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1. Introduction

1.1 Context

Developed countries have to face the growing population of seniors. In Canada for example,
while one Canadian out of eight was older than 65 years old in 2001, this proportion will be
one out of five in 2026 (PHAC, 2002), due in particular to the “baby boomers” post-world
war II and the increase of life expectancy. Several studies (Chappell et al., 2004; Senate,
2009) have shown that helping elderly people staying at home is interesting from a human
perspective, but also from a financial perspective. Hence the interest to develop new
healthcare systems to ensure the safety of elderly people at home.
Falls are one of the major risk for seniors living alone at home, often causing severe injuries.
The risk is amplified if the person cannot call for help. Usually, wearable fall devices are
used to detect falls. For example, an elderly person can call for help using a push button
(DirectAlert, 2010), but it is useless if the person is immobilized or unconscious after the fall.
Automatic wearable devices are more interesting as no human intervention is required. Some
are based on accelerometers (Kangas et al., 2008; Karantonis et al., 2006) which detect the
magnitude and the direction of the acceleration. Others are based on gyroscopes (Bourke &
Lyons, 2008) which measure the body orientation. A combination of an accelerometer and
a gyroscope was used by (Nyan et al., 2008) to detect falls at an earlier stage. The major
drawback of these technologies is that these sensors are often embarrassing to wear, and
require batteries which need to be replaced or recharged regularly for adequate functioning.
Floor vibration-based fall detector (Alwan et al., 2006) can also be used to detect falls but
depends on the floor dynamics. This idea has been successfully improved by (Zigel et al.,
2009) by adding a sound sensor. They obtained high detection rates, but they admitted
that low-impact real human falls may not be detected. Video surveillance offers a new and
promising solution for fall detection, as no body-worn devices are needed. For this purpose,
a (possibly miniaturized) camera network is placed in the elderly apartment to automatically
detect a fall to prevent an emergency center or the family.

1.2 Fall detection problem

1.2.1 General fall detection problem

The main fall detection problem is to recognize a fall among all the daily life activities,
especially sitting down and crouching down activities which have similar characteristics to
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falls (especially a large vertical velocity). A fall event can be decomposed in four phases
(Noury et al., 2008) as shown in Fig. 1:
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Fig. 1. The different phases of a fall event.

The pre-fall phase corresponds to daily life motions, with occasionally sudden movements
directed towards the ground like sitting down or crouching down. These activities should
not generate alarm with a fall detection system.

The critical phase, corresponding to the fall, is extremely short. This phase can be detected
by the movement of the body toward the ground or by the impact shock with the floor.

The post-fall phase is generally characterized by a person motionless on the ground just after
the fall. It can be detected by a lying position or by an absence of significative motion.

A recovery phase can eventually occur if the person is able to stand up alone or with the help
of another person.

1.2.2 Specific video surveillance problems

Video surveillance systems need to be robust to image processing difficulties. One of them
comes from the camera choice. With inexpensive cameras, the video sequences will contain
a high video compression (MPEG4 for example) which can generate artifacts in the image.
Sometimes, a variable illumination can be observed, which must be taken into account during
the background updating process. The lighting can also be a source of problems with
the appearance of reflections in the scene (colors brighter than usual) or shadows from the
moving person (colors darker than usual). The problem with reflections and shadows is their
detection erroneous as moving objects with a basic segmentation method. Occlusions are also
a well-known source of errors, mainly due to furniture (chairs, sofa, etc) or entry/exit from
the field of view. Carried objects, like bags or clothes, can also generate occlusions. Moving
objects of no interest (e.g. chair moved) can cause “phantoms” in the image and must be
finally integrated in the background image somehow. The silhouette of the person can also
be disturbed by the action of putting on/taking off a coat. Clothes with different textures and colors
need to be tested to evaluate their influence on the algorithms, as well as realistic cluttered and
textured backgrounds.
Robust fall detection systems using video surveillance should not generate alarms because of
image processing problems. Some precautions can be taken to limit these sources of problems.
Beyond the choice of the camera, the placement of the cameras is important. They need to be
placed highly in the room to limit occluding objects and to have a larger field of view. The
use of infrared lights can also be considered for lighting problems or for use at night. For our
experiments, we have acquired in our laboratory a realistic video data set (Auvinet et al., 2010)
of simulated falls and normal daily activities with a multi-camera system. It is composed of
inexpensive cameras with a wide angle to cover all the room. This video data set contains all
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types of problems described previously, and has been made publicly available for the scientific
community to test their fall detection algorithms.

1.3 User perception and receptivity of video surveillance systems

We have conducted a research project (Londei et al., 2009), funded by the Social Sciences and
Humanities Research Council of Canada, to explore the perception and the receptivity of the
potential users of the Intelligent Videomonitoring System. The study specifically focuses on
two objectives:

• to explore their receptivity towards the system (cameras, computer at home) and

• to explore their perception related to the data transmitted (eg. images) and the
transmission modes (eg. cell phone).

The study uses a mixed-methods design (Creswell & Clark, 2007). Participants (potential
users) include: professionals from the health care and social system (n=31) (nurses,
occupational therapists, physiotherapists, social workers and managers), elderly living at
home who have fallen during the last year (n=30) and caregivers (n=18). Focus group
technique (Krueger, 1994) and structured interviews (Mayer & Ouellet, 1991) were used for
data collection. Data analyses were performed with (SPSS, 2007) and (QSR, 2002) softwares.
The results of the three main questions are presented here:

1. What do you think about the Intelligent Videomonitoring System?

Fifteen caregivers (83,3%) are in favor of this system as well as 26 seniors (86,7%).
Advantages of the system are:
a) security and quickness of intervention for the seniors,
b) a relief from stress, for caregivers, related to their fear that the elder falls and stays a

long time without assistance while hurt, and
c) for the professionals, images videotaped a few seconds before the fall occurrence would

be a valuable source of information to document fall events in a way to improve security
and interventions.

2. Would you actually use a system such as the Intelligent Videomonitoring System?

a) Most of the caregivers (n=15, 83,3%) would like to use the system.
b) For the elderly, results show that a little less than fifty percent would use the system.

The explanation of these results is that elders mention that they don’t want it because
they don’t need it at this time. When they will be “old enough”, they would certainly
agree to have one in order to stay at home as long as they could.

c) For the professionals and the managers, this system allows new opportunities for home
care: 1) to improve security for elderly living at home focusing on the quickness of
the emergency intervention and 2) to document the fall events in a way to better
understand the origins of falls and to improve interventions.

3. What is your choice of images to be transmitted?

Figure 2 shows the images presented to the participants. The original image (a) is
preferred by all participants: 25 elders (92,6%), 14 caregivers (82,4%) and 5 groups of
professionals. In accordance with the professionals, the silhouette images (g-h-i) seem to
be more appropriate for videotaping in the bathroom but the original image (a) remains
the first choice for elders and caregivers.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Images presented to the participants: original image (a) and eight processed images
(images (b)-(i) with blurring, pixelization or silhouette extraction)

To summarize: the results show receptivity from the potential users (for example: safety and
quick intervention) but some concerns about safety of the transmission system (eg. Images).
Intelligent Videomonitoring System is a very promising technology to support the elderly
living at home respecting their privacy.

2. Related works on fall detection using video surveillance

The reader can find a good study on fall detection techniques using wearable devices or video
surveillance in a recent article by (Noury et al., 2007). In this section, an overview of fall
detection methods using video surveillance is proposed.

2.1 Using monocular systems

A commonly used method to detect falls consists of analyzing the person bounding box in
the image (Anderson et al., 2006; Tao et al., 2005; Töreyin et al., 2005). This simple method
works well with a camera placed sideways, but can fail because of occluding objects. In a
more realistic way, other researchers (Lee & Mihailidis, 2005; Nait-Charif & McKenna, 2004)
have placed the camera higher in the room for a larger field of view and to avoid occluding
objects. The person silhouette and the 2D image velocity were analyzed by (Lee & Mihailidis,
2005) to detect falls with special thresholds for usual inactivity zones like the bed or the sofa
(manually initialized). An ellipse representing the person was tracked with a particle filter by
(Nait-Charif & McKenna, 2004) to obtain the trajectory used to detect abnormal inactivities
outside usual inactivity zones (automatically learned). The vertical velocity is an interesting
way to detect falls, either with the 2D vertical image velocity (Sixsmith & Johnson, 2004) or the
3D vertical velocity (Wu, 2000). In this chapter, some new monocular methods will be shown
based on human shape change (see Sections 4 and 5) or on 3D head trajectory (see Section 6).
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2.2 Using multi-camera systems

A calibrated multi-camera system is useful to reconstruct a three-dimensional representation
of the human shape as done by (Anderson et al., 2009) in the voxel space from foreground
silhouettes. Their fall detection step was performed by analyzing the states of the voxelized
person with a fuzzy hierarchy. For different heights relative to the ground, the homographic
transformations of the foreground silhouettes were fused by (Auvinet et al., 2008) in a
plane parallel to the ground to reconstruct the 3D human blob. An analysis of the volume
distribution along the vertical axis is performed to detect abnormal events like a person lying
on the ground after a fall. An alarm is triggered when the major part of this distribution is
concentrated near the floor during a predefined period of time. Without reconstructing the
3D human blob, a Layered Hidden Markov Model (LHMM) was used by (Thome et al., 2008)
to distinguish falls from walking activities. Their method was based on motion characteristics
extracted from a metric image rectification in each view. With two uncalibrated cameras, a
Principal Component Analysis (PCA) was performed by (Hazelhoff et al., 2008) on the human
silhouette to obtain the direction of the principal component and the variance ratio used for
fall detection. A head tracking module was used to improve their recognition results.

3. Our fall detection system

Concretely, a camera network would be placed in the apartment of the person in order
to automatically detect a fall. Figure 3 shows an overview of our fall detection system.
The images acquired from the video cameras are processed by the local workstation to
automatically detect a fall. When a fall is detected, a message could be sent to an emergency
center or to the family through a secure Internet connection.
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Fig. 3. Our fall detection system.

To limit the cost of our system, inexpensive cameras (IP cameras or webcams) are used and
their number is limited to only one per room for cost effectiveness and for simplicity. Indeed,
a multi-camera system is more difficult to implement than a monocular one, as reliable 3D
information can only be computed if the system is well synchronized and calibrated.
The next sections will describe some of our solutions for fall detection using monocular
systems. First, 2D information for fall detection can be used by detecting a fall as a large
motion along with changes in the human shape (described in Section 4) or by analyzing
the deformation of the human silhouette during and after the fall (described in Section 5).
However, some 3D information can be very useful for fall detection as it becomes possible to
recover the localization of the person relative to the ground. Usually a multi-camera system is
required to have 3D information, but we will show in Section 6 that it is possible to compute
the 3D head trajectory of the person from a monocular system. Then, a fall can be detected
when the 3D vertical head velocity is too high or when the head is too close to the ground.
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Notice that all our algorithms are implemented in C++ using the OpenCV library (Bradski &
Kaehler, 2008) and can run in quasi-real-time.

4. 2D information for fall detection: human shape and Motion history image

A fall is characterized by a large motion combined with a change in the human shape. The idea in
this work was to detect and analyze these two characteristics (Rougier et al., 2007).

4.1 Human shape change

The moving person is first extracted from the image with a background subtraction method
(Kim et al., 2005) taking into account the problem of shadows, highlights and high image
compression. Using moments (Jain, 1989; Pratt, 2001), the person is then approximated by
an ellipse defined by its center (x̄, ȳ), its orientation θ and the length a and b of its major
and minor semi-axes. The approximated ellipse gives us information about the shape and
orientation of the person in the image. Some examples of background subtraction results and
ellipse approximation are shown in Fig. 5 and 6.
Two features are computed for a 1s duration to analyze the human shape change:

The orientation standard deviation σθ of the ellipse If a person falls perpendicularly to the
camera optical axis, then the orientation will change significantly and σθ will be high. If
the person just walks, σθ will be low.

The a/b ratio standard deviation σa/b of the ellipse If a person falls parallelly to the camera
optical axis, then the ratio will change and σa/b will be high. If the person just walks, σa/b

will be low.

4.2 Motion history image

A serious fall generally occurs with a large movement which can also be quantified with the
Motion History Image (Bobick & Davis, 2001). The Motion History Image (MHI) is an image
representing the recent motion in the scene, and is based on a binary sequence of motion
regions D(x, y, t) from the original image sequence I(x, y, t) using an image-differencing
method. Then, each pixel of the Motion History Image Hτ is a function of the temporal history
of motion at that point, occurring during a fixed duration τ (with 1 ≤ τ ≤ N for a sequence
of length N frames):

Hτ(x, y, t) =

{

τ i f D(x, y, t) = 1
max (0, Hτ(x, y, t − 1) − 1) otherwise.

(1)

The more recent moving pixels are seen brighter in the MHI image. Then, to quantify
the motion of the person, we compute a coefficient Cmotion based on the motion history
(accumulation of motion during 500ms) within the blob representing the person using:

Cmotion =
∑Pixel(x,y)∈blob Hτ(x, y, t)

# pixels ∈ blob
with

{ blob the person silhouette pixels
Hτ the Motion History Image

(2)

Only the largest blob is considered here. This coefficient is then scaled to a percentage of
motion between 0% (no motion) and 100% (full motion). Some examples of MHI images and
corresponding coefficients Cmotion are shown in Fig. 5 and 6.
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4.3 Fall detection

Our complete fall detection algorithm, shown in Fig. 4, is composed of three steps:

1. Motion quantification

A large suspicious motion is detected when the coefficient Cmotion is higher than 65%.
However, a walking person moving perpendicularly to the camera optical axis can also
generate a large movement in the MHI image. Thus, we need to analyze further this
abnormal motion to discriminate a fall from a normal movement.

2. Human shape analysis

A large motion is considered as a possible fall if σθ is higher than 15 degrees or if σa/b

is higher than 0.9 (sufficient to be insensitive to little ellipse variations due to image
segmentation problems or variation in human gait).

3. Lack of motion after a fall

The last step is used to check if the person is immobile on the ground just a few seconds
after the fall (during 5 seconds). An unmoving ellipse must respect all these criteria:
• Cmotion < 5%
• σx̄ < 2 pixels and σȳ < 2 pixels, with σx̄ and σȳ the standard deviations of the centroid
position.
• σa < 2 pixels, σb < 2 pixels and σθ < 15 degrees, with σa, σb and σθ the standard
deviations of the ellipse parameters.
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Fig. 4. Our fall detection algorithm based on the Motion History Image and human shape.

4.4 Experimental results

For a low-cost system, our video sequences were acquired using a USB webcam with a
wide angle of more than 70 degrees to cover all the room (model Live! Ultra from Creative
Technology Ltd). Our system works with a single uncalibrated camera (image size 320x240
pixels) and runs in real-time (computational time of less than 80 ms which is adequate for our
application as 10 fps is sufficient to detect a fall).
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Some examples of falls are shown in Fig. 5 and normal activities in Fig. 6. The human
silhouette, extracted from the background, is approximated by an ellipse shown in red.
This figure shows also the MHI image obtained and the coefficient values used for fall
detection. When a fall occurs, a large motion appears (high Cmotion) with a significant change
in orientation and/or scale (high σθ and/or σa/b).

For our experiments, our data set was composed of realistic video sequences representing
24 daily normal activities (walking, sitting down, standing up, crouching down) and 17
simulated falls (forward falls, backward falls, falls when inappropriately sitting down, loss
of balance). We obtained a good fall detection rate with a sensitivity of 88% and an
acceptable false detection rate with a specificity of 87.5%, in spite of the bad video quality
and the fluctuant frame rate of the webcam. We have demonstrated that the combination of
motion and change in the human shape gives crucial information on human activities. Some
thresholds were experimentally defined in this work, but could be learned from training data.
An automatic method based on the human shape deformation is proposed in the next section.

5. 2D information for fall detection: human shape deformation

As seen previously, the human shape is useful for fall detection. In this section, we describe
our method to quantify the human shape deformation and automatically detect falls (Rougier
et al., 2008; 2010b). The idea is that the human shape changes drastically and rapidly during
a fall, while during usual activities, this deformation is more progressive and (relatively)
slow. In this section, the human shape deformation is quantified to discriminate real falls
from normal activities. First, some edge points are extracted from the human silhouette by
combining a foreground segmentation with a Canny edge detection in the image. Then, two
consecutive silhouettes can be matched using Shape Context to quantify the human shape
deformation. Finally, a GMM classifier based on shape analysis is used to detect falls.

5.1 Silhouette edge point matching using shape context

The shape descriptor “Shape Context” (Belongie et al., 2002) is used to match two consecutive
sets of edge points. As Shape Context is sensitive to background edges, we improve the
method by only considering moving silhouette edge points. They are extracted by combining

(a) Fall with direction perpendicular to the camera axis, which is detected as Cmotion and σθ are high.

Cmotion = 93.3%
σθ = 15.98
σa/b = 0.74

(b) Fall with direction parallel to the camera axis. Cmotion and σa/b are sufficiently high to detect the fall.

Cmotion = 74.3%
σθ = 3.26

σa/b = 0.97
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Fig. 6. Examples of normal activities.

the foreground silhouette, obtained from a background subtraction method (Kim et al., 2005),
with an edge image of the scene, obtained from a Canny edge detector (Canny, 1986), to
provide additional shape information. For real-time purpose, N landmarks, regularly-spaced,
are selected for each silhouette (N = 250 for our experiment).
For each point pi of the first shape, the best corresponding point qj of the second shape needs
to be find. A log-polar histogram hi is used to encode local information about each point
relative to its neighbours. hi is centered on each point pi and contains the relative coordinates
of the remaining n − 1 points:

hi (k) = # {q �= pi : (q − pi) ∈ bin (k)} , hi contains 5 bins for log r and 12 bins for θ (3)

(c) The person walks with direction parallel to the camera axis, all coefficients are low.

Cmotion = 39.6%
σθ = 1.64

σa/b = 0.26

(d) The person walks with direction perpendicular to the camera axis, which generates a large Cmotion.
However, as σθ and σa/b are low, no fall is detected.

Cmotion = 74.6%
σθ = 0.69

σa/b = 0.32

(e) A sitting person generates a moderate coefficient Cmotion which can be sufficient for a suspicious fall.
However, as σθ and σa/b are low, no fall is detected.

Cmotion = 72.3%
σθ = 10.4
σa/b = 0.8

(f) The person, doing housekeeping, only moves the arm which do not increase the different coefficients.

Cmotion = 9.3%
σθ = 4.02

σa/b = 0.02
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Similar points on the two shapes can be found using the matching cost computed with
the χ2 statistic. This matching cost Cij is computed for each pair of points (pi, qj):

Cij = C(pi, qj) =
1
2

K

∑
k=1

[

hi (k) − hj (k)
]2

hi (k) + hj (k)
(4)

where hi (k) and hj (k) denote the K-bin histograms respectively for pi and qj.
Using the resulting cost matrix, the best corresponding points are obtained by minimizing
the total matching cost H (π) = ∑i C(pi, qπ(i)) given a permutation π (i). The Hungarian
algorithm (Kuhn, 1955) for bipartite matching is used by the authors of (Belongie et al., 2002)
to find corresponding points, but this algorithm is time consuming and some bad matching
points can appear in spite of the inclusion of dummy points. As we want to keep only reliable
points for the shape deformation quantification, we find those that have their cost minimal for
the row and the column of the matrix (mini Cij = minj Cij). To discard some bad landmarks
which may still remain, the set of matching points is also cleaned based on the motion of the
person, by computing the mean motion vector v̄ and the standard deviation σv from the set
of matching points. Only the vectors within 1.28 standard deviation from the mean, which
corresponds to 80% of the motion vectors, are kept. The mean matching cost C̄ is then obtained
by averaging all the best matching points costs. An example of Shape Context matching is
shown in Fig. 7. While the foreground silhouette is not clean enough to be used for shape
analysis, due to segmentation problems, the moving edge points are perfect to match the two
consecutive silhouettes.

Original image Foreground silhouette

Canny edge detection Moving edge points

Selected edge points from two
consecutive silhouettes and the
corresponding matched points
obtained with Shape Context

Fig. 7. Example of silhouette matching with Shape Context

5.2 Shape analysis

When a fall occurs, the human shape will drastically change during the fall (C̄1 or D1) and
finally will remain motionless just after (C̄2 or D2) as shown in Fig. 8. These features are
analyzed in two ways:

With the mean matching cost i.e. features (C̄1, C̄2)
C̄1 should be high during the fall as the human shape change drastically in a short period
of time, while just after, C̄2 should be low as the person remains unmoving on the ground.

Selected edge points from two
consecutive silhouettes and the
corresponding matched points
obtained with Shape Context
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With the full Procrustes distance i.e. features (D1, D2)
The Procrustes shape analysis (Dryden & Mardia, 1998) is used to quantify the shape
deformation, which consists in comparing the shapes once translational, rotational and
scaling components are removed to normalize them. The full Procrustes distance should
increase in case of a fall (feature D1), and should be low just after the fall (feature D2).
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Feature C̄1 or D1 represents the fall at time t.

Feature C̄2 or D2 represents the lack of movement
after the fall. This feature was computed
between t + 1s and t + 5s, this time interval
was determined experimentally.

Fig. 8. The features (C̄1, C̄2) and (D1, D2).

5.3 Fall detection using GMM

The fall detection problem consists in detecting an abnormal event from a training data
set of normal activities, which is known as novelty detection methods (Hodge & Austin,
2004). For our experiment, our normal activities are modeled by a GMM (Gaussian Mixture
Model) which is defined by a weighted sum of Gaussian distributions (Nabney, 2001). The
GMM parameters are determined using the EM (Expectation-Maximisation) algorithm by
maximizing the data likelihood.
Specifically in our case, the parameters of the GMM are estimated from a training data set
of daily normal activities (walking, sitting down, crouching down, housekeeping, etc) with
the GMM features (C̄1 or D1, C̄2 or D2) described previously. For training and testing, a
leave-one-out cross-validation is used. The data set is divided into N video sequences which
contain some falls and/or normal activities (including lures). For testing, one sequence is
removed from the data set, and the training is done using the N − 1 remaining sequences
(where falls are deleted because the training is only done with normal activities). The removed
sequence is then classified with the resulting GMM. This test is repeated N times by removing
each sequence in turn. The sensitivity and the specificity of the system give an idea of the
classifier performance. Considering the number of falls correctly detected (True Positives, TP)
and not detected (False Negatives, FN), and the number of normal activities (including lures)
detected as a fall (False Positives, FP) and not detected (True Negatives, TN), the sensitivity is
equal to Se = TP/ (TP + FN) and the specificity Sp = TN/ (TN + FP). An efficient fall
detection system will have a high sensitivity (a majority of falls are detected) and a high
specificity (normal activities and lures are not detected as falls).

5.4 Experimental results

Our method was tested on our video data set of simulated falls and normal daily activities
(Auvinet et al., 2010) taken from 4 different camera points of view. The acquisition frame
rate was 30 fps and the image size was 720x480 pixels. The shape matching is implemented
in C++ using the OpenCV library (Bradski & Kaehler, 2008) and the fall detection step is
done with Matlab using the Netlab toolbox (Nabney, 2001) to perform the GMM classification.
The computational time of the shape matching step is about 200ms on an Intel Core 2 Duo
processor (2.4 GHz), which is adequate for our application as a frame rate of 5 fps is sufficient
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to detect a fall. A 3-component GMM was used in our experiment as we have shown (Rougier
et al., 2010b) that it was the best compromise between a low classification error rate, a good
repeatability of the results and a reasonable computation time. Figure 9 shows a log-likelihood
example obtained with a 3-component GMM for the full Procrustes distance features, and a
fall event in light blue superimposed on the graphic. The input features are normalized to
unit standard deviations and zero means.
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The dark blue points represent the normalized
training data set (normal activities).

The white boundary represents the boundary for the
chosen log-likelihood threshold.

The light blue points corresponds to a sequence
where a fall occurs. The fall is detected when the
points are outside the boundary.

Fig. 9. Example of log-likelihood obtained with a 3-component GMM and a fall event.

A ROC analysis was performed for each camera independently and for a majority vote (fall
detected if at least 3 of 4 cameras returned a fall detection event). Figure 10 shows the curves
obtained for the full Procrustes distance (a) and mean matching cost features (b).
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Fig. 10. ROC curves (log-likelihood threshold ranging from -50 to -1) obtained for each
camera independently (C1, C2,C3, C4) and for a majority vote (MV, at least 3 of 4 cameras).

Table 1 shows our recognition results for the full Procrustes distance and the mean matching cost
regarding several evaluation tests:

1. Using the best matching points
Our results are quite good for each camera independently and increase with a majority
vote. The similar ROC curves prove that our method is view-independent for the two
features. The full Procrustes distance and the mean matching cost gave similar results with,
respectively, an Equal Error Rate of 3.8% and 4.6% with a majority vote.

368 Video Surveillance

www.intechopen.com



2. Using the Hungarian matching
The results obtained with the Hungarian matching are not statistically different from those
obtained with our methodology. However, Hungarian matching is more time consuming,
requires to choose the percentage of dummy points (a parameter that affect considerably
the quality of the results) and can leave bad matching points.

3. Using normal inactivity zones
A solution to increase the recognition results could be to define normal inactivity zones
(Lee & Mihailidis, 2005) like the bed or the sofa, where the detection thresholds should be
less sensitive. Normal inactivity zones were defined manually in our video sequences, and
when the person centroid was localized inside one of these zones, the detection threshold
was fixed at 1.5 times the normal threshold. As shown in Table 1, the use of normal
inactivity zones can really increase the recognition results. These inactivity zones could
be automatically learned before installing the system.

Camera Features
Best matching* Hungarian† Inactivity‡

points matching zones
Camera 1

(D1, D2)

9.1% (0.978) 13.2% (0.963) 5.7% (0.983)
Camera 2 9.4% (0.968) 9.4% (0.965) 9.1% (0.979)
Camera 3 11.3% (0.964) 7.6% (0.988) 7.6% (0.971)
Camera 4 9.1% (0.966) 13.6% (0.930) 9.1% (0.983)

Majority vote 3.8% (0.996) 9.1% (0.907) 0% (1)
Camera 1

(C̄1, C̄2)

5.7% (0.977) 11.3% (0.953) 4.6% (0.984)
Camera 2 9.1% (0.975) 9.1% (0.979) 0% (1)
Camera 3 5.7% (0.990) 9.4% (0.979) 5.7% (0.988)
Camera 4 13.2% (0.956) 13.6% (0.935) 9.4% (0.972)

Majority vote 4.6% (0.997) 0% (1) 1.9% (0.999)
* Our matching method considering only the best matching points.
† The Hungarian algorithm (Kuhn, 1955) for bipartite matching with 20% of dummy points.
‡ Results obtained when normal inactivity zones are added for classification (best matching points).

Table 1. EER and AUC values obtained for the full Procrustes distance (D1, D2) and the
mean matching (C̄1, C̄2) features.

In conclusion, the human shape deformation is a useful tool for fall detection, as the
full Procrustes distance and the mean matching cost are really discriminant features for
classification. By using only reliable landmarks, our silhouette matching using Shape Context
is robust to occlusions and other segmentation difficulties (the full Procrustes distance or the
mean matching can be sensitive to bad matching points). Our GMM classification results
are quite good with only one uncalibrated camera, and the performance can increase using a
majority vote with a multi-camera system. Detection errors generally occur when the person
sits down too brutally which generates a high shape deformation detected as a fall, or with
a slow fall which do not generate a sufficiently high shape deformation to be detected. With
such cases, it becomes difficult to chose the best detection threshold. A solution is the use of
known inactivity zones which increases the results as shown in this work.

6. 3D information for fall detection

The head trajectory can be very useful for activity recognition and video surveillance
applications. A new method is shown here to compute the 3D head trajectory of a person
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in a room with only one calibrated camera (Rougier et al., 2006; 2010a). The head, represented
by a 3D ellipsoid, is tracked with a hierarchical particle filter based on color histograms and
shape information. The resulting 3D trajectory is then used to detect falls.

6.1 Related works in 3D head tracking

The head has been widely used to track a person as it is usually visible in the scene and
its elliptical shape is simple. The head can be track by a 2D ellipse in the image plane, for
example, using gradient and/or color information with a local search (Birchfield, 1998) or
with a particle filter (Charif & McKenna, 2006; K. Nummiaro & Gool, 2003). However, a 3D
head trajectory gives more information about the localization and the movement of a person in
a room. The easy way to recover some 3D information is to use several cameras. For example,
the 3D head trajectory has been extracted using stereo cameras (Kawanaka et al., 2006; Mori
& Malik, 2002) or multi-camera systems (Kobayashi et al., 2006; Usabiaga et al., 2007; Wu &
Aghajan, 2008). However, tracking the head to recover a 3D trajectory in real-time with only
one camera is a real challenge. One attempt by (Hild, 2004) was to compute the top head 3D
trajectory of a walking person. However, his assumptions are that the person is standing and
that the camera optical axis is parallel to the (horizontal) ground plane, which is not practical
in video surveillance applications. Indeed, the camera must be placed higher in the room for
a larger field of view and to avoid occluding objects, and the person is not always standing or
facing the camera. In our previous work (Rougier et al., 2006) with a single calibrated camera,
the head was tracked with a 2D ellipse which was used to compute the 3D head localization
by knowing the 3D model of the head. The resulting 3D trajectory for a standing person was
well estimated, but some errors occurred with a falling person (need to deal with oriented
head). An improvement is shown here using an oriented 3D ellipsoid to represent the head
which is tracked with a particle filter through the video sequence.

6.2 Head model projection

The head, represented by a 3D ellipsoid, is projected in the image plane as an ellipse (Stenger
et al., 2001). The 3D head model will be tracked in the world coordinate system attached to
the XY ground plane as shown in Fig. 11. The projection of the 3D head model in the image
plane is possible by knowing the camera characteristics (intrinsic parameters) and the pose of
the XY ground plane relative to the camera (extrinsic parameters).
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Fig. 11. The 3D head ellipsoid model.

• Camera parameters

The intrinsic parameters were computed using a chessboard calibration pattern and the
camera calibration toolbox for Matlab (Bouguet, 2008). The focal length

(

fx, fy
)

and the
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optical center (u0, v0) in pixels define the camera’s intrinsic matrix K. Notice that image
distortion coefficients (radial and tangential distortions) are also computed to correct the
images for distortion before processing. From a set of ground points in the real world and
the corresponding image points, the plane-image homography is computed to obtain the
extrinsic parameters (Zhang, 2000). The extrinsic matrix Mext is defined by R and T which
are respectively a 3D rotation matrix and a 3D translation vector.

K =

⎛

⎝

fx 0 u0 0
0 fy v0 0
0 0 1 0

⎞

⎠ Mext =

(

R T
0 0 0 1

)

(5)

• Ellipsoid projection

An ellipsoid is described by a positive definite matrix QC in the camera coordinate system,
such that [x, y, z, 1]T QC [x, y, z, 1] = 0, with (x, y, z) a point belonging to the ellipsoid. The
ellipsoid QC is then projected in the image plane, using the projection matrix P, as a conic
C (Hartley & Zisserman, 2004; Stenger et al., 2001):

C = QC44 QC1:3,1:3 − QC1:3,4 QT
C1:3,4

(6)

From the conic, the ellipse is described by [u, v, 1]T C [u, v, 1] = 0 for a point (u, v) in the
image plane.

• From the head coordinate system to the ellipse in the image plane

Our 3D head ellipsoid model expressed in the head coordinate system, has the form:

QH =

⎛

⎜

⎜

⎝

1
B2 0 0 0
0 1

B2 0 0
0 0 1

A2 0
0 0 0 −1

⎞

⎟

⎟

⎠

with the semi-major A and
the semi-minor B ellipsoid head axes

(7)

The projection matrix P = KMext MHead/World, which represents the transformation from
the head ellipsoid coordinate system to the image plane, is used to project the head
ellipsoid in the camera coordinate system such that QC = P−1TQH P−1. The translation
and rotation of the head in the world coordinate system, which corresponds to the matrix
MHead/World, will be defined by the head tracking (see Section 6.3). Finally, the parameters
of the ellipse representing the head in the image plane are obtained from the conic defined
in eq. 6.

6.3 3D head tracking with particle filter

Tracking with particle filters has been widely used, for example, to track the head with an
ellipse (K. Nummiaro & Gool, 2003; Rougier et al., 2006) or a parametric spline curve (Isard &
Blake, 1998) using color information or edge contours. Their particularity is that they allow
abrupt trajectory variations and can deal with small occlusions.
Particle filters are used to estimate the probability distribution p(St|Zt) of the state vector
St of the tracked object given Zt, representing all the observations. This probability can be
approximated from a set St = {sn

t , n = 1, . . . , N} of N weighted samples (also called particles)
at time t. A particle filter is composed of three steps:
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1. Selection

N new samples are selected from the previous sample set by favoring the best particles to
create a new sample set S′

t.

2. Prediction

A stochastic dynamical model is used to propagate the new samples sn
t = Als

′n
t + Blw

n
t ,

where wn
t is a vector of standard normal random variables, and Al and Bl are, respectively,

the deterministic and stochastic components of the dynamical model.

3. Measurement

The new weights πn
t = p(zt|sn

t ) are computed and normalized so that ∑n πn = 1.

The final step corresponds to the mean state estimation of the system at time t using the N
final weighted samples i.e. E [St] = ∑

N
n=1 πn

t sn
t

Our implementation of the particle filter is similar to the annealed particle filter (Deutscher
et al., 2000) in a hierarchical scheme with several layers. Each layer is composed of the three
main particle filter steps, and at the end of the layer, the stochastic component is reduced for
the next layer: Bl+1 = Bl/2 (see Section 6.5). Our ellipsoid particles are represented by the
state vector:

sn
t = [Xe, Ye, Ze, θXe, θYe]

n
t (8)

where (Xe, Ye, Ze) is the 3D head ellipsoid centroid expressed in the world coordinate system
(translation component of the matrix MHead/World), and (θXe

, θYe
) are respectively the rotation

around the X and the Y axes (rotation component of the matrix MHead/World) 1. No motion is
added in our dynamical model as the previous velocity between two successive centroids is
already added to the particles to predict the next 3D ellipsoid localization before propagating
the particles (i.e. Al is an identity matrix).

6.4 Particles weights

The particle weights are based on foreground, color and body coefficients:

• Foreground coefficient CF

Role The 3D pose precision is obtained with the foreground coefficient when the ellipsoid
is well matched to the head contour

Definition The foreground silhouette of the person is extracted with a background
subtraction method which consists in comparing the current image with an updated
background image (Kim et al., 2005). The foreground coefficient is computed by
searching for silhouette contour points along Ne line segments normal to the ellipse,
distributed uniformly along the ellipse and centered on its contour. An example of
foreground coefficient is shown in Fig. 12.

CF =
1

Ne

Ne

∑
n=1

De(n) − de(n)

De(n)
, CF ∈ [0 . . . 1] (9)

where de is the distance from the ellipse point to the detected silhouette point and De,
the half length of the normal segment, is used to normalize the distances.

1 Notice that two angles (instead of three) are sufficient to define the position and orientation of the
ellipsoid since its minor axes have both the same length in our model.
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CF = 0.90 CF = 0.21

For an ellipse defined by the semi-axis parameters a and b, each segment begins from the inner ellipse
(axes a/2 and b/2) to the outer ellipse (axes a + a/2 and b + b/2).

Fig. 12. Foreground segmentation and foreground coefficient computation examples.

• Color coefficient CC

Role The color coefficient is used to prevent the ellipsoid from hanging on something else
inside the silhouette when large movement occurs.

Definition The color coefficient is based on a normalized 3D color histogram of the head
(K. Nummiaro & Gool, 2003). The histogram H is computed in the RGB color space
inside a rectangular zone included in the head ellipse and composed of Nb = 8 × 8 × 8
bins. The updated color head model and the target model are compared by calculating
the normalized histogram intersection:

CC =
Nb

∑
i=1

min
(

H (i) , Hre f (i)
)

, CC ∈ [0 . . . 1] (10)

• Body coefficient CB

Role The body coefficient is used to link the head to the body through the body center, to
avoid unrealistic 3D ellipsoid rotation.

Definition The distance between the projection of the 3D point corresponding to the
centroid of the person (see Fig. 11) and the 2D silhouette centroid (distance db compared
to the half-major axis of the bounding box Db) should be small. This coefficient is
only used when the bounding box is valid (and thus not used in case of occlusion for
example).

CB =
Db − db

Db
, CB ∈ [0 . . . 1] (11)

The final ellipsoid coefficient is an amplified combination of these three coefficients to give
larger weights to the best particles (σ = 0.15):

C f inal =
1√
2πσ

exp(CFCCCB)/2σ2
(12)

As the mean state of the particle filter is a weighted combination of all particles, the weights
amplification is important to obtain a more precise 3D localization.

6.5 Initialization and tracking

The ellipsoid size is calibrated from a manually initialized 2D ellipse representing the head.
With this ellipse and by knowing the body height and the ellipse aspect ratio (The ratio of a
human head ellipse is fixed at 1.2 (Birchfield, 1998)), the ellipsoid proportion can be computed.
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Our system is automatically initialized with a head detection module which consists in testing
several 2D ellipses from the top head point of the foreground silhouette. The one which
has the biggest foreground coefficient CF is kept, and if CF > 0.7, the ellipse is supposed
sufficiently reliable to begin the tracking with the particle filter.
An initial 3D head centroid localization can be computed from this 2D detected ellipse, by
knowing the ellipsoid proportion and the camera calibration parameters using the iterative
algorithm POSIT (Dementhon & Davis, 1995). This algorithm returns the relative position of
the head in the camera coordinate system PHead/Cam, which can be transformed in the world
coordinate system attached to the XY ground plane using PHead/World = M−1

World/CamPHead/Cam

with the matrix MWorld/Cam representing the known position of the world coordinate system
in the camera coordinate system. The head localization PHead/World is used to initialize the
tracking and is then refined with the particle filter.
For a reliable 3D head localization, the head projection in the image need to be well adjusted
to the head contour. With a conventional particle filter, a lot of particles are needed for
precision which severely affects the computational performance and is incompatible with
real-time operation. With several layers, a better precision can be reached in a shortest time,
a good compromise between performance and computational time can be obtained with 250

particles and 4 layers. The stochastic component Bl =
[

BXe
, BYe

, BZe
, BθXe

, BθYe

]

for the model
propagation is different for each layer, sufficiently large for the first layer and decreasing for
the next layers, such as Bl+1 = Bl/2 with l the current layer and l + 1 the next layer. As
the person is supposed to be standing up at the beginning, Ze is approximately known and,
θXe

and θYe
are close to zero. Thus, our initial values are fixed to Bl = [0.5 0.5 0.3 0 0] which

corresponds to a large diffusion for the X and Y components (±50cm) on the horizontal plane
and a moderate one (±30cm) for the Z component. For the next images, the current velocity
is used to reinitialize Bl such that the particles spread towards the 3D trajectory direction
(minimum of 0.1m or 0.1rad for Bl). Recall that Al is an identity matrix (see Section 6.3).
Figure 13 shows the usefulness of the hierarchical particle filter for a large motion. By
considering only the first layer, the ellipsoid is badly estimated, while with the four layers,
the ellipsoid is finally well adjusted.

Layer 1 Layer 2 Layer 3 Layer 4 Final ellipsoid

Fig. 13. Example of a large motion during a fall. The images show the particles and the mean
state ellipsoid for each layer, and the resulting ellipsoid.

6.6 Experimental results

Our 3D head tracker is implemented in C++ using the OpenCV library (Bradski & Kaehler,
2008) and can run in quasi-real time (130ms/frame on an Intel Core 2 Duo processor (2.4 GHz),
non optimized code and image size of 640x480).

374 Video Surveillance

www.intechopen.com



6.6.1 3D localization precision using HumanEva data set

The 3D localization precision is evaluated with the HumanEva-I data set (Sigal & Black, 2006)
which contains synchronized multi-view video sequences and corresponding MoCap data
(ground truth 3D localizations). The results were obtained for each camera independently
(color cameras C1, C2 and C3) using the video sequences of 3 subjects (S1, S2 and S3). The
motion sequences "walking" and "jogging" were used to evaluate our 3D trajectories at 30Hz,
20Hz and 10Hz. The resulting 3D head trajectories (top head point) obtained from different
view points are similar to the MoCap trajectory as shown in Fig. 14. The small location error
for the Z axis and the cyclical movement of the walking person visible on the curve prove that
the head height is quite well estimated. The depth error (X and Y location) is a little higher due
to the ellipsoid detection (noisy foreground images, artifacts on the silhouette) and depending
on the orientation of the person relative to the camera (for simplicity, the frontal/back and
lateral views of the head are considered identical in our 3D ellipsoid model).
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Fig. 14. 3D head trajectories for a walking sequence of subject S1 (20Hz). The table shows the
mean 3D errors (in cm) for X, Y and Z location.

The 3D mean errors obtained for each subject and each camera are shown in Table 2. The mean
error was about 5% at a 4 to 6 meters distance. As expected, the error tended to be slightly
higher when the movement was larger, but the head still continues to be well tracked with the
3D ellipsoid.
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Camera, Walking sequences Jogging sequences
Frame rate S1 S2 S3 S1 S2 S3
C1, 30Hz 20.6 ± 13.6 20.5 ± 7.3 21.3 ± 12.9 19.2 ± 9.5 24.1 ± 16.3 25.9 ± 15.3
C2, 30Hz 17.1 ± 13 21.3 ± 7.8 23.6 ± 10.7 20.6 ± 12.4 24.5 ± 10.6 17.4 ± 9.7
C3, 30Hz 17.3 ± 11.6 21.4 ± 8.4 25.9 ± 17 21.5 ± 13.6 23.7 ± 11.6 28.8 ± 17.2
C1, 20Hz 20 ± 12.4 21.2 ± 7.4 19.7 ± 11.5 16.6 ± 10.3 25.4 ± 17.4 25.5 ± 16.7
C2, 20Hz 15.1 ± 9.6 22.8 ± 8.5 22.8 ± 11.1 22.8 ± 10.1 26.3 ± 12 16.9 ± 10.3
C3, 20Hz 19 ± 11.5 20.6 ± 8.4 28.8 ± 19.4 15.3 ± 9.8 23 ± 11.5 30 ± 19
C1, 10Hz 24 ± 12.8 22.8 ± 8.2 21 ± 13 21 ± 11.4 25.9 ± 16.2 23.2 ± 16.1
C2, 10Hz 18.3 ± 12.6 22.5 ± 9.9 18.3 ± 14 22.1 ± 13.8 29.2 ± 13.7 22.8 ± 16.8
C3, 10Hz 22.6 ± 14 19.5 ± 8.5 28.8 ± 17.7 22 ± 10.5 24.1 ± 14.2 33.7 ± 20.7

Table 2. Mean 3D errors (in cm) obtained from walking and jogging sequences for different
subjects (S1, S2, S3), several view points (C1, C2, C3) and several frame rates.

6.6.2 3D head trajectory for fall detection

A biomechanical study with wearable markers (Wu, 2000) showed that falls can be
distinguished from normal activities using 3D velocities. In Fig. 13, we have shown that our
3D head tracker was efficient with an oriented person and large motion. We propose here to
use the 3D head trajectory, obtained without markers, for fall detection. Two fall detection
methods are explored:

The vertical velocity Vv of the head centroid is computed as a height difference for a 500 ms
duration 2: Vv = Ze(t) − Ze(t − 500 ms)

The head height Ze, corresponding to the centroid head height relative to the ground, should
be small at the end of the fall as the person is supposed to be near the ground.

For our experiment, ten falls (forward falls, backward falls, loss of balance) from our video
data set (Auvinet et al., 2010) were used with two cameras. The falls were done in different
directions with respect to the two camera points of view, which were separated by 9 meters
(deep field of view), placed at the entrance of the space and on the opposite wall. The
acquisition frame rate was 30 fps, but 10 fps was sufficient to detect a fall. The image size
was 720x480 pixels. Due to the wide angle, the images needed to be corrected for distortion
before processing as shown in Fig. 15.

Camera 1

With distortion Corrected for distortion

Camera 2

With distortion Corrected for distortion

Fig. 15. Examples of images from the two viewpoints before and after distortion correction.

Figure 16 shows the vertical velocity Vv and the head height Ze obtained for a video sequence
of a fall viewed from the two points of view. The 3D head tracking was performed in spite
of the deep field of view, and even if the person was not entirely in the image (camera 1 near
the entry). Our tracker was automatically initialized when the head was correctly detected.
As seen previously with the HumanEva-I data set, the head height was rather precise giving

2 Duration of the fall critical phase (Noury et al., 2008)
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Camera 1
Camera 2

Walking (Frame 300)
The walking person until frame 400
generates a vertical velocity around
0m/s and a head height around 1.5m
from the ground.

Sitting down (Frame 420)
When the person sits down, the head
height decreases to 1m with a small
vertical velocity.

Falling (Frame 588)
Finally, the person stands up again and
falls with a high vertical velocity (Vv less
than −1m/s) and the head height Ze is
below 50cm at the end of the fall.

Camera 1 Camera 2

Fig. 16. Vertical velocity and head height obtained for a video sequence of a fall.

similar head heights from the two views although 9 meters separates the two cameras. In
spite of the low image quality, the 10 falls from the two views were successfully detected with
the vertical velocity Vv (with a threshold at −1m/s). A person sitting down abruptly is also
shown in Fig. 16 producing a vertical velocity equal to −0.53m/s which was not sufficient to
be detected as a fall. A head localization near the ground can be considered as a suspicious
event for an old person. Thus, a fall can be detected when the head height Ze is below 50cm. In
this case, only one fall was not detected because of a tracking failure due to a noisy silhouette.
However, this fall was detected with vertical velocity (Vv = −1.17m/s). Notice in Fig. 16 that
the head height was about 1m when the person was seated.
To summarize, a 3D head trajectory can be extracted with only one calibrated camera. Our
tracker was able to give similar results for different viewpoints, different frame rates and
different subjects as shown with the HumanEva-I data set. These tests showed that the
3D locations were estimated with a mean error of around 25cm (5% at 5 meters) which
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is sufficient for most activity recognition based on trajectories. One important point is
that our 3D head tracker is automatically initialized with a well-detected 2D head ellipse.
The hierarchical particle filters with 4 layers is useful for the head tracking precision in a
reasonable computational time. Our method can deal with body occlusions (for example with
chairs or occlusion due to entry into the scene), however the head need to be appropriately
visible to have a reliable 3D pose, as the 3D localization is inferred from the head foreground
detection. For example, our 3D head tracker sometimes fails at the end of a fall towards the
camera. Indeed, the head tends to be merged with the body of the person which can give
some 3D errors. However, even if the 3D pose is not well estimated, a high vertical velocity
generally occurs at the beginning of a fall. Thus, the vertical velocity is a better criterion for
fall detection than the location of the head because head height can lead to failure because of
occlusion or tracking problem when the head is near the ground.

7. Conclusion and future work

An overview of fall detection techniques using video surveillance has been proposed in this
chapter. Several fall detection methods using a single camera have been shown and have
shown that monocular video surveillance systems are a good solution for fall detection with
high detection rates. A robust method for fall detection is the analysis of the human shape
motion and deformation. Even with realistic and difficult video data sets, such system are
able to discriminate falls from normal daily activities automatically (Sections 4 and 5). The 3D
localization of the person is also a useful tool for fall detection, and we have demonstrated
that it is feasible with only one calibrated camera. All these methods are view-independent,
automatically initialized and can run in real-time, considering that 5 to 10 fps is sufficient for
fall detection.
When developping such systems, we must ensure the privacy of the person, which can be
satisfied here, as our systems are entirely automated and access to the images could be
forbidden except in case of emergency. For instance, the system will send an alarm signal
toward an outside resource (e.g. via a cell phone or Internet) if and only if an abnormal event
is detected (e.g. falling). Moreover, recall that this technology do not hamper the movement
of the person as no devices are required and no button needs to be pushed.
How to improve the robustness
To reduce the risk of false alarms, a hybrid method combining 2D and 3D information could be
considered. Considering only the human shape deformation, slow falls are sometimes more
difficult to discriminate from a person sitting down brutally. By using the 3D head velocities
or the 3D head localization, these two events can be discriminated. Inversely, when the 3D
tracking is not sufficiently reliable (for example when the head is occluded), the human shape
deformation could help to detect falls.
Multi-camera systems could also be used to improve the recognition results by combining
information from several cameras to take a decision. However, these systems are more
expensive and difficult to implement requiring an accurate calibration and synchronization.
Some stereo systems entirely calibrated and directly usable e.g. (PointGrey, 2010) could be
used to provide a more reliable depth information than a monocular system. Although these
systems are still expensive, with the renewed interest in 3D technologies, some 3D digital
cameras and webcams are now proposed for general public (Fujifilm, 2010; Minoru, 2010)
suggesting that stereo systems will become more affordable in the future. Next challenges for
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healthcare video surveillance systems
Beyond fall detection, gait analysis could help to identify persons at risk with unstable gait
patterns requiring reeducation to reduce the risk of falling. Moreover, a video surveillance
system can provide a large amount of information about the person, but also his/her
interaction with the environment. A computer vision system could be used to check other
daily activities like medication intake (Valin et al., 2006), or meal/sleep time and duration.
Information about his/her environment could also be analyzed for fire detection, forgotten
oven or running faucet and other home hazards.
Healthcare video surveillance systems are a new and promising solution to improve the
quality of life and care for elderly, by preserving their autonomy and generating the safety
and comfort needed in their daily lives. This corresponds to the hopes of the elderly
themselves, their families, the caregivers and the governments. The positive receptivity for
video surveillance systems suggests that this technology has a bright future for healthcare
and will advantageously complement other approaches (e.g. fixed or wearable sensors, safer
home modifications, etc) by overcoming many of their limitations.
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