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1. Introduction    

In general, tall vertical electrolyzers are used industrially to produce only gases like chlorine, 
hydrogen and oxygen, or gases and products such as soda and chlorine. Moreover, these 
electrolyzers usually have a very short cathode-anode distance and often operate under forced 
convection. For many electrochemical processes mass transfer in electrolytic cells, in particular 
to electrodes, must be optimized to operate economically. Many electrochemical reactions 
involve a gaseous component and a great deal of research has been devoted to the study of the 
specific features of these reactions. Three main areas have been investigated such as: the 
bubble formation (Chirkov & Psenichnikov, 1986), the mass transfer and hydrodynamic 
instabilities at gas-evolving surfaces (Kreysa & Kuhn, 1985), and the behavior of gas in porous 
electrodes in fuel cells (White & Twardoch, 1988). Many works were developed up to the 
present about gas-evolving electrodes (St-Pierre & Wragg, 1993a, 1993b; Vogt, 1979, 1984a, 
1984b, 1984c, 1989a, 1989b, 1992, 1994, 1997; Czarnetzki & Janssen, 1989; Boissonneau & Byrne, 
2000; Ellis et al., 1992; Janssen et al. 1984; Lastochkin & Favelukis, 1998; Wongsuchoto et al., 
2002; Buwa & Ranade, 2002; Gabrielli et al., 2002; Correia & Machado, 1998; Lasia, 1998; 
Iwasaki et al., 1998; Fahidy & Abdo, 1982; Lasia, 1998, 1997; Barber et al., 1998; Eigeldinger & 
Vogt, 2000; Solheim et al., 1989; Elsner & Coeuret, 1985; Dykstra et al., 1989; Khun & Kreysa, 
1989; Lubetkin, 1989; Martin & Wragg, 1989; Lantelme & Alexopoulos, 1989; Gijsbers & 
Janssen, 1989; Chen, 2001; Lasia & Rami, 1990; Kienzlen et al., 1994; Saleh, 1999; Janssen, 1978) 
but, few data on mass transfer with different cathode geometries under flow-by or flow-
through electrolyte conditions with gas-evolving have been studied (Fouad & Sedahmed, 
1974; Rousar et al., 1975;; Janssen & Barendrecht, 1979, Mohanta & Fahidy, 1977; Sedahmed, 
1978; Sedahmed & Shemilt, 1981; Elsner & Marchiano, 1982; Albuquerque et. al., 2009). This 
chapter does not intend to explore in detail the mechanism  during the bubbles formed 
electrolytically  but only show an comparative study about  the effect of  hydrodynamic 
condition over mass transfer  gas-electrodes for two cathodes geometries, during the hydrogen 
production at chlor-alkali cell by diaphragm process in laboratory scale. 

2. Mass transfer  

In general, it is necessary to consider three basic mechanism to the mass transfer in 
electrochemical systems, : migration, convection, diffusion and reaction.  
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Migration is the movement of charged species through the electrolyte due to a potential 
gradient; the current of electrons through the external circuit must be balanced by the 
passage of ions through the solution between the electrodes (both cations to the cathode and 
anions to the anode). It is, however, not necessarily an important form of mass transport for 
the electroactive species, even if it is charged. The forces leading to migration are purely 
electrostatic and, hence, do not discriminate between types of ions. As a result, if the 
electrolysis is carried out with a large excess of an inert electrolyte in the solution, this 
carries most of the charge, and little of the electroactive species Ox (oxidized specie) is 
transported by migration, i.e. the transport number (Bockris & Reddy,1977) Ox is low. 
Convection is the movement of a species due to fluid dynamic forces. In practice, these forces 
can be induced by stirring or agitating the electrolyte solution or by flowing it through the 
electrochemical cell.  Sometimes the electrode can be moved (e.g., rotating disk electrodes). 
When such forms of forced convection are present, they are normally the predominant mode 
of mass transport. By the other hand, natural convection can arises from small differences in 
density, temperature or gases caused by the chemical change at the electrode surface. The 
treatment of mass transport, highlights the differences between laboratory experiments and 
industrial-scale electrolysers. As is pointed out by (Pletcher & Walsh, 1993), the need in an 
industrial cell is only to promote the desired effect within technical and economic restraints 
and this permits the use of a much wider range of mass transport conditions. In particular, a 
diverse range of electrode-electrolyte geometry and relative movement are possible.  
Diffusion and reaction. Diffusion is the movement of a species down a concentration gradient 
and it occurs whenever there is an electrical charge exchange at a surface. An electrode 
reaction (generally fast reaction) converts starting material to product, e.g.; 

 x edO e R−+ →  (1)   

where Ox and Red are the oxidized and reduced species respectively, hence close to the 
electrode surface there is a (concentration) boundary layer (up to 0.01mm thick) in which the 
concentration of Ox is lower at the surface than in the bulk solution while the opposite is the 
case for Red and, hence, Ox will diffuse towards and Red away from the electrode. 
Fundamental mass transport studies in industrial electrolytic cells are dependent of the fluid 
dynamic or by the inertial and viscous forces. This ratio is given by the well-known 
Reynolds number Re, calculated from the Equation:  

 
ρL L

Re
┤
ν ν

υ
= =  (2) 

where p is the density of the solution, μ its dynamic viscosity, υ its kinematic viscosity, ν a 
mean flow velocity and L a characteristic length (for example, the length of a flat plate 
electrode). At higher Reynolds number, the viscous damping is no longer predominant and 
turbulence increase, by the other hand, any obstacles to fluid flow, or roughness in the 
electrolytic cell will can cause the commencement of turbulence or micro-turbulence at 
lower Reynolds number. In a particularly case of electrolytic cell with gas production, the 
Reynolds number can be obtained by the following Equation:  

 
gV .d

Re
A.υ

∗ =  (3)   
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where d is the bubble detachment diameter (m), A the electrode area (m²) and Vg is the 
volumetric flow rate of gas bubbles (m3.s-1), defined as; 

 gV RTj nFP=  (4)     

where R (8.314 JK-1mol-1) is the gas constant, T the absolute temperature (K), j the current 
density of electrolysis (A.m-2), n the estequiometric number of electrons, F the Faraday 
constant (96,485 C.mol-1) and P the pressure (atm). 
Natural or forced turbulence in electrolytic cells is usually advantageous since the eddies 
both increase mass transport of the electroactive species to the electrode surface and 
promote the exchange of species between the bulk solution and the boundary layer, 
minimizing local pH and other concentration changes due to the electrode reaction. It is not 
uncommon to introduce insulating nets, bars or other structural features into the cell to act 
as turbulence promoters. By the other hand, the morphology of the electrode surface can act 
as turbulence auto-promoter (e.g. mesh, reticulated metal, particulate bed, fibrous material). 

2.1 Sherwood number 

The Sherwood number is a measure of the rate of mass transfer, kd , which is usually 
calculated in electrolytic cells from the limiting current density jL for several cells and 
electrodes configurations under specific hydrodynamic conditions, i.e., the potential of the 
electrode is held at a value where all the electroactive species reaching the surface undergo 
the electrode reaction. The Sherwood number can be obtained using the relationship: 

 Ld

laminar or turbulent flow

   fluidproperties
j Lk L

Sh    temperature
D nFC D

   cell configuration

   structure and active area of the electrode

f∞= = =  (5) 

where L (m) is a characteristic dimension of the system, n the number of electrons involved 
in reaction, F the Faraday constant, C∞ the bulk concentration (mol.m-3) of the specie 
electrochemically active and D (m².s-1) its diffusivity. In Equation (5) the hydrodynamic 
condition (laminar or turbulent flow) can be evaluated by the choice of the Equation (2) or 
(3) and the Schmidt  number by Equation (6), where it represents the relationship between 
the resistivity of momentum and mass diffusivities.: 

 
┤

Sc
ρD D

υ
= =  (6) 

In general, mass transport in electrolytic cells with flow may be expressed in terms of the 
following expression: 

 a bSh kRe Sc=  (7) 

In general, to Newtonian fluids, it is assumed 0.333 for the constant b. The constants “k” and 
“a” many be obtained from the logarithmic linearization of equation (7). The current 
limiting density, jL is generally determined from the choice of a extremely fast reaction, for 
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example, the electroreduction of the ferricyanide-ion in alkaline solution providing a 
diffusional control under various flow rate conditions. A more detailed approach on 
obtaining experimental current density limit may be found in specialized publications 
(Coeuret & Storck, 1984; Walsh, 1993; Bockris & Reddy, 1977). 

2.2 The gas evolution mechanism 

Gas evolution occurs on an electrode through several phenomena. The gas produced by 
electrochemical reactions on the electrode dissolves in the electrolyte and is transported by 
diffusion (boundary layer concentration) and convection towards the bulk of the solution. 
The mechanism of growth and detachment of bubbles from electrode surface can develops 
in two or three steps depending on the size and its configuration geometry- for example, 
perforated plate, meshes or expanded electrodes. As presented by (Gabrielli et al.,1989), the 
first correspond the transient step or the bubble´s radius variation with time and its depend 
of the electrolyte density. During the bubble growth the second step can be limited by 
diffusion of the dissolved molecular gas in the solution or by the kinetics of the production 
of the gas. When the bubble is larger than the electrode, it is assumed that the gas produced 
in molecular form is all transformed to the gaseous from which increases the bubble size. 
The last stage of the bubble evolution, i.e. its detachment from the surface, occurs when the 
balance between the forces which tend to maintain it on the electrode and the forces which 
tend to release it is broken. These various forces include the weight of the bubble, the 
buoyancy, the superficial tension, the pressure, the inertia and the electrostatic forces. 

2.3 Electrolytic gas production from chlorine-alkali cell 

The Figure 1 has shown the well-known electrolytic diaphragm process to produce chlorine 
and soda products (Almeida Filho et al.,  2010; Abdel-Aal & Hussein, 1993; Abdel-Aal et al., 
1993). The saturated aqueous sodium chloride (saturated brine) feeds the anodic  
 

 

Fig. 1. Basic schematic of an electrolytic cell to produce chlorine and soda by the diaphragm 
process (Almeida Filho et.al, 2010)  
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compartment. The chlorine gas produced by the anodic reaction leaves the semi-cell, while 
the brine diffuses to the cathode compartment through the diaphragm due to the 
hydrostatic pressure drop between the two compartments.  Hydrogen and hydroxyl ions are 
produced in the cathode compartment, which together with the sodium ions (Na+) present 
in brine (anodic compartment) form sodium hydroxide (NaOH) at the same time that 
chlorine and hydrogen gas flow outside the cell. The part of the NaCl that did not react in 
the anodic compartment to produce chlorine gas diffuses into the cathode compartment 
through the diaphragm,  joining the NaOH to form an aqueous solution of NaCl and NaOH 
called cell liquor.  
The main reactions that occur in the process are as follows: 

 2NaCl 2Na Cl 2e (anode)2
+ −→ + +  (8) 

 2H O 2e H 2OH (cathode)2 2
− −+ → +  (9) 

 2Na 2OH 2NaOH Cl H (global  reaction)2 2
+ −+ → + +  (10) 

In the electrolytic production of chlorine-soda, high current density produces bubbles that 
can cover some parts of the electrode surfaces, causing an undesirable decrease in mass 
transfer. These limitations can be minimized through proper tuning of the cathode geometry 
and the electrolytic cell configuration (St-Pierre & Wragg, 1993). In industrial electrolytic 
operations that involve gas production, perforated plate or expanded electrodes are 
traditionally used to increase the reactive area per unit volume of the cell. However, the 
accumulation of generated bubbles on the surface of the cathode can block the 
electrochemically active area. This reduces efficiency by increasing ohmic drops in the layer 
of electrolyte adjacent to the electrode surface. Thus, the increase in the volume of bubbles 
adsorbed per unit area causes a decrease in mass transfer at the electrode surface (Vogt, 
1984; Albuquerque, 2006, 2009). For these reasons, there has been increased interest in 
finding electrode geometries that promote the detachment of gas bubbles in order to 
increase mass transfer and ultimately efficiency. 
An effective method for increasing the rate of mass transfer is to induce electrolyte 
turbulence near the surface to prevent the accumulation of bubbles. The behavior of this 
type of system was studied with expanded metal electrodes in which the electrochemical 
reaction on the electrode surface is controlled by diffusion and detachment of gas bubbles. 
(Elsner,1984) concluded that the mechanism that drives the resulting increase in mass 
transfer varies based on the type and orientation of the expanded metal electrode geometry 
and the volumetric flow direction of the electrolyte. In general, we can assume that forced 
convection and detachment of bubbles will improve mass transfer when the geometry of the 
electrode does not inhibit the release of the bubbles generated electrochemically. A strong 
correlation between the mass transfer coefficient and gas production has been shown in 
mass transfer studies. (Fouad & Sedahmed, 1973) studied this relationship for electrodes 
oriented vertically and horizontally, concluding that the average mass transfer coefficient is 
greater for horizontal electrodes. (Nishiki et al., 1987 ) found that generated gas bubbles 
decrease the conductivity between electrodes by increasing the resistance of the solution. 
This affected overall cell performance by increasing the potential (energy consumption of 
the cell). It is evident that appropriate choice of electrode material and geometry may help 
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to mitigate such problems. (Hine et al., 1984) studied perforated plate electrodes, concluding 
that variation in electrolyte resistance and overvoltage is a function of both the porosity and 
distance between the electrode/diaphragm interface. The porosity appears to be an 
important parameter for reducing the cell potential. (Jorne & Louvar, 1980) and (Jansen et 
al.,1984) concluded that expanded metal electrodes with a three-dimensional texture can 
help to prevent generated gas from accumulating on the electrode surface, thereby 
decreasing the ohmic drop. 

3. Un example of experimental study of mass transfer with gas production   

The relevance and main contribution of this study was to compare and analyze the influence 
of the flow perpendicular to two geometries of cathode used in electrochemical industry, on 
the mass transfer associated with the electrolytic production of hydrogen. The electrolytic 
cell used in this study is a prototype for laboratory-scale production of chlorine-soda via an 
electrolytic diaphragm process (see Fig. 1). The reactor has two compartments of plexiglas 
with 1.45 L and 0.316 L to the anode and cathode electrodes respectively, separated by an 
asbestos-coated diaphragm (deposited on the cathode) like shows the Fig. 2. The Fig. 3 
shows the two geometric shapes to the cathode - perforated plate and mesh geometry both 
with 7.0 x 8.0 cm made from commercial SAE 1020 alloy. The reduction of potassium 
ferricyanide in alkaline medium was used for the mass transfer study with NaOH as the 
electrolyte support. A PAR (Princeton Applied Research)-VMP3 potentiostat, was utilized 
for this purpose. Table 3 lists the properties of the electrolyte solution to 27°C. 
      

  K3Fe(CN)6 = 0.005 N 

Composition K4Fe(CN)6 = 0.05 N 

 NaOH = 1.0 N 

ν  (m2. s-1) 0.9648 x 10-6 

Da ( m2. s-1) 6.0 x 10-10 

 

a The diffusion coefficient was calculated from the  Stokes-Einstein equation: Dμ/T=2,49x10-15 [kg.m.s-2.K-1] 

Table 3. Composition and properties of the electrolyte solution. 

The reduction of potassium ferricyanide in alkaline medium was used for the mass transfer 
study with NaOH as the electrolyte support. A PAR (Princeton Applied Research)-VMP3 
potentiostat, was utilized for this purpose. Table 3 lists the properties of the electrolyte 
solution to 27°C. 
The experimental procedure was performed at the following conditions: volumetric flow 
rate between 0.03 and 0.13x10-3 L/s. A procedure found in the literature (Elsner,1984)  was 
used to determine the average mass transfer coefficient with gas production. This procedure 
consisted of measuring the concentration variation of the reduced electroactive species 
(Fe(CN)63-) with respect to time. The electro-reduction of ferricyanide ions in alkaline 
solution occurs under diffusional control.  The electrochemically generated current intensity 
from controlled diffusion in the presence of hydrogen bubbles can then be determined from 
the following equation: 
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Fig. 2. Experimental set-up. Ref-reference electrode (Ni), out – soda produced (Albuquerque 
et. Al, 2009)  

 

 

                                               (a)                                                           (b) 

Fig. 3. Cathode geometries (a) perforated plate and (b) mesh geometry. 

 g c
d

nFV ΔC
j

t
=  (11)  

Where g
dj  (A) is the current intensity from diffusion in the presence of bubbles produced 

electrochemically, ΔC (mol.m-3) is the gradient concentration (ferricyanide ion concentration 

before and after electrolysis), Vc is the volume of the cathode compartment (m3), n is the 

number of electrons involved in the  and t is the  time of electrolysis (s). From the electrolytic 

current intensity, the average mass transfer coefficient was determined from the following 

expression: 

 
g
d

d

j
k

nFAC

∗ =                                    (12) 
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where dk∗  is the combined average mass transfer rate (m.s-1), A the active area of the 

cathode (m2) and C  is the average concentration of ferricyanide ions during electrolysis 

(mol.m-3). The ferricyanide concentration was determined by amperometric titration (Vilar, 

1996) using a cobalt chloride (0.0339M) solution like agent in a three-electrode cell setup 

consisting of a Hg/HgO reference electrode, a working rotatable platinum electrode (1,000.0 

rpm, 2.0 mm diameter) controlled by CTV101 speed control unit, both - Radiometer 

analytical and 1x1cm sheet of  platinum as counter electrode. The experimental setup was 

controlled by potentiodynamic technique using a PAR (Princeton Applied Research)-VMP3 

Potentiostat. 

3.1 Modeling  

The following correlation was determined to best represent the chlorine-soda 
electrochemical reactor used in the present work (Zlokarnik, 2002): 

 
b 1/3*

b 1/3 dk L υL ┥
Sh aRe Sc a

D ┥ D

⎛ ⎞ ⎛ ⎞= = = ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (13)   

where L ( the characteristic dimension) is given by the following relationship between the 

porosity of the electrode ε and the specific area As  (m-1): 

 
s

ε
L

A
=  (14) 

and 

 
g

s
s

A
A

V
=  (15) 

where  is the porosity (0.51 and 0.75 to perforated plate and mesh geometry respectively)   
Ag is the geometric area (57.0x10-4m² both), and Vs the volume of solid electrode.  

3.2 Results and discussion 

Figure 4 shows the effect of the percolation rate of electrolyte through the diaphragm on the 
average mass transfer coefficient. The percolation rate (m.s-1) was calculated as the ratio 
between the feed flow and the open cathode area (0.00287 m2 for perforated plate and 0.0042 
m2 for mesh geometry).  
It can be observed in Figure 4 that for the perforated plate geometry, the combined average 
mass transfer coefficient decreases with increasing percolation rate of electrolyte. The 
opposite behavior is observed for the mesh geometry. There are also two distinct regions in 
both curves, highlighted by the inflection points. This is characteristic of areas of 
hydrodynamic transition phenomena, probably due to laminar flow with rippling. Figure 5 
helps to describe this behavior. The geometric influences are illustrated by the vector 
velocity of percolation (black arrows) and the direction of micro-convection (white arrows) 
caused by the rise of the bubbles. For the perforated plate geometry, Figure 5 (A) and (B) 
illustrates the supposition that the layer of micro-convection caused by the rise bubbles is 
pushed away from electrode surface when the cross-percolation velocity of electrolyte is  
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Fig. 4. Combined average mass transfer coefficient with respect to percolation rate of 
electrolyte.  

 
 
 
 
 

 
 
 

Fig. 5. Hypothesis of the situation between the change of cross-velocity percolation vectors 
with the rise of bubbles for; -Perforated plate, (A) -low and (B) - high velocities,  
-Mesh geometry, (C) -low and (D) - high velocities. 
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increased. This phenomena can hinder the detachment of the bubbles adhered to the 
cathode surface, causing a decrease in the rate of mass transfer with increasing percolation 
velocity. For the mesh geometry, a contrary phenomenon is illustrated.  The Figure 5 (C) 
and (D) illustrates the same vector representation, but in this case the curved surface 
promotes increasing the velocity in the Prandtl hydrodynamic layer (Coeuret & Storck, 1984; 
Walsh, 1993), which enhances the detachment of gas bubbles. The increasing turbulence 
facilitates the detachment of the bubbles and the micro-convective movement reduces the 
Nernst boundary layer, and thereby increases the combined average mass transfer 
coefficient. 
The Figure 5 can be explained by the supposition that turbulence can be more pronounced 
at the surface of the mesh electrodes than the surface of the perforated plate electrodes. For 
the mesh geometry, this mechanism is more significant at high percolation rates (see region 
2 of Figure 4). Furthermore, this result indicates that for low percolation rates, the 
turbulence caused by micro-convection is not strong enough to detach the bubbles trapped 
in the mesh holes. This is probably due to greater bubble surface adhesion in this geometry. 
With respect to dimensionless correlation, the constants a and b were determined from 
logarithm function applied to Equation (13). The results are shown in Figure 6 and the Table 
4 list all the correlations and Reynolds numbers domains studied in this study.  
 

 

Fig. 6. The relationship between  log (Sh/Sc1/3) and log Re for mesh and perforated plate 
cathode geometries. 

 

 Mesh  Perforated Plate Reynolds  

Region      

1 0.38 1/311.01Re .Sh Sc=  
 
 

0.53 1/349.11Re .Sh Sc=  0.055<Re<0.165  

2 1.84 1/3486.41Re .Sh Sc=
 
 

1.70 1/31.01Re .Sh Sc−=  0.165<Re<0.220  

Table 4. Empirical correlations for both geometries and Reynolds number domains studied.  
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These correlations were compared with those found in the literature.   (Stephan & Vogt, 
1974) proposed a model expressed by Equation (17), which correlates the mass transfer in 
various systems with gas evolution. This model was evaluated  for  32 experiments, as 
shown in Figure 7. 

 ( ) ( )
0.487 0.5*d

0.33

k .d 3.385
Sh Re Sc 1 θ

D Cφ

∗

= = −  (17) 

where d is the bubble detachment diameter (d = 40 ┤m for bubbles of hydrogen in alkaline 

solution), θ is the fraction of area covered (θ = 0.2 for semi-spherical bubbles and 0.3 for 

spherical bubbles) and Cφ is the sphere diameter (Cφ= 8 for bubble and 4 semi-spherical 

bubbles). The Reynolds number *Re  was determined by Equations (3) and (4) and the 

combined average mass transfer rate, dk∗  by Equation (12).  The results of the present study 

were compared with the experimental data compiled by  (Stephan & Vogt, 1974) as shows 

by the Figure 7. These data were obtained from acidic or alkaline solutions using various 

electrode materials such as platinum, copper and graphite.  The data are valid for the 

following domain: 0º C < T < 80°C;  3 A.m-2 < j <105 A.m-2 ;  160.00 < Sc < 23,000.00  and      

3.0 10-6 <  Re* <  9.0x10-1 

 
 

 

 
 

Fig. 7. Comparison of the experimental data of mass transfer with gas production (Stephan 
& Vogt, 1974)  and the experimental data from this study. 

According to Equations (3) and (4), the value of the Reynolds number is related to both the 
bubble velocity and the current density. For the purpose of comparison, only current density 
was used in this work so there is only one value of the Reynolds number. 
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4. Conclusions  

It was shown that the mechanism controlling the average combined mass transfer coefficient 
during hydrogen production in electrochemical processes is dependent on the electrode 
geometry. The perforated plate geometry with deposited asbestos showed a slight 
advantage, compared with the mesh geometry, due to the detachment of bubbles from the 
active surface at low percolation velocities. Furthermore, increasing the percolation velocity 
resulted in a decrease of the average mass transfer coefficient, due to displacement of the 
micro-convective layer away from the electrode surface. For the mesh geometry, increasing 
the percolation velocity leads to an increase in the average mass transfer due to combined 
micro-convective effects. Specifically, rising bubbles associated with increased flow velocity 
over the curved wire surface, contribute to the displacement of bubbles blocked by 
adhesion. Finally for the chlorine-soda diaphragm process, a particularly operational 
industrial condition utilizing a percolation rate between 5.32 10-6  and  6.16 10-6 m.s-1, the 
present study showed that the perforated plate geometry is plus advantageous.  
To improve the electrochemical cells with electrolytic gas production it is very important for 
the mass transfer researches with new electrodes materials and geometries for cathodes 
and/or anodes. Thus it may be possible to achieve low energy consumption in a high 
efficiency process and low residues production. 
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