dynamics of synchronization error
can be rewritten as

d∆

dt
= a

⎡

⎣−αy+
P

∑
i=1

ni f (yτi
) +

Q

∑
j=1

kj f (xτP+j
)

⎤

⎦− b

[

−αx(t− τd) +
P

∑
i=1

mi f (xτi+τd
)

]

(27)

Moreover, yτi
can be deduced from Eq. (25) as

yτi
=

bxτi+τd
+ ∆τi

a
(28)
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And, Eq. (27) can be represented as

d∆

dt
=a

⎡

⎣−αy+
P

∑
i=1

ni f (
bxτi+τd

+ ∆τi

a
) +

Q

∑
j=1

kj f (xτP+j
)

⎤

⎦− b

[

−αx(t− τd) +
P

∑
i=1

mi f (xτi+τd
)

]

(29)
Let us assume that the relation of delays is as given in Eq. (19), τP+j = τi + τd. The error
dynamics in Eq. (29) becomes

d∆

dt
= −α∆ +

P,Q

∑
i=1,j=1

[

ani f (
bxτi+τd

+ ∆τi

a
)− (bmi − akj) f (xτi+τd

)

]

(30)

The right-hand side of Eq. (28) can be represented as

bxτi+τd
+ ∆τi

a
= xτi+τd

+ ∆
τ
(app)
i

(31)

where τ
(app)
i is a time-delay at which the synchronization error satisfies Eq. (31). By replacing

right-hand side of Eq. (31) to Eq. (30), The error dynamics can be rewritten as

d∆

dt
= −α∆ +

P,Q

∑
i=1,j=1

[

ani f (xτi+τd
+ ∆

τ
(app)
i

)− (bmi − akj) f (xτi+τd
)

]

(32)

Suppose that the relation of parameters in Eq. (32) as follows

bmi − akj = ani (33)

If ∆
τ
(app)
i

is small enough and f (.) is differentiable, bounded, then Eq. (32) can be reduced to

d∆

dt
= −α∆ +

P

∑
i=1

ani f
′(xτi+τd

)∆
τ
(app)
i

(34)

By applying the Krasovskii-Lyapunov theory (Hale & Lunel, 1993; Krasovskii, 1963) to this
case, the sufficient condition for synchronization is expressed as

α >

P

∑
i=1

|ani| sup
∣

∣ f ′(xτi+τd
)
∣

∣ (35)

It is clear that the main difference of this scheme in comparison with lag synchronization is
the existence of scale factor. This leads to the change in the synchronization condition. In fact,
projective-lag synchronization becomes lag synchronization when scale factor is equivalent to
unity, but the relative value of α is changed in the sufficient condition regarding to the bound.
This allows us to arrange multiple slaves with the same structure which are synchronized
with a certain master under various scale factors. Anyways, the value of ni and kj must be
adjusted correspondingly. This can not be the case by using lag synchronization as presented
in the previous section, that is, only one slave with a certain structure is satisfied.
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3.1.3 Anticipating synchronization

In this section, anticipating synchronization of coupled MTDSs is presented, in which the
master’s motion can be anticipated by the slave’s. The proposed model given in Eqs. (12)-(14)
is investigated with the desired synchronization manifold of

y(t) = x(t+ τd) (36)

where τd ∈ ℜ+ is the time length of anticipation. It is also called a manifold’s delay because
the master’s state variable is retarded in compared with the slave’s. Synchronization error in
this case is

∆(t) = y(t)− x(t+ τd) (37)

Similar to the scheme of lag synchronization, the dynamics of synchronization error is written
as

d∆

dt
=

dy

dt
−

dx(t+ τd)

dt
(38)

By substituting
dx(t+τd)

dt = −αx(t+ τd) +
P
∑
i=1

mi f (xτi−τd
), yτi

= xτi−τd
+ ∆τi

, and
dy
dt into Eq.

(38), the dynamics of synchronization error is described by

d∆

dt
=

dy

dt
−

dx(t+ τd)

dt

=

⎡

⎣−αy+
P

∑
i=1

ni f (yτi
) +

Q

∑
j=1

kj f (xτP+j
)

⎤

⎦−

[

−αx(t+ τd) +
P

∑
i=1

mi f (xτi−τd
)

]

= −α∆ +
P

∑
i=1

ni f (xτi−τd
+ ∆τi

) +
Q

∑
j=1

kj f (xτP+j
)−

P

∑
i=1

mi f (xτi−τd
)

(39)

Assume that τP+j in Eq. (39) are fulfilled the relation of

τP+j = τi − τd (40)

delays must be non-negative, thus, τi must be equal to or greater than τd in Eq. (19).
Equation (39) is represented as

d∆

dt
= −α∆ +

P

∑
i=1

ni f (xτi−τd
+ ∆τi

)−
P,Q

∑
i=1,j=1

[

mi − kj

]

f (xτi−τd
) (41)

Applying the same reasoning in lag synchronization to this case, parameters satisfies the
relation given in Eq. (21). Equation (41) reduces to

d∆

dt
= −α∆ +

P

∑
i=1

ni f
′(xτi−τd

)∆τi
(42)

And, the Krasovskii-Lyapunov theory (Hale & Lunel, 1993; Krasovskii, 1963) is applied to Eq.
(42), hence, the sufficient condition for synchronization for anticipating synchronization is

α >

P

∑
i=1

|ni| sup
∣

∣ f ′(xτi−τd
)
∣

∣ (43)
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It is clear from (35) and (43) that there is small difference made to the relation of delays in
comparison to lag synchronization, and a completely new scheme is resulted. Therefore, the
switching between schemes of lag and anticipating synchronization can be obtained in such a
simple way. This may be exploited for various purposes including secure communications.

3.1.4 Projective-anticipating synchronization

Obviously, projective-anticipating synchronization is examined in a very similar way to that
dealing with the scheme of projective-lag synchronization. The dynamical equations for
synchronous system are as given in Eq. (12)- (14). The considered projective-anticipating
manifold is as

ay(t) = bx(t+ τd) (44)

where a and b are nonzero real numbers, and τd is the time lag by which the state variable
of the slave is retarded in comparison with that of the master. The synchronization error is
defined as

∆ = ay− bx(t+ τd) (45)

Dynamics of synchronization error is as

d∆

dt
= a

dy

dt
− b

dx(t+ τd)

dt
. (46)

By substituting
dy
dt and

dx(t+τd)
dt to Eq. (46), the dynamics of synchronization error becomes

d∆

dt
= a

⎡

⎣−αy+
P

∑
i=1

ni f (yτi
) +

Q

∑
j=1

kj f (xτP+j
)

⎤

⎦− b

[

−αx(t+ τd) +
P

∑
i=1

mi f (xτi−τd
)

]

(47)

It is clear that yτi
can be deduced from Eq. (45) as

yτi
=

bxτi−τd
+ ∆τi

a
(48)

Hence, Eq. (47) can be represented as

d∆

dt
= a

⎡

⎣−αy+
P

∑
i=1

ni f (
bxτi−τd

+ ∆τi

a
) +

Q

∑
j=1

kj f (xτP+j
)

⎤

⎦

− b

[

−αxτd
+

P

∑
i=1

mi f (xτi−τd
)

]

(49)

Similar to anticipating synchronization, the relation of delays is chosen as given in Eq. (40),
τP+j = τi − τd. The error dynamics in Eq. (49) is rewritten as

d∆

dt
= −α∆ +

P,Q

∑
i=1,j=1

[

ani f (
bxτi−τd

+ ∆τi

a
)− (bmi − akj) f (xτi−τd

)

]

(50)

The right-hand side of Eq. (48) can be equivalent to

bxτi−τd
+ ∆τi

a
= xτi−τd

+ ∆
τ
(app)
i

(51)
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where τ
(app)
i is a time-delay satisfying Eq. (51). Therefore, the error dynamics can be rewritten

as
d∆

dt
= −α∆ +

P,Q

∑
i=1,j=1

[

ani f (xτi−τd
+ ∆

τ
(app)
i

)− (bmi − akj) f (xτi−τd
)

]

(52)

Suppose that the relation of parameters in Eq. (52) is as given in Eq. (33), bmi − akj = ani.
∆

τ
(app)
i

is small enough, f (.) is differentiable and bounded, hence, Eq. (52) is reduced to

d∆

dt
= −α∆ +

P

∑
i=1

ani f
′(xτi−τd

)∆
τ
(app)
i

(53)

The sufficient condition for synchronization can be expressed as

α >

P

∑
i=1

|ani| sup
∣

∣ f ′(xτi−τd
)
∣

∣ (54)

It is easy to see that the change from anticipating into projective-anticipating synchronization
is similar to that from lag to projective-lag one. It is realized that transition from the lag to
anticipating is simply done by changing the relation of delays. This is easy to be observed on
their sufficient conditions.

3.2 Synchronization of coupled nonidentical MTDSs

It is easy to observe from the synchronization model presented in Eqs. (12)-(14) that the
value of P and the function form of f (.) are shared in the master’s and slave’s equations.
It means that the structure of the master is identical to that of slave. In other words, the
proposed synchronization model above is not a truly general one. In this section, the proposed
synchronization model of coupled nonidentical MTDSs is presented, there, the similarity in
the master’s and slave’s equations is removed. The dynamical equations representing for the
synchronization are defined as
Master:

dx

dt
= −αx+

P

∑
i=1

mi f
(M)
i (x

τ
(M)
i

) (55)

Driving signal:

DS(t) =
Q

∑
j=1

kj f
(DS)
j (x

τ
(DS)
j

) (56)

Slave:
dy

dt
= −αy+

R

∑
i=1

ni f
(S)
i (y

τ
(S)
i

) + DS(t) (57)

where α,mi, ni, kj, τ
(M)
i , τ

(DS)
j , τ

(S)
i ∈ ℜ; P, Q and R are integers. The delayed state variables

x
τ
(M)
i

, x
τ
(DS)
j

and y
τ
(S)
i

stand for x(t− τ
(M)
i ), x(t− τ

(DS)
j ) and y(t− τ

(S)
i ), respectively. f

(M)
i (.),

f
(DS)
j (.) and f

(S)
i (.) are differentiable, generic, and nonlinear functions. The superscripts (M),

(S) and (DS) associated with main symbols (delay, function, set of function forms) indicate
that they are belonged to the master, slave and driving signal, respectively.

193Recent Progress in Synchronization of Multiple Time Delay Systems

www.intechopen.com



The non-identicalness between the master’s and slave’s configuration can be clarified by
defining the set of function forms, S = {Fi; i = 1..N}, in which Fi (i = 1..N) represents for

the function form of f
(M)
i (.), f

(DS)
j (.) and f

(S)
i (.) in Eqs. (55)-(57). The subsets of SM, SS and

SDSG are collections of function forms of the master, slave and DSG, respectively. It is assumed
that the relation among subsets is SDSG ⊆ SM ∪ SS. It is easy to realize that the structure of
master is completely nonidentical to that of slave if SI = SM ∩ SS ≡ Φ. Otherwise, if there are
I components of nonlinear transforms whose function forms and value of delays are shared

between the master’s and slave’s equations, i.e., SI = SM ∩ SS �= Φ and τ
(M)
i = τ

(S)
i for

i = 1..I. These components are called identicalness ones which make pairs of { f (M)(x
τ
(M)
i

) vs.

f (S)(y
τ
(S)
i

)} for i = 1..I.

Therefore, there are two cases needed to consider specifically: (i) the structure of master is
partially identical to that of slave by means of identicalness components, and (ii) the structure
of master is completely nonidentical to that of slave. In any cases, it is easy to realize from
the relation among SM, SS and SDSG that the difference between the master’s and slave’s
equations can be complemented by the DSG’s equation. In other words, function forms and
value of parameters will be chosen appropriately for the driving signal’s equation so that
the Krasovskii-Lyapunov theory can be used for considering the synchronization condition
in a certain case. For simplicity, only scheme of lag synchronization with the synchronization
manifold of y(t) = x(t − τd) is studied, and other schemes can be extended as in a way of
synchronization of coupled identical MTDSs.

3.2.1 Structure of master partially identical to that of slave

Suppose that there are I identicalness components shared between the master’s and slave’s
equations, hence, Eqs. (55) and (57) can be decomposed as
Master:

dx

dt
= −αx+

I

∑
i=1

mi f
(M)
i (x

τ
(M)
i

) +
P

∑
i=I+1

mi f
(M)
i (x

τ
(M)
i

) (58)

Slave:
dy

dt
= −αy+

I

∑
i=1

ni f
(S)
i (y

τ
(S)
i

) +
R

∑
i=I+1

ni f
(S)
i (y

τ
(S)
i

) +DS(t) (59)

where f
(M)
i is with the form identical to f

(S)
i and τ

(M)
i = τ

(S)
i for i = 1..I. They are pairs of

identicalness components. The driving signal’s equation in Eq. (56) is chosen in the following
form

DS(t) =
I

∑
j=1

kj f
(DS)
j (x

τ
(DS)
j

) +
Q

∑
j=I+1

kj f
(DS)
j (x

τ
(DS)
j

) (60)

where forms of f
(DS)
j (.) for j = 1..I are, in pair, identical to that of f

(M)
i as well as of f

(S)
i for

i = 1..I. Let’s consider the lag synchronization manifold of

y(t) = x(t− τd) (61)

And, the synchronization error is

∆(t) = y(t)− x(t− τd) (62)
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Hence, the dynamics of synchronization error is expressed by

d∆

dt
=

dy

dt
−

dx(t− τd)

dt

= −αy+
I

∑
i=1

ni f
(S)
i (y

τ
(S)
i

) +
R

∑
i=I+1

ni f
(S)
i (y

τ
(S)
i

) +
I

∑
j=1

kj f
(DS)
j (x

τ
(DS)
j

)+

+
Q

∑
j=I+1

kj f
(DS)
j (x

τ
(DS)
j

) + αx(t− τd)−
I

∑
i=1

mi f
(M)
i (x

τ
(M)
i +τd

)−
P

∑
i=I+1

mi f
(M)
i (x

τ
(M)
i +τd

)

(63)

By applying delay of τ
(S)
i to Eq. (62), y

τ
(S)
i

can be deduced as

y
τ
(S)
i

= x
τ
(S)
i +τd

+ ∆
τ
(S)
i

(64)

By substituting y
(S)
τi

to Eq. (63), the dynamics of synchronization error can be rewritten as

d∆

dt
= −α∆ +

I

∑
i=1

ni f
(S)
i (x

τ
(S)
i +τd

+ ∆
τ
(S)
i

) +
R

∑
i=I+1

ni f
(S)
i (x

τ
(S)
i +τd

+ ∆
τ
(S)
i

) +
I

∑
j=1

kj f
(DS)
j (x

τ
(DS)
j

)

+
Q

∑
j=I+1

kj f
(DS)
j (x

τ
(DS)
j

)−
I

∑
i=1

mi f
(M)
i (x

τ
(M)
i +τd

)−
P

∑
i=I+1

mi f
(M)
i (x

τ
(M)
i +τd

)

(65)
Suppose that the relation of delays in the fourth and sixth terms at the right-hand side of Eq.
(65) is

τ
(DS)
j = τ

(M)
i + τd (≡ τ

(S)
i + τd) f or j, i = 1..I (66)

Hence, Eq. (65) can be reduced to

d∆

dt
= −α∆ +

I

∑
i=1

ni f
(S)
i (x

τ
(S)
i +τd

+ ∆
τ
(S)
i

)−
I

∑
i=1

(mi − ki) f
(M)
i (x

τ
(M)
i +τd

) +
Q

∑
j=I+1

kj f
(DS)
j (x

τ
(DS)
j

)−

−
P

∑
i=I+1

mi f
(M)
i (x

τ
(M)
i +τd

) +
R

∑
i=I+1

ni f
(S)
i (x

τ
(S)
i +τd

+ ∆
τ
(S)
i

)

(67)
Also suppose that function forms and value of parameters of the fourth term of Eq. (67) (the
second right-hand term of Eq. (60)) are chosen so that the last three terms of Eq. (67) satisfy
the following equation

Q

∑
j=I+1

kj f
(DS)
j (x

τ
(DS)
j

)−
P

∑
i=I+1

mi f
(M)
i (x

τ
(M)
i +τd

) +
R

∑
i=I+1

ni f
(S)
i (x

τ
(S)
i +τd

+ ∆
τ
(S)
i

) = 0 (68)

195Recent Progress in Synchronization of Multiple Time Delay Systems

www.intechopen.com



Let us assume that Q = P + R − I. The first left-hand term is decomposed, and Eq. (68)
becomes

P−I

∑
j1=1

k I+j1 f
(DS)
I+j1 (xτ

(DS)
I+j1

) +
R−I

∑
j2=1

kP+j2 f
(DS)
P+j2(xτ

(DS)
P+j2

)

−
P−I

∑
i=1

mI+i f
(M)
I+i (xτ

(M)
I+i +τd

) +
R−I

∑
i=1

nI+i f
(S)
I+i(xτ

(S)
I+i+τd

+ ∆
τ
(S)
I+i

) = 0

(69)

Undoubtedly, Eq. (69) can be fulfilled if following assumptions are made: k I+j1 = mI+i,

τ
(DS)
I+j1 = τ

(M)
I+i + τd and forms of f

(DS)
I+j1 (.) are identical to that of f

(M)
I+i (.) for i, j1 = 1..(P − I),

and kP+j2 = −nI+i, τ
(DS)
P+j2 = τ

(S)
I+i + τd, ∆

τ
(S)
I+i

is equal to zero as well as the form of f
(DS)
P+j2(.) is

identical to that of f
(S)
I+i(.) for i, j2 = 1..(R− I). Thus, Eq. (67) can be represented as

d∆

dt
= −α∆ +

I

∑
i=1

ni f
(S)
i (x

τ
(S)
i +τd

+ ∆
τ
(S)
i

)−
I

∑
i=1

(mi − ki) f
(M)
i (x

τ
(M)
i +τd

) (70)

According to above assumptions, τ
(S)
i = τ

(M)
i and forms of f

(M)
i (.) being identical to those of

f
(M)
i (.) for i = 1..I have been made. Here, further suppose that functions f

(M)
i (.) and f

(S)
i (.)

are bounded. If synchronization errors ∆
τ
(S)
i

are small enough and mi − kj = ni for i = 1..I,

Eq. (70) can be reduced to

d∆

dt
= −α∆ +

I

∑
i=1

ni f
(S)′

i (x
τ
(S)
i +τd

)∆
τ
(S)
i

(71)

where f
(S)′

i (.) is the derivative of f
(S)
i (.). By applying the Krasovskii-Lyapunov theory (Hale

& Lunel, 1993; Krasovskii, 1963) to the case of multiple time-delays in Eq. (71), the sufficient
condition for synchronization can be expressed as

α >

I

∑
i=1

|ni| sup

∣

∣

∣

∣

f
(S)′

i (x
τ
(S)
i +τd

)

∣

∣

∣

∣

(72)

It turns out that the difference in the structures of the master and slave can be complemented
in the equation of driving signal. In order to test the proposed scheme, Example 5 is
demonstrated in Section 4, in which the master’s equation is in the heterogeneous form and
the slave’s is in the multiple time-delay Ikeda equation.

3.2.2 Structure of master completely nonidentical to that of slave

In this section, the synchronous system given in Eqs. (58)-(59) is examined, in which there
is no identicalness component shared between the master’s and slave’s equations. In other
words, the function set is of SI = SM ∩ SS = Φ. Therefore, the driving signal’s equation
must contain all function forms of the master’s and slave’s equations or SDSG = SM ∪ SS and
Q = P+ R. The driving signal’s equation Eq. (56) can be decomposed to

DS(t) =
P

∑
j1=1

kj1 f
(DS)
j1 (x

τ
(DS)
j1

) +
R

∑
j2=1

kP+j2 f
(DS)
P+j2(xτ

(DS)
P+j2

) (73)
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And, the synchronization error Eq. (62) can be represented as below

d∆

dt
=

dy

dt
−

dx(t− τd)

dt

= −αy+
R

∑
i=1

ni f
(S)
i (y

τ
(S)
i

) +
P

∑
j1=1

kj1 f
(DS)
j1 (x

τ
(DS)
j1

)

+
R

∑
j2=1

kP+j2 f
(DS)
P+j2(xτ

(DS)
P+j2

) + αx(t− τd)−
P

∑
i=1

mi f
(M)
i (x

τ
(M)
i +τd

)

= −α∆ +
R

∑
i=1

ni f
(S)
i (y

τ
(S)
i

) +
R

∑
j2=1

kP+j2 f
(DS)
P+j2(xτ

(DS)
P+j2

+
P

∑
j1=1

kj1 f
(DS)
j1 (x

τ
(DS)
j1

)−
P

∑
i=1

mi f
(M)
i (x

τ
(M)
i +τd

)

(74)

By substituting y
τ
(S)
s

from Eq. (64) into Eq. (74), the dynamics of synchronization error is

rewritten as

d∆

dt
= −α∆ +

R

∑
i=1

ni f
(S)
i (x

τ
(S)
i +τd

+ ∆
τ
(S)
i

) +
R

∑
j2=1

kP+j2 f
(DS)
P+j2(xτ

(DS)
P+j2

)

+
P

∑
j1=1

kj1 f
(DS)
j1 (x

τ
(DS)
j1

)−
P

∑
i=1

mi f
(M)
i (x

τ
(M)
i +τd

)

(75)

Assume that value of parameters and function forms of the first right-hand term of Eq. (73)
are chosen so that the relation between the last two right-hand terms of Eq. (75) is as

P

∑
j1=1

kj1 f
(DS)
j1 (x

τ
(DS)
j1

)−
P

∑
i=1

mi f
(M)
i (x

τ
(M)
i +τd

) = 0 (76)

Equation Eq. (76) is fulfilled if the relation is as kj1 = mi, τ
(DS)
j1 = τ

(M)
i + τd and the form

of f
(DS)
j1 (.) is identical to that of f

(M)
i (.) for i, j1 = 1..P. At this point, the dynamics of

synchronization error in (75) can be reduced to

d∆

dt
= −α∆ +

R

∑
i=1

ni f
(S)
i (x

τ
(S)
i +τd

+ ∆
τ
(S)
i

) +
R

∑
j2=1

kP+j2 f
(DS)
P+j2(xτ

(DS)
P+j2

) (77)

As mentioned, the form of f
(S)
i (.) is identical to that of f

(DS)
P+j2(.) in pair. Here, we suppose

that coefficients and delays in Eq. (77) are adopted as kP+j2 = −ni and τ
(DS)
P+j2 = τ

(S)
i + τd for

i, j2 = 1..P. If ∆
τ
(S)
i

is small enough and functions f
(S)
i are bounded, Eq. (77) can be rewritten

as
d∆

dt
= −α∆ +

R

∑
i=1

ni f
(S)′

i (x
τ
(S)
i +τd

)∆
τ
(S)
i

(78)
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where f
(S)′

i (.) is the derivative of f
(S)
i (.). Similarly, the synchronization condition is obtained

by applying the Krasovskii-Lyapunov (Hale & Lunel, 1993; Krasovskii, 1963) theory to Eq.
(78); that is

α >

R

∑
i=1

|ni| sup

∣

∣

∣

∣

f
(S)′

i (x
τ
(S)
i +τd

)

∣

∣

∣

∣

(79)

It is undoubtedly that for a certain master and slave in the form of MTDS, we always
obtained synchronous regime. Example 6 in Section 4 is given to verify for synchronization of
completely nonidentical MTDSs; the multidelay Mackey-Glass and multidelay Ikeda systems.

4. Numerical simulation for synchronous schemes on the proposed models

In this subsection, a number of specific examples demonstrate and verify for the general
description. Each example will correspond to a proposal in above section.

Example 1:
This example illustrates the lag synchronous scheme in coupled identical MTDSs given in
Section 3.1.1. Let’s consider the synchronization of coupled six-delays Mackey-Glass systems
with the coupling signal constituted by the four-delays components. The dynamical equations
are as
Master:

dx

dt
= −αx+

P=6

∑
i=1

mi
xτi

1 + xbτi
(80)

Driving signal:

DS(t) =
Q=4

∑
j=1

kj
xP+j

1 + xbτP+j

(81)

Slave:
dy

dt
= −αy+

P=6

∑
i=1

ni
xτi

1 + xbτi
+ DS(t) (82)

Moreover, the supreme limit of the function f ′(x) is equal to
(b−1)2

4b at x =
(

b+1
b−1

)
1
b
(Pyragas,

1998a). The relation of delays and of parameters is chosen as: τ7 = τ1 + τd, τ8 = τ2 + τd,
τ9 = τ4 + τd, τ10 = τ5 + τd, m1 − k1 = n1, m2 − k2 = n2, m3 = n3, m4 − k3 = n4, m5 − k4 = n5,
m6 = n6.
The value of delays and parameters are adopted as: b = 10, α = 12.3, m1 = −20.0,
m2 = −15.0, m3 = −1.0, m4 = −16.0, m5 = −25.0, m6 = −1.0, n1 = −1.0, n2 = −1.0,
n3 = −1.0, n4 = −1.0, n5 = −1.0, n6 = −1.0, k1 = −19.0, k2 = −14.0, k3 = −15.0, k4 = −24.0,
τd = 5.6, τ1 = 1.2, τ2 = 2.3, τ3 = 3.4, τ4 = 4.5, τ5 = 5.6, τ6 = 6.7, τ7 = 6.8, τ8 = 7.9, τ9 = 10.1,
τ10 = 11.2. Illustrated in Fig. 8 is the simulation result for the synchronization manifold of
y(t) = x(t − 5.6). Obviously, the lag existing in the state variables is observed in Fig. 8(a).
Establishment of the synchronization manifold can be seen through the portrait of x(t− 5.6)
versus y(t) in Fig. 8(b). Moreover, the synchronization error vanishes in time evolution as
shown in Fig. 8(c). As a result, the desired synchronization manifold is firmly achieved.
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(c) Synchronization error ∆(t) = y(t)− x(t− 5.6)

Fig. 8. Simulation result of lag synchronization of coupled six-delays Mackey-Glass systems.

Example 2:
This example demonstrates the description of anticipating synchronization of coupled
identical MTDSs given in Section 3.1.3. The anticipating synchronous scheme is examined
in coupled four-delays Ikeda systems with the dynamical equations given as follows
Master:

dx

dt
= −αx+

P=4

∑
i=1

mi sin xτi
(83)

Driving signal:

DS(t) =
Q=2

∑
j=1

kj sin xτP+j
(84)

Slave:
dy

dt
= −αy+

P=4

∑
i=1

ni sin yτi
+ DS(t) (85)
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Following to above description, the relation of parameters and delays is chosen as: m1 = n1,
m2 − k1 = n2, m3 = n3, m4 − k2 = n4, τ5 = τ2 − τd, τ6 = τ4 − τd. Anticipating synchronization
manifold considered in this example is y(t) = x(t+ τd), and chosen τd = 6.0. The adopted
value of parameters and delays for simulation are as: α = 2.5, m1 = −0.5, m2 = −13.5,
m3 = −0.6, m4 = −14.6, n1 = −0.5, n2 = −0.9, n3 = −0.6, n4 = −0.2, k1 = −12.6,
k2 = −14.4, τ1 = 1.5, τ2 = 7.2, τ3 = 2.6, τ4 = 8.4, τ5 = 1.2, τ6 = 2.4.
The simulation result is displayed in Fig. 9. It is realized from Fig. 9(a) that the slave
anticipates the master’s motion, and the synchronization manifold of y(t) = x(t + 6.0) is
established as illustrated in Fig. 9(b), with vanishing synchronization error as depicted in
Fig. 9(c).
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(c) Synchronization error ∆(t) = y(t)− x(t+ 6.0)

Fig. 9. Simulation result of anticipating synchronization of coupled four-delays Ikeda
systems

Example 3:
To support for projective-lag synchronization as given in Section 3.1.2, this example deals
with synchronization of coupled six-delays Mackey-Glass systems with the driving signal
constituted by the four-delays components. The dynamical equations are expressed in Eqs.
(80)- (82). For the synchronization manifold of ay(t) = bx(t − τd), the relations between
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the value of delays and parameters are chosen as τ7 = τd + τ1, τ8 = τd + τ2, τ9 = τd + τ4,
τ10 = τd + τ6, bm1 − ak1 = an1, bm2 − ak2 = an2, m3 = n3, bm4 − ak3 = an4, m5 = n5,
bm6 − ak4 = an6. According to Eq. (35), the sufficient condition for synchronization is

α >

P=6

∑
i=1

|ani| sup
∣

∣ f ′(xτi+τd
)
∣

∣ . (86)

The value of delays and parameters adopted for simulation are a = 1.0, b = 3.0, c = 10,
α = 6.3, τd = 5.6, τ1 = 6.7, τ2 = 3.4, τ3 = 4.5, τ4 = 5.6, τ5 = 2.3, τ6 = 1.2, τ7 = 12.3, τ8 = 9.0,
τ9 = 11.2, τ10 = 6.8, m1 = −8.0, m2 = −7.0, m3 = −0.3, m4 = −6.7, m5 = −0.2, m6 = −5.4,
n1 = −0.6, n2 = −0.5, n3 = −0.3, n4 = −0.8, n5 = −0.2, n6 = −0.7, k1 = −23.4, k2 = −20.5,
k3 = −19.3, and k4 = −15.5.
The simulation result is illustrated in Fig. 10 with synchronization manifold of 1.0y(t) =
3.0x(t− 5.6). The scale factor can be seen by means of the scale of vertical axes in Fig. 10(a).
The scale factor can also be observed via the slope of the synchronization line in the portrait
of x(t− 5.6) versus y(t) shown in Fig. 10(b). Moreover, the synchronization error is reduced

with respect to time as displayed in Figs. 10(c). However, the level of ∆
(app)
τi

in the linear
approximation given in Eq. (31) is dependent on the difference between the value of a and
b, δ = a − b. Therefore, examination on the impact of δ = a − b on the synchronization
error is necessary. As presented in Fig. 10(d) is the relation between the means square error
(MSE) of the synchronization error in whole synchronizing time and δ = a− b. It is clear that
synchronization error is lowest when δ = 0 or a = b.

Example 4:

The description given in Section 3.1.4 is illustrated in this example. Projective-anticipating
synchronization of coupled five-delays Mackey-Glass systems is examined with three-delays
driving signal. The dynamical equations are as
Master:

dx

dt
= −αx+

P=5

∑
i=1

mi
xτi

1 + xcτi
(87)

Driving signal:

DS(t) =
Q=3

∑
j=1

kj
xτP+j

1 + xcτP+j

(88)

Slave:
dy

dt
= −αy+

P=5

∑
i=1

ni
yτi

1 + ycτi
+ DS(t) (89)

The synchronization manifold of ay(t) = bx(t + τd) is studied with the relation of delays
and parameters chosen as: τ6 = τ1 − τd, τ7 = τ3 − τd, τ8 = τ5 − τd, bm1 − ak1 = an1,
m2 = n2, bm3 − ak2 = an3, m4 = n4, bm5 − ak3 = an5. The value of parameters and delays for
simulation is set at: a = −2.5, b = 1.5, α = 16.3, c = 10, m1 = −16.2, m2 = −0.3, m3 = −14.5,
m4 = −1.0, m5 = −18.6, n1 = −0.4, n2 = −0.3, n3 = −0.8, n4 = −1.0, n5 = −0.7, k1 = 10.12,
k2 = 9.5, k3 = 11.86, τd = 4.6, τ1 = 4.8, τ2 = 3.8, τ3 = 6.2, τ4 = 5.5, τ5 = 4.6, τ6 = 0.6, τ7 = 2.0,
τ8 = 0.4.
The simulation result is depicted in Fig. 11 with the synchronization manifold of −2.5y(t) =
1.5x(t + 4.6). It is easy to observed the scale factor by means of the scale of vertical axes in
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(d) The relation between δ = a − b and means
square error of △ = y− 3xτd

Fig. 10. Simulation result of projective-lag synchronization of coupled six-delays
Mackey-Glass systems

Fig. 11(a). The scale factor can also be observed via the slope of the line illustrated in the
portrait of x(t+ 4.6) versus y(t) in Fig. 11(b).

Example 5:

Synchronization model in this example demonstrate the lag synchronization of partially
identical MTDSs with the general description has been presented in Section 3.2.1. The master’s
and slave’s equations are chosen as
Master:

dx

dt
= −αx+m1sinx

τ
(M)
1

+m2sinx
τ
(M)
2

+m3sinx
τ
(M)
3

+

+m4

x
τ
(M)
4

1 + x8

τ
(M)
4

+m5

x
τ
(M)
5

1 + x10

τ
(M)
5

(90)
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Fig. 11. Simulation result of projective-anticipating synchronization of coupled five-delays
Mackey-Glass systems

Slave:
dy

dt
= −αy+ n1siny

τ
(S)
1

+ n2siny
τ
(S)
2

+

+ n3siny
τ
(S)
3

+ n4siny
τ
(S)
4

+ DS(t)
(91)

It is easy to observe that the sets of function forms are SM = {sinz, z
1+z8 , z

1+z10 }, SS =

{sinz}. Thus, SI = SM ∩ SS = {sinz} and SDSG ⊆ SM ∪ SS = {sinz, z
1+z8 , z

1+z10 }. It is

assumed that τ
(M)
1 = τ

(S)
1 and τ

(M)
2 = τ

(S)
2 , thus, the pairs of identicalness components are

{sinx
τ
(M)
1

vs. siny
τ
(S)
1

} and {sinx
τ
(M)
2

vs. siny
τ
(S)
2

}. Therefore, the equation for driving signal

must be chosen as

DS(t) = k1sinx
τ
(DS)
1

+ k2sinx
τ
(DS)
2

+ k3sinx
τ
(DS)
3

+

+ k4

x
τ
(DS)
4

1 + x8

τ
(DS)
4

+ k5

x
τ
(DS)
5

1 + x10

τ
(DS)
5

+ k6sinx
τ
(DS)
6

+ k7sinx
τ
(DS)
7

(92)

Following to the assumption described in the above description for the manifold of y(t) =
x(t− τd), the relation of delays and coefficients is chosen as: m1 − k1 = n1, m2 − k2 = n2, k3 =

m3, k4 = m4, k5 = m5, k6 = −n3, k7 = −n4, τ
(DS)
1 = τ

(M)
1 + τd (= τ

(S)
1 + τd), τ

(DS)
2 = τ

(M)
2 + τd

(= τ
(S)
2 + τd), τ

(DS)
3 = τ

(M)
3 + τd, τ

(DS)
4 = τ

(M)
4 + τd, τ

(DS)
5 = τ

(M)
5 + τd, τ

(DS)
6 = τ

(S)
3 + τd, and

τ
(DS)
7 = τ

(S)
4 + τd. In simulation, the value of parameters are adopted as: α = 2.0, m1 = −15.4,

m2 = −16.0, m3 = −0.35, m4 = −20.0, m5 = −18.5, n1 = −0.2, n2 = −0.1, n3 = −0.25,
n4 = −0.4, k1 = −15.2, k2 = −15.9, k3 = −0.35, k4 = −20.0, k5 = −18.5, k6 = 0.25, k7 = 0.4,

τ
(M)
1 = 3.4, τ

(M)
2 = 4.5, τ

(M)
3 = 6.5, τ

(M)
4 = 5.3, τ

(M)
5 = 2.9, τ

(S)
1 = 3.4, τ

(S)
2 = 4.5, τ

(S)
3 = 2.0,

τ
(S)
4 = 7.3, τ

(DS)
1 = 10.4, τ

(DS)
2 = 11.5, τ

(DS)
3 = 13.5, τ

(DS)
4 = 12.3, τ

(DS)
5 = 9.9, τ

(DS)
6 = 9.0,

and τ
(DS)
7 = 14.3.

The simulation result illustrated in Fig. 12 shows that the manifold of y(t) = x(t − 7.0) is
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established and maintained. The manifold’s delay can be seen in Fig. 12(a) and Fig. 12(b). The
synchronization error vanishes eventually as given in Fig. 12(c), it confirms the synchronous
regime of nonidentical MTDSs.
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(c) Synchronization error ∆(t) = y(t)− x(t− 7.0)

Fig. 12. Simulation result of lag synchronization of partially identical MTDSs.

Example 6:
In this example, the demonstration for lag synchronization of completely nonidentical MTDSs
given in Section 3.2.2 is presented. the equations representing for the master and slave are as
Master:

dx

dt
= −αx+m1

x
τ
(M)
1

1 + x6

τ
(M)
1

+m2

x
τ
(M)
2

1 + x8

τ
(M)
2

+m3

x
τ
(M)
3

1 + x10

τ
(M)
3

(93)

Slave:
dy

dt
= −αy+ n1siny

τ
(S)
1

+ n2siny
τ
(S)
2

+ n3siny
τ
(S)
3

+

+ n4siny
τ
(S)
4

+ DS(t)
(94)

It is clear that the sets of function forms are SM = { z
1+z6 , z

1+z8 , z
1+z10 }, SS = {sinz},

SI = SM ∩ SS ≡ Φ. Thus, the subset of function form for DSG is SDSG ⊆ SM ∪ SS =
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{sinz, z
1+z6 , z

1+z8 , z
1+z10 }, and the driving signal’s equation must be chosen as

DS(t) = k1

x
τ
(DS)
1

1 + x6

τ
(DS)
1

+ k2

x
τ
(DS)
2

1 + x8

τ
(DS)
2

+ k3

x
τ
(DS)
3

1 + x10

τ
(DS)
3

+

+ k4sinx
τ
(DS)
4

+ k5sinx
τ
(DS)
5

+ k6sinx
τ
(DS)
6

+ k7sinx
τ
(DS)
7

(95)

Following to the general description above, the chosen relation of delays and coefficients for
the manifold of y(t) = x(t− τd) are as: k1 = m1, k2 = m2, k3 = m3, k4 = −n1, k5 = −n2, k6 =

−n3, k7 = −n4, τ
(DS)
1 = τ

(M)
1 + τd, τ

(DS)
2 = τ

(M)
2 + τd, τ

(DS)
3 = τ

(M)
3 + τd, τ

(DS)
4 = τ

(S)
1 + τd,

τ
(DS)
5 = τ

(S)
2 + τd, τ

(DS)
6 = τ

(S)
3 + τd, and τ

(DS)
7 = τ

(S)
4 + τd. And, the value of parameters

and delays are adopted for simulation as: α = 2.5, m1 = −15.5, m2 = −20.2, m3 = −18.4,
n1 = −0.3, n2 = −0.2, n3 = −0.4, n4 = −0.6, k1 = −15.5, k2 = −20.2, k3 = −18.4, k4 = 0.3,

k5 = 0.2, k6 = 0.4, k7 = 0.6, τd = 5.0, τ
(M)
1 = 2.8, τ

(M)
2 = 6.4, τ

(M)
3 = 3.9, τ

(S)
1 = 1.7,

τ
(S)
2 = 6.5, τ

(S)
3 = 4.1, τ

(S)
4 = 8.0, τ

(DS)
1 = 7.8, τ

(DS)
2 = 11.4, τ

(DS)
3 = 8.9, τ

(DS)
4 = 6.7,

τ
(DS)
5 = 11.5, τ

(DS)
6 = 9.1, and τ

(DS)
7 = 13.0.

Shown in Fig. 13 is the time series of state variables, the portrait of x(t − 5.0) versus y(t)
and synchronization error ∆(t) = y(t)− x(t− 5.0), and it is easy to realize that the desired
manifold is created and maintained.

5. Discussion

In this section, the discussion is given on four aspects, i.e., the sufficient condition for
synchronization, the connection between the synchronous schemes in the proposed models,
the form of driving signal and the complicated dynamics of MTDSs in compared to
STDSs. These will confirm the application of the proposed synchronization model in secure
communications.
Firstly, the sufficient conditions for synchronization given in Eqs. (23), (35), (43), (54), (72)
and (79) are loose for adopting value of parameters and delays. It is dependent on value of
parameters and not on delays since f ′(x) is not a piecewise function with respect to x. This
allows to arrange multiple slaves being synchronized with one master at the same time.
Secondly, it is easy to realize from the connection between the synchronous schemes
that transition from lag synchronization to anticipating one can be done by changing the
relation between delays in DSG from τP+j = τi + τd to τP+j = τi − τd (see Eqs. (19)
and (40)). Moreover, the sufficient condition for lag synchronization is identical to that for
anticipating synchronization as presented in Eqs. (23) and (43). Besides, transition from
lag synchronization with the synchronization manifold of y(t) = x(t − τd) in Eq. (15) to
projective-lag synchronization with the manifold of ay(t) = bx(t− τd) given in Eq. (24) has
been done by changing the relation between parameters from mi − kj = ni to bmi − akj = ani
(see Eqs. (21) and (33)); a, b are nonzero real numbers. Similar to the case of transition
from lag synchronization to anticipating one, projective-anticipating synchronization has
been achieved by changing the relation between delays in projective-lag synchronization
from τP+j = τi + τd to τP+j = τi − τd (see Eqs. (19) and (40)) whereas the relation
between parameters and the sufficient condition for synchronization have been kept intact
(see Eqs. (33), (35) and (54)). As a special case, if the value of τd is set to zero, then lag and
anticipating synchronization will become the scheme of complete synchronization of MTDSs
and the schemes of projective-lag and projective-anticipating synchronizations turn into the
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(c) Synchronization error ∆(t) = y(t)− x(t− 5.0)

Fig. 13. Simulation for lag synchronization of completely nonidentical MTDSs.

projective synchronization of MTDSs.
Thirdly, in the proposed model of identical MTDSs, it is observed that the driving signals
given in Eqs. (13) and (56) are in the form of sum of nonlinear transforms, and they are
commonly used for considering all the synchronous schemes. The reason for choosing
such the form is to obtain synchronization error dynamics being in the linear form. Then,
the Krasovskii-Lyapunov theory is applied to get sufficient condition for synchronization.
Assumptions made to f (.) being differentiable and bounded as well as obliged relations made
to parameters and delays are also for this reason. This must be appropriate to given forms of
the master and slave.
Lastly, earlier part of the paper has been mentioned the prediction that MTDSs may hold
more complicated dynamics than STDSs do. This has been confirmed from the result of
numerical simulation given in Section 2.2. It is well-known that Lyapunov exponents and
metric entropy are measure of complexity degree for chaotic dynamics. That is, in the specific
example of two-delays Mackey-Glass system, it is possible to obtain dynamics with LLE of
approximate 0.7 and metric entropy of around 1.4 as shown in Fig. 6 by adopting suitable
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value of parameters and delays. Recall that, in the specific example of single time-delay
Mackey-Glass system examined by J.D. Farmer (Farmer, 1982), LLE and metric entropy were
reported at around 0.07 and 0.1, respectively. The ‘V’ shape of LLE and metric entropy with
respect to m1 and m2 in Figs. 4 and 5 illustrates more intuitively. At small value of mi, the
two-delays system tends to be single time-delay system due to weak feedback. The shift of
‘V’ shape in the case of m3 = 3.0 can be interpreted that there is some correlation to value of
delays. Here, τ2 associated with m2 holds largest value. Undoubtedly, MTDSs holds dynamics
which is more complicated than that of STDSs.

6. Conclusion

In this chapter, the synchronization model of coupled identical MTDSs has been presented,
in which the coupling signal is sum of nonlinear transforms of delayed state variable. The
synchronous schemes of lag, anticipating, projective-lag and projective-anticipating have
been examined in the proposed models. In addition, the synchronization model of coupled
nonidentical MTDS has been studied in two cases, i.e., partially identical and completely
nonidentical. The scheme of lag synchronization has been used for demonstrating and
verifying the cases. The simulation result has consolidated the general description to the
proposed synchronous schemes. Noticeably, combination between synchronous schemes of
projective and lag/anticipating is first time mentioned and investigated.
The transition between the lag and anticipating synchronization as well as between the
projective-lag to projective-anticipating synchronization can be yielded simply by adjusting
the relation between delays while the change from the lag to projective-lag synchronization
and from the anticipating to projective-anticipating synchronization has been realized by
modifying the relation between coefficients. Similarly, other synchronous schemes of coupled
nonidentical MTDSs can be investigated as ways dealing in the synchronization models of
identical MTDSs, and synchronous regimes will also be established as expected. This allows
the synchronization models becoming flexible in selection of working scheme and switch
among various schemes.
In summary, the proposed synchronization models present advantages to the application of
secure communications in comparison with conventional ones. Advantages lie in both the
complexity of driving signal and infinite-dimensional dynamics.
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