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1. Introduction 

In recent years, with more and more requirement on energy sources saving and 
environmental protection, green manufacturing has become an important approach in 
production. In green manufacturing, product disassembly process is a key step, by which 
the parts can be recycled from the outdated or discarded products for reuse, 
remanufacturing or disposing, thus can save the energy sources and protect the 
environment efficiently. To find an effective disassembly process, disassembly planning is 
usually carried out, which aims at a feasible and optimal disassembly sequence with 
minimal cost or time. An effective disassembly planning approach can not only provide a 
solution to disassemble the product successfully and economically, it can also help the 
designer to consider the product life cycle issues by focusing on the product disassembly 
cost or time in the early design stage. In recent years, with the requirement for green 
manufacturing technology, investigation on effective disassembly planning approach has 
attracted much research attention and a variety of approaches have been proposed. Guo et 
al. [1] proposed a modularization based disassembly sequence planning approach to resolve 
the problem resulted from a large number of parts in the product, where the Hierarchy 
Network Graph of product is created, and the precedence constraints related to the 
hierarchy network graph is used to generate the disassembly sequence. Chung and Peng [2] 
proposed an integrated approach to selective-disassembly sequence planning, to get a 
partial disassembly sequence where the parts or components are selected for recycling or 
reuse. This approach can generate a feasible and practical sequence for selective-
disassembly by two matrix- subassembly division precedence matrix and part disassembly 
route matrix, to ensure both batch disassembly of components and tool accessibility to 
fasteners. Torres et al. [3] proposed a method to represent the hierarchical relationships 
among components and/or assemblies of the product. Based on this representation, an 
algorithm is established to generate a partial non-destructive disassembly sequence of a 
product. Das and Naik [4] proposed a descriptive model with a structured format for 
creating, documenting, and evaluating a disassembly process plan. And the model can 
transmit the product knowledge from the original product manufacturer to the consumer 
and the end-of-life disassembler via the disassembly bill of materials. Dong et al. [5] 
proposed an approach to generate the disassembly sequence from a hierarchical attributed 
liaison graph representation of an assembly automatically, by decomposing the assembly 
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into subassemblies recursively. The graph is built according to the knowledge in 
engineering, design and demanufacturing, for each layer of the graph, the preferred 
subassembly is selected in terms of mobility, stability, and parallelism. With the graph, the 
proposed approach can find the feasible and practical sequence. Veerakamolmal and Gupta 
[6] proposed a case-based reasoning approach to disassembly process planning, with a 
method to initialize a case memory and to operate a CBR system. The approach can derive a 
feasible disassembly process quickly by retrieve, reuse, and revise the product disassembly 
process plan.  
The above works present the different disassembly planning approaches that can provide 
the feasible and practical disassembly plans with different focus. However, these 
approaches do not adopt the optimization search algorithm, so they can not easily find the 
optimal or near optimal solutions.  
Besides the above works, the other disassembly planning approaches with some 
optimization algorithm are discussed as follows. Andres et al. [7] proposed a two-phase 
approach to determine the optimal disassembly sequence with the goal of minimizing 
machine acquisition costs. A metaheuristic algorithm named GRASP is used to search for 
the disassembly sequence for each product that leads to the minimum number of 
intercellular movements. Rai et al. [8] presented a Petri net model to search a partial 
reachability graph, with the heuristic function, the proposed approach can generate a 
feasible and optimal disassembly sequence based on the firing sequence of transitions of the 
Petri net model. In the above two approaches, only one objective such as the machine 
acquisition costs was considered, and the other objectives in disassembly process were 
ignored. Because disassembly planning is a typical multi-objective optimization problem, so 
the above approaches are not suitable to find the optimal or near optimal solutions 
considering different objectives in disassembly process. 
As an important method, the genetic algorithm (GA) has been widely used in assembly 
planning [9-12], in the mean time, it is also used in disassembly planning to find the optimal 
disassembly sequence. Kongar and Gupta [13] proposed a GA approach to disassembly 
sequence planning, with the objective to minimize the number of direction changes, 
disassembly method changes, and the group of the identical material components. Because 
assembly planning or disassembly planning are highly constrained problem, using GA-
based approach, sometimes the solution can not be converged to a global optimal or near 
global optimal solution, or even a feasible solution cannot be found in an evolution trial due 
to the precedence constraints when a product is complex and composed of many parts.  
Recently, a new probabilistic evolutionary optimization algorithm- ant colony optimization 
(ACO) which simulates the cooperative work of ant colony for searching the shortest path 
from the nest to the food source, has been given attention and has been used in some 
engineering optimization problems, such as JIT sequencing problem [14], job-shop 
scheduling [15], etc. Also, some new research works applying ACO in assembly and 
disassembly planning have been reported. Wang et al. [16] proposed an ACO approach in 
assembly sequence planning, in this work, only one objective, the number of orientations 
during disassembly process is considered as the heuristic information to guide the ants 
moving to the next node, how the other objectives in assembly planning affect the route 
selection of the ants was not investigated. For the ACO approach used in assembly or 
disassembly planning with multiple objectives, Failli and Dini [17] proposed using ACO in 
assembly planning, in this approach, two heuristic information -number of gripper changes 
and number of orientation changes which are two objectives considered in assembly 
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planning are used to guide the moving of the ants. The above two heuristic information are 
given the constant value in ACO according to gripper change and orientation change, thus 
the directions for guiding the ants moving are fixed. McGovern and Gupta [18] proposed an 
approach using ACO for disassembly line balancing problem, in this approach, several 
objectives are considered, but only one objective- the measure of balance is used as the 
heuristic information for ACO calculations and trail selection, the other objectives are only 
considered at the end of each cycle to update the best overall solution. In the above 
mentioned ACO approaches for assembly or disassembly planning with multiple objectives, 
the ants select the route by evaluating the heuristic value according to the objectives. 
Although the above ACO approaches have made some success in assembly or disassembly 
planning, however, these approaches fixed search directions that are used to guide the ants 
moving, so more trade off solutions for multiple objectives could not be easily found. As 
disassembly planning is a typical multi-objective optimization problem, how ACO approach 
can be used in disassembly planning to effectively guide the ants to search and find more 
trade-off solutions, to provide the decision maker more choice to achieve green 
manufacturing needs to be further investigated.  

2. Principle of ant colony optimization 

ACO is the behavior simulation of a colony of ants that are working cooperatively to search 
and find the shortest path from the nest to the food source. As a key factor in the searching 
process, pheromone is a chemical substance that is deposited by the ants when they move 
along the path, and it will be used for the ants to exchange the information. The ants prefer 
to choose the shorter path, the shorter path will attract more ants to visit, and thereby more 
pheromone is deposited on the path by the ants. Meanwhile, the pheromone on all paths is 
decreased through evaporation due to the time past. The probability that the subsequent 
ants choose the path is based on the amount of the pheromone deposited on the path, so, the 
shorter path with greater amount of pheromone will get more chance to be selected and thus 
attract more and more ants to visit later. As a result, the shortest path from the nest to the 
food source can be found by the ant colony.  
In ant colony optimization, the probability that ant z select next node j is given as follows:  

 
( )z

( )

( , )[ ( , )]
,          if  Allowed

( , )[ ( , )]( , )

0,                                               otherwise              
z

z
s Allowed i

i j i j
j i

i s i sP i j

λ

λ
τ η

τ η
∈

⎧
∈⎪⎪= ⎨

⎪
⎪⎩

∑  (1) 

 Where, τ(i,j) is the quantity of pheromone deposited on the edge from node i to node j. η(i,j) 
is the heuristic information corresponding to the edge from node i to node j. λ is the 
parameter that determine the relative importance of τ(i,j) versus η(i,j). Allowedz(i) are the 
nodes that are allowed to be selected by ant z when choosing next node j. In ACO, the edges 
with greater τ(i,j) and η(i,j) are the favorable edges for the ants prefer to choose. 
During the search process of ACO, there are two important rules for updating the 
pheromone -Local Updating Rule and Global Updating Rule. 

Local Updating Rule: 

Local Updating Rule is used for updating the pheromone level of the edge only when the 
ants visit it, and it can be represented by the Eq. (2) 
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 τ(i,j)=(1-α) τ(i,j)+ ατ0(i,j) (2) 

Where, α is a parameter given in the range [0, 1], which determines the pheromone volatility 
on the edge from node i to node j, and τ0(i,j) is the initial pheromone level on the edge. 
Through local updating, the visited edges will loss some amount of its pheromone, and this 
can effectively avoid the premature convergence. 

Global updating rule:                           

Global Updating Rule is used for updating the pheromone level of all the edges after the 
ants have finished the tour, and only the edges belonging to the current global best solution 
can have extra pheromone added. Meanwhile, the evaporation of the pheromone is 
performed on all the edges.  
The global updating rule can be represented by the Eq. (3) 

 τ(i,j)=(1-ǃ) τ(i,j)+ ǃΔτ(i,j) (3) 

Where, ǃ is the pheromone decay parameter given in the range [0, 1], 

( ) ( ) ( )gb         if edge , globalbest solution
,

0         otherwise                                       

F i j
i jτ

⎧ ∈⎪Δ = ⎨
⎪⎩

 

F(gb) is the fitness value of the global best solution found up to now, and the detailed value of 
F(gb) in disassembly planning will be given in section 5. 

3. Multi-objective search directions with uniform design  

In order to apply ACO to deal with the multi-objective optimization problem in disassembly 
planning, this section proposes an algorithm for building the uniformly scattered searching 
directions towards Pareto frontier, aiming at finding more non-dominated solutions along 
Pareto frontier.  

3.1 Non-dominated solutions in multi-objective optimization problem 

For a multi-objective optimization problem, because different objectives are usually 
conflicting, there exists a set of solutions in the solution space, in which none of them is 
superior to the others according to each objective. These solutions are usually called non-
dominated solutions, which can be regarded as the best trade-off solutions in the multi-
objective optimization problem. 
The definition of non-dominated solution can be given as follows: Given a multi-objective 
optimization problem with n objectives to be minimized: minimize f1(x), f2(x),……, fn(x), 
X∈Ω, where fi(x) represents the different objectives, i∈ {1, 2, ……, n}, and Ω represents the 
feasible solution space. For two solutions X1, X2, if 

( ) ( ) { }
( ) ( ) { }

1 2

1 2

 ,  for some 1,  2,  ,    
 ,  for all 1,  2,  ,         

t t

t t

f x f x t n
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⎧ < ∈ ……⎪
⎨ ≤ ∈ ……⎪⎩

 

then solution X2 is dominated by solution X1. In the feasible solution space Ω, if there does 
not exist any solution which can dominate solution X, then solution X is called as a non-
dominated solution.  
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In the multi-objective optimization problem, a set of non-dominated solutions form the 
Pareto frontier. An example is shown in Fig. 1 [19], where the solid circles represent the non-
dominated solutions which form the Pareto frontier, while the hollow circles represent the 
dominated solutions. This is a two-objective optimization problem, with the goal to 
minimize those two objectives, i.e. to search for the non-dominated solutions located along 
the Pareto frontier.  

 

Fig. 1. Non-dominated solutions with multiple search directions 

3.2 Uniform design for building multiple search directions 

In a multi-objective optimization problem, in order to find more non-dominated solutions 
for the decision maker to make choice, the search directions towards Pareto frontier need to 
be expanded effectively. In this work, an experimental design method called uniform design 
is used to expand the search directions. 
Uniform design can be used to sample a small set of points from a given large set of points, 
so as to make the sampled points uniformly scattered over the space of all the given points. 
The uniform design method can be described as follows:  
Suppose there are n factors, and each factor has k levels, then there are totally kn 

combinations. From the above combinations, to select k combinations that are uniformly 
scattered over the space, a uniform matrix can be given as follows: 

 U(n, k)=[Ui, j]k×n  =  

11 12 1

21 22 2

1 2

......

......

...... ...... ...... ......

......

n

n

k k kn

U U U

U U U

U U U

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (4) 

In Eq. (4), Ui,j is the level of the factor j in the ith combination. When k is prime and k>n, then 
Ui,j can be concluded as follows [20]:  
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 Ui,j = (iǔj-1modk)+1  (5) 

where, ǔ is a parameter as shown in Table 1, and it is determined by the number of factors 
and the number of levels per factor.  
 

No. of levels 
per factors 

5 7 11 13 17 19 

No. of factors 2-4 2-6 2-10 2 3 4-12 2-16 2-3 4-18 

σ 2 3 7 5 4 6 10 8 14 

Table 1. Values of ǔ for different No. of levels per factors and different No. of factors 

For a multi-objective optimization problem, in order to get a set of search directions that are 
uniformly scattered toward Pareto frontier in the solution space, Eq.(6) can be used to 
conclude the weight vectors that determine the above search directions. In Eq. (6), n can be 
regarded as the number of objective functions, and k as the number of the search directions.  

 Wij  = 

1

ij

j n

ij
j

U

U
=

=
∑

   where, i∈[1,k], j∈[1,n]  (6) 

Then, the weight matrix  

 [Wi,j]k×n  = 

11 12 1

21 22 2

1 2

......

......

...... ...... ...... ......

......

n

n

k k kn

W W W

W W W

W W W

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (7) 

Each row of the above matrix is a weight vector to be used for building the fitness function. 
There are totally k weight vectors, for each weight vector, the sum of the weights is equal to 
one. Using the weight vectors concluded from equation (6), the fitness functions with k 
uniformly scattered search directions can be built. 
In this work, uniform design will be used to generate the weight vectors to guide the search 
directions of the ant colony, which will be discussed in section 5.3. 

4. Application of ACO for disassembly planning  

In this section, the application of ACO with multiple search directions for disassembly 
planning is discussed. 

4.1 Geometric precedence feasibility in disassembly planning 

In disassembly planning, the geometric precedence feasibility is a constraint that the ants 

must satisfy during the moving process. This means only the parts which can be 

disassembled without any interference can be chosen by the ants in the next step. To 

conclude the geometric precedence feasibility, the interference matrix is used in this work.  

The interference matrix was first proposed by Dini [21] in assembly planning, and it can also 
be used for precedence feasibility judgment in disassembly planning. For an assembly 
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consisting of n parts, an interference matrix Id (d represents the disassembly direction) can be 
represented as follows: 

1 2

11 12 11

2 21 22 2

1 2

                ...

    ...    

    ...   
  

... ........................

    ...   

n

n

n
d

n n n nn

P P P

P P PP

P P P P
I

P P P P

⎡ ⎤
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⎢ ⎥=
⎢ ⎥
⎢ ⎥
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P1, ….., Pn are used to represent the n parts in the assembly, let Pi j =1 (i∈ [1, n], j∈ [1, n]) if 
part Pi collides with Pj when Pi is disassembled along the direction d from the current 
assembly position; otherwise, let Pi j =0. Let Pi i = 0 because the part cannot collide with itself. 
Because Pi j in the -d direction is equal to Pj i in the +d direction, three interference matrices 
I+X, I+Y and I+Z can be used to conclude the precedence feasibility in a disassembly sequence 
(A Cartesian co-ordinate system whereby the six axes ±X, ±Y, ±Z are the principal axes 
along which the components are disassembled is used in this work).  
In disassembly process, when part Pi is disassembled before a remaining product assembly 
Sm consisting of m parts, then the feasible disassembly direction of Pi to Sm can be derived as 
follows: for disassembly direction d, d ∈ {±X, ±Y, ±Z}, let Pj∈ Sm, determine Dd(Pi Sm)= ∑Pij 
(Pij is the element in Id). If Dd(Pi Sm) =0, then direction d is the feasible disassembly direction 
of Pi to Sm; otherwise, direction d is infeasible. If none of the six directions is feasible, then Pi 
cannot be disassembled at current stage; otherwise, Pi can be disassembled from the product 
without collision interference. 

4.2 Three objectives in disassembly planning 

The purpose of disassembly planning is to derive a feasible disassembly sequence with the 
minimal disassembly cost or disassembly time. The disassembly cost or time usually can be 
determined by three objectives: the number of disassembly orientation changes, tool 
(gripper) changes and changes in disassembly operation types. In the disassembly process, a 
change of the disassembly orientation or disassembly tool needs time and usually can 
increase the disassembly cost. Different types of assembly operations are needed to 
complete the assembly process, such as pressing, screwing, riveting, etc., accordingly, 
different disassembly operations are needed for different parts in the disassembly process. 
Changes of the disassembly operations also require tool change, and thus increase the 
disassembly time and cost. Hence, in disassembly planning, the above three objectives- 
disassembly orientation changes, tool changes, and changes in disassembly operation types 
should be minimized to reduce the disassembly time and cost. 

4.3 Application of ACO with multiple search directions for disassembly planning  

To apply ACO in disassembly planning, the first part in disassembly sequence can be 
regarded as the nest of ant colony, and the last part in disassembly sequence can be 
regarded as the food source. The shortest path can be equivalent to the disassembly 
sequence with the minimal cost or time, thus in this work, the shortest path can be 
represented by the optimum disassembly sequence considering three objectives: 
disassembly orientation change, disassembly tool change, and disassembly operation 
change. 
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In disassembly planning problem, Pz(i, j) in Eq.(1) can be modified and represented as the 
probability that ant z select the disassembly sequence step from Part i to Part j in a given 
search direction t, and it can be represented in Eq.(8): 

      ( ) ( )
( )

 
( )
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,   if  Allowed

( , )[ ( , )],

0,                                         otherwise           
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Where, t∈[1, k]; Ǖt(i, j) is the quantity of pheromone deposited on the disassembly sequence 
step from Part i to Part j in search direction t; ηt(i, j) is the heuristic value corresponding to 
the disassembly step from Part i to Part j in search direction t, and it can be represented in 
Eq.(9): 

 

( ) ( )
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( ) ( )

1 11 1 12 2 13 3

2 21 1 22 2 23 3
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 (9) 

Where, f1, f2 and f3 are given as follows: 

1 

1,     if need orientation change in disassembly step from Part  to Part 

0,    if no orientation change in disassemblystep from Part  to Part      

i j
f

i j

⎧
= ⎨
⎩

 

2 

1,    if need tool change in disassembly step from Part  to Part 

0,    if no tool change in disassembly step from Part  to Part     

i j
f

i j

⎧
= ⎨
⎩

 

3 

1,    if need operation change in disassembly step from Part  to Part 

0,    if no operation change in disassembly step from Part  to Part     

i j
f

i j

⎧
= ⎨
⎩

 

In Eq. (9), [Wi,j]k×3 is the weight matrix derived from Eq. (6), which are used for three 
objectives: disassembly orientation change, disassembly tool change, and disassembly 

operation change, respectively. Thus, ηt(i, j) (t∈[1, k]) can be used for guiding the ants to 
search the next disassembly sequence step along k different directions which are uniformly 
scattered toward Pareto frontier, as mentioned in section 4.2.  
In disassembly planning, for k different search directions, the local updating function Ǖt(i, j) 
can be represented as in Eq. (10): 

 Ǖt(i, j)=(1-ǂ) Ǖt(i, j)+ ǂǕ0(i, j), t∈[1, k] (10)          

And for k different search directions, the global updating function in ACO can be 
represented as in Eq. (11):  

 Ǖt(i, j)=(1-ǃ) Ǖt(i, j)+ ǃΔǕt(i, j), t∈[1, k],   (11) 

Where, 
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( ) ( ) ( ) gb
,    if step ,  global best disassemblysequence

,  
0,          otherwise                                                            

t
t

F i j
i jτ

⎧ ∈⎪Δ = ⎨
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Ft (gb) = Z/(1+Wt1N1+Wt2N2+Wt3N3), t∈[1, k], Z is a constant parameter used to adjust the 
added pheromone level in the step(i, j), and N1, N2, N3 are number of orientation change, 
number of tool change, and number of disassembly operation change in current global best 
disassembly sequence, respectively. After local updating and global updating of the 
pheromone, Ǖt(i, j) is the quantity of pheromone deposited on the disassembly sequence step 

from Part i to Part j for the search direction t (t∈[1, k]).  
From the above, it can be seen that for different search directions, the selection probability 
that ant z select the disassembly sequence step from Part i to Part j could be different due to 
the quantity of pheromone deposited and the heuristic value. 
The overall ACO algorithm with multiple search directions for disassembly planning is 
proposed as follows: 
 
Algorithm: Overall ACO algorithm for disassembly planning 
Step 1. Set the number of factors (objectives) n, and set the number of levels of each factor 

(search directions) k; derive the parameter ǔ from Table 1; 
Step 2. Conclude the weight matrix using Eq.(4), Eq.(5) and Eq.(6); 
Step 3. For the assembly consisting of m parts, place k ants on each of the q parts that can be 

initially disassembled; 
Step 4. Set initial quantity of pheromone on each disassembly step as Ǖt(i, j)=c; 
Step 5. Set the maximal cycle number Nc(max), and let the cycle number Nc =1; 

Step 6. For search direction t (t∈[1, k]), let t=1; 
Step 7. For the ant Z that is searching the route along the direction t, if the ant z has not 

completed the visit from the first part to the last one, calculate the selection 
probability Pz(t)(i, j) using Eq.(8), where, Part j belong to the remaining parts in the 
product that have the feasible disassembly direction at this stage; 

Step 8. Select the Part j as the next part to be disassembled using roulette-wheel selection 
method; 

Step 9. Move the ant Z to the new position - Part j; 
Step 10. Locally update the pheromone level on the disassembly sequence step from Part i to 

Part j by Eq. (10); 
Step 11. If the ant z has completed the visit from the first part to the last one, go to Step 12; 

else, go to Step 7; 
Step 12. Globally update the pheromone level on the best disassembly sequence found so far 

by Eq. (11); 
Step 13. Let t=t+1, if t<k, go to Step 7; else, go to step 14; 
Step 14. Let Nc = Nc +1, if Nc< Nc(max), go to Step 6; else, go to Step 15; 
Step 15. Output the non-dominated solutions found by the ants. 

5. Case study and discussion 

The proposed disassembly planning approach with ant colony optimization algorithm has 
been implemented using Visual C++ 6.0. In this section, an assembly product [12] (shown in 
Fig. 2) is used to validate the proposed approaches.  
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Fig. 2. An assembly consisting of 22 parts 

5.1 Case study 

In this case, there are 3 objectives to be optimized, and the search directions k is set as 5, then 
the parameter ǔ can be derived from Table 1 as: ǔ = 2. From Eq. (4) and Eq. (5), the uniform 
matrix U(3, 5) can be derived as follows: 

U(3, 5)=[Ui, j]5×3  ＝ 

2 3 5

3 5 4

4 2 3

5 4 2

1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

From Eq. (6) and Eq. (7), the weight matrix can be derived as follows: 

[Wi,j]5×3  =

1 5 3 10 1 2

1 4 5 12 1 3

4 9 2 9 3 9

5 11 4 11 2 11

1 3 1 3 1 3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

   

For 7 parts that can be initially disassembled in this case, five ants are placed on each part, 
and each ant will search the route along one of five directions respectively. Based on some 
reference works [16] [17], some parameters for ACO algorithm are set as follows: The initial 
quantity of pheromone on each disassembly step is set as Ǖ0 = 0.5; the pheromone decay 
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parameter ǂ and ǃ are set as 0.1; the parameter λ is set as 0.8. Through the experiment in the 
case study, the maximal cycle number Nc(max) is set as 500, and the constant parameter 
used to adjust the added pheromone level Z is set as 3. 
In this case, the part 2, part 3 and part 15 have similar geometric shape and dimension, so they 
can be grasped with the same tool – chuck in the disassembly process, and this tool is assigned 
with the number 2 in this case. Similarly, the other parts can be grouped according to their 
geometric shape, dimension and weight, and can be grasped with different tool with different 
tool number, as shown in Table 2. For the operation type, part 19, part 20, part 21 and part 22 
can be unscrewed with the screw driver in disassembly process, so these four parts are 
assigned with the same operation type (number 2) in this case, similarly, part 9, part 10, part 
11, part 12 and part 18 can be unscrewed with the wrench (operation type number 1) in this 
case, the other parts do not need any tool to unfasten in disassembly process, so they are 
assigned with the operation type (number 0) in this case, as shown in Table 2.  
 

Part No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

Tool type 1 2 2 1 3 3 3 3 4 4 4 4 1 5 2 3 3 4 6 6 6 6 

Operation 
type 

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 2 2 2 2 

Table 2. Tool type and operation type of each part in the assembly 

(1) Test 1 

In test 1, the evolution test with 5 uniformly scattered search directions is carried out 20 
times, and the result is shown in Table 3 [19]. All the 20 trials are converged to the feasible 
disassembly sequences, during which, 4 trials get 2 non-dominated solution, 8 trials get 3 
non-dominated solutions, and 8 trials get 4 non-dominated solutions. 
 

Total trials 
Trials that get 2 
non-dominated 

solutions 

Trials that get 3 non-
dominated solutions 

Trials that get 4 
non-dominated 

solutions 

20 4 8 8 

Table 3. 20 trial results in Test 1 

In above test results, 4 non-dominated solutions found in a trial are shown in Table 4 [19]. 
 

Non-dominated 
solution No. 

Orientation 
changes 

Tool 
changes 

Operation 
changes 

1 4 7 6 

2 3 8 7 

3 2 9 5 

4 4 8 5 

Table 4. Test results of a trial in Test 1 

In the above non-dominated solutions, the disassembly sequence of non-dominated solution 
No.4 is given as follows: 
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18-20-22-21-19-12-11-15-13-9-10-6-5-1-14-16-17-8-7-4-2-3, the sequence started from the part 
No.18, with the search direction (W1=1/4, W2=5/12, W3=1/3), and it has 4 orientation 
changes, 8 tool changes, and 5 operation changes.  
For other non-dominated solutions, the non-dominated solution No. 1 has 4 orientation 
changes, 7 tool changes, and 6 operation changes, with the search direction (W1=4/9, 
W2=2/9, W3=3/9); the non-dominated solution No. 2 has 3 orientation changes, 8 tool 
changes, and 7 operation changes, with the search direction (W1=1/5, W2=3/10, W3=1/2); 
the non-dominated solution No. 3 has 2 orientation changes, 9 tool changes, and 5 operation 
changes, with the search direction (W1=5/11, W2=4/11, W3=2/11). 
To evaluate the evolution performance for 500 generations, in this case, the equation  
F= 3/(1+W1N1+W2N2+W3N3) is used to record the fitness value of the sequence, where, N1, 

N1, N3 are the number of orientation changes, number of tool changes, and number of 
operation changes, respectively, and W1, W2, W3 are the weight for each of above three 
objectives, respectively. The evolution performance for 500 generations of the sequence in 
the search direction (W1=1/4, W2=5/12, W3=1/3) is shown as Fig.3 [19]. 
 

 

Fig. 3. The evolution performance for 500 generations 

(2) Test 2 

For comparison with Test 1, only one fixed search direction (W1=1/4, W2=5/12, W3=1/3) is 
used in Test 2 to guide the ants to search the route. With the same setting of the other 
parameters, the evolution result is shown in Table 5 [19]. All the 20 trials are converged to 
the feasible disassembly sequences, during which, 11 trials get 1 non-dominated solution, 8 
trials get 2 non-dominated solutions, and 1 trial get 3 non-dominated solutions.  
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Total trials 
Trials that get 1 
non-dominated 

solutions 

Trials that get 2 
non-dominated 

solutions 

Trials that get 3 
non-dominated 

solutions 

20 11 8 1 

Table 5. 20 trial results in Test 1 

5.2 Discussion 

The above two evolution test results show, compared with the ant colony algorithm with 

only one search direction, the ant colony algorithm with multiple uniformly scattered search 

directions can be easier to find more non-dominated solutions in one trial, this is probably 

due to that in the later algorithm, at each step, the ants are guided along the uniformly 

scattered search directions toward Pareto frontier, so the ants have more chance to find 

more non-dominated solutions located in the Pareto frontier.  

Because the assembly sequence can be concluded by reversing the disassembly sequence, so 

the proposed approach can be used to derive the assembly sequence in the mean time. 

Compared with the assembly planning approach with multi-objective genetic algorithm 

with the same case study [12], the approach with ant colony algorithm is more stable and 

faster, all of the 20 trials can find the feasible disassembly sequence, and the average run 

time is 6-8 seconds to converge to a global optimal or near global optimal sequence, 

however, for the 20 trials using assembly planning approach with multi-objective genetic 

algorithm, at least 2 trials cannot find the feasible assembly sequence, and the average run 

time is 20-25 seconds to converge to a global optimal or near-global optimal sequence. This 

difference could be analyzed as follows: in the disassembly planning approach with ant 

colony algorithm, the ants search the route step by step, and only the dismountable part can 

be selected by the ants, so it can avoid the infeasible solution easily, and this can also help 

find the feasible solution quickly. However, in the assembly planning approach with genetic 

algorithm, the initial solutions are randomly generated as the whole sequence, there could 

be much assembly interference due to the precedence constraints, and these solutions are 

evolved as the whole sequence by genetic operators in the later stage, this could cost much 

time to repair and evolve the solution to a feasible and optimal solution, and sometimes 

they can not be evolved to the feasible solutions due to this highly constrained combinatory 

problem. So, from the above analysis, it can be seen that the disassembly planning approach 

with ant colony algorithm could be more efficient than the approach with genetic algorithm. 

6. Conclusion 

In order to achieve green manufacturing effectively, this chapter presents a multi-objective 
disassembly planning approach with ant colony optimization algorithm. Three objectives in 
disassembly process are optimized concurrently to get the optimal or near optimal 
disassembly sequence in this work. In order to guide the ants to search comprehensively 
and find more feasible non-dominated solutions for decision making, uniform design is 
used for establishing a multi-objective searching algorithm, and an ant colony optimization 
algorithm for disassembly planning is developed based on the above searching algorithm. 
Through the case study and the comparison with the approach using genetic algorithm, it 
can be verified that the proposed multi-objective disassembly planning approach with ant 
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colony optimization algorithm is more stable, faster and efficient for finding more feasible 
non-dominated solutions. 
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APPENDIX 

Notation 

Dd(Pi Sm) represented as ∑Pi j, Pj∈ Sm  

Id  the interference matrix for assembly direction d 

N1 number of orientation change,  

N2 number of tool change,  

N3 number of disassembly operation change 

Nc  cycle number 

Nc(max) maximal cycle number 

Pz(i, j)  the probability that ant z select next node j 

Pz(t)(i, j) the probability that ant z select the disassembly sequence step from Part i to Part j 

in a given search direction t 

Ui,j the level of the factor j in the ith combination 

Z  a constant parameter used to adjust the added pheromone level in the step(i, j) 

α  a parameter which determines the pheromone volatility on the edge from node i to 

node j  

ǃ  the pheromone decay parameter 

τ(i,j) the quantity of pheromone deposited on the edge from node i to node j 

τ0(i,j) the initial pheromone level on the edge 

Ǖt(i, j) the quantity of pheromone deposited on the disassembly sequence step from Part i 

to Part j in search direction t 
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η(i,j) the heuristic information corresponding to the edge from node i to node j 

ηt(i, j) the heuristic value corresponding to the disassembly step from Part i to Part j in 

search direction t 

λ  the parameter that determine the relative importance of τ(i,j) versus η(i,j) 
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