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Some Issues of ACO Algorithm Convergence
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1. Introduction

The study of the convergence of ACO algorithms, or more in general of stochastic algorithms
for solving combinatorial optimization problems is very important. In fact, it can provide
information that can be useful in practice when applying such algorithms. This information
can be of different kinds.
The most basic question of interest is about algorithm capability of solving the problem of
interest. Given the stochastic nature of the kind of algorithms considered, this question
can be properly formulated in terms of the “failure” probability, i.e. the probability that
after the current iteration the algorithm has not yet found the solution. We are of course
interested in ACO algorithms whose failure probability converges to zero. Another kind of
convergence, that is stronger than simply having the failure probability to converge to zero,
is when the whole ACO colony approaches, as time goes to infinity, a set of individuals all
corresponding to one of the problem solutions. In addition to algorithm’s effectiveness, other
natural questions arise. In fact, the user is interested in the quantification of the time used by
the algorithm to solve the problem. Since this time is random, the quantification will involve
its expected value, its variance and ideally its distribution. Let us now go back to the failure
probability. There are often situations where, by applying ACO algorithms, or more in general
stochastic algorithms, to solve combinatorial optimization problems, the failure probability
goes to zero too slowly. In those situations, one could ask the question if, instead of running
the ACO algorithm for a certain time, it would be more convenient to stop it after another
time T, smaller than the former, and to start it again from the beginning, and so on, until the
original time is reached. In the case of a positive answer to this question, one could also study
the problem of finding an optimal value for the time T.
In this chapter, we will illustrate some relevant known theoretical results on the former issues.
Furthermore, we will provide some results on a our ingoing research on the last issue. Beside
this, some numerical simulation results will also be introduced and discussed.

2. Algorithm’s convergence

By definition, the failure probability is a non-increasing function of the number of iterations.
The effectiveness of the algorithm can then be translated into the convergence to zero of the
failure probability. Although this kind of convergence requirement is very basic, it is not
always fullfilled. Therefore, theoretical studies on this kind of convergence arewellmotivated.
Knowing in advance that the failure probability is decreasing to zeromakes the user confident
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2 Ant Colony Optimization

that waiting long enough time, there are very good chances that the algorithm will solve the
problem.
Let Xi(t), t= 1,2, . . . be the stochastic process modeling the configuration assumed by the i-th
of the A ants of the colony. Let X∗ denote the optimal set for the function f to be maximized
(or minimized).
We can distinguish two kinds of convergence:

convergence in value: when it holds

pv(t) := P

(

A
⋂

i=1

t
⋂

k=1

{

Xi(k) /∈ X∗
}

)

→ 0;

convergence in model: if for some x∗ ∈ X∗ we have

pm(x
∗, t) := P

(

A
⋂

i=1

{

Xi(t) = x∗
}

)

→ 1.

The convergence in value is important. This property tells us something about the way in
which the algorithm is exploring the configuration space X. It is strongly connected to the
strict positivity of the conditional probability to visit at the end of any iteration one point of
X∗ given that we are not currently in X∗ . However, the convergence in model is stronger
than the one in value. In the former, the probabilistic model itself evolves towards one that
generates only optimal solutions. Not all algorithms converging in value are also converging
in model. For example, this is the case for the algorithm that explores the configuration space
in a uniform and independent way, known as Random Search (RS). In fact, we have pv(t) =
(

1− |X∗|
|X|

)At

→ 0, while it holds pm(x
∗, t) =

(

1

|X|

)A

.

In the following, we will only cope with the case where the ACO algorithm does not use the
visibility matrix ηij. In this case, the configuration of each ant of the colony is built by a path
over the construction graph [Gutjahr (2000)]:

p(j|sp) =
τα
ij

∑
j∈N(sp)

τα
ij

∀ j ∈ N(sp) , (1)

where (i, j) is the arc by which we continue the partial path sp, τij is its current pheromone
value, and α is a positive parameter.
By simply imposing some constraints on the pheromone matrix, it is possible to have an ACO
algorithm that converges in value. Indeed, for an ACO algorithm with 0 < τmin ≤ τij ≤ τmax,
given any ǫ > 0, we have that, for t large enough it holds

pv(t)≤ ǫ ,

that is, by definition,
lim
t→∞

pv(t) = 0.

In fact, because of the bounds on the pheromone matrix, every choice made by the rule in Eq.
(1) has a probability larger or equal to

pmin =
τα
min

(Dmax − 1)τα
max + τα

min

> 0
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Some Issues of ACO Algorithm Convergence 3

where Dmax, is the maximum value of the degree of the nodes of the construction graph. It
then follows that any configuration of the whole space X, including an optimal one x∗, can be

visited at any iterationwith a probability larger or equal than p̂= (pmin)
Lmax

> 0, where Lmax =
maxx∈XL(x), and L(x) is the length of the path by which we have built the configuration x.
From this, it follows that

pv(t) ≤ (1− p̂)At , (2)

i.e. there is convergence in value.
Different kinds of ACO algorithms are such that suitable bounds on the pheromone matrix
values hold. Among them, the Max Min Ant System (MMAS), where lower and upper
bounds on the pheromone matrix values are imposed explicitly when updating recursively
them along iterations

τij(t+ 1) =min{τmax,max{(1− ρ)τij(t) + ρ1{(i, j) ∈ xb(t)}/L(xb(t)),τmin}},
where 0 < ρ < 1, and 1(·) is the indicator function [Stützle & Hoos (1997)], [Stützle & Hoos
(2000)]. We notice that the pheromone is reinforced only on arcs belonging to one
configuration xb(t), e.g. the best one (w.r.t. the objective function f ) that we have visited so far,

i.e. xb(t) = arg max
i=1,...,A, k=1,...,t

f (xi(k)). We could use another kind of update where no bounds

on the pheromone are explicitely imposed:

τij(t+ 1) = (1− ρ)τij(t) + ρ1{(i, j) ∈ xb(t)}/L(xb(t)) .
In this case, after t iterations, the pheromone values are bounded from above by

(1− ρ)tτ0 + ρ
t

∑
i=1

(1− ρ)t−i/Lmin .

The above quantity is bounded from above by τ0 + 1/Lmin, where Lmin = minx∈XL(x). In this
case, we do not have in general any guarantee that also a lower bound holds. However, not
having a lower bound sometimes can be a positive condition. In fact, as seen above, when we
have both lower and upper bounds, convergence in value holds. When a lower bound holds,
we cannot have convergence in model because at any iteration we have a lower bound for the
conditional probability of reaching any configuration given any other. We will see now that
if we impose the weaker condition that the lower bound of the pheromone matrix at time t,
τmin(t) (it always exists since there is a finite number of edges) goes to zero slowly enough,
convergence in value still holds. This is stated by the following theorem [Dorigo & Stutzle
(2004)].

Theorem 1. Given an ACO algorithm with pheromone values having constant upper bound τmax and
lower bound τmin(t)

τmin(t) = Ω

(

1

ln(t+ 1)

)

,

then we have
pv(t)→ 0.

In fact, similarly to Eq. (2), one can prove that

41Some Issues of ACO Algorithm Convergence
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4 Ant Colony Optimization

pv(t)≤
t

∏
k=1

(

1− (pmin(k))
Lmax

)A
,

where

pmin(t) =
τα
min(t)

(Dmax − 1)τα
max + τα

min(t)
≥ τα

min(t)

Dmaxτα
max

.

This implies that

pv(t)≤
t

∏
k=1

(

1−
(

τα
min(k)

Dmaxτα
max

)Lmax
)A

=
t

∏
k=1

(

1− K (τmin(k))
αLmax

)A
. (3)

Now, we prove that the infinite product on the final expression of Eq. (3) converges to zero.
By the following lemma, it is sufficient to show that

∞

∑
t=1

(τmin(t))
αLmax →+∞.

Lemma 1. Let {an}n∈IN be a sequence of real numbers converging to zero such that 0≤ an < 1, ∀n.
Then, it follows that ∑

n
an → +∞ ⇒ ∏

n
(1− an)

k → 0, ∀k ≥ 1.

Since τmin(t) = Ω
(

1
ln(t+1)

)

, then the terms of the series
∞

∑
t=1

(τmin(t))
αLmax are asymptotically

bounded from below by
(

C
ln(t+1)

)αLmax

. Then, this series is diverging because

∞

∑
t=1

(

C

ln(t+ 1)

)αLmax

is infinite. Finally, we have

lim
t→∞

pv(t) = 0.

We will see now, that the variant of the MMAS algorithm such that τmax is constant and

τmin(t) = Ω
(

1
ln(t+1)

)

converges in model. First, it is easy to see that, conditionally to the

event {Xb(0) = x∗ ∈ X∗}, the pheromone values of arcs that do not belong to x∗ tends
deterministically to zero [Dorigo & Stutzle (2004)]. In fact, ∀t > 0 we have p(Xb(t) =
x∗ |Xb(0) = x∗) = 1, and for any (i, j) /∈ x∗, τij(t) =max{τmin(t), (1− ρ)tτij(0)} → 0. Similarly,
for any (i, j) ∈ x∗, τij(t)→ 1/L(x∗).
We recall that pm(x∗, t) denotes the probability that each ant will build x∗ at iteration t. A
lower-bound for p(x∗ , t) is

pm(x
∗, t) ≥ p(Xb(⌊t/2⌋) = x∗) · p

(

A
⋂

i=1

{Xi(t) = x∗}|Xb(⌊t/2⌋) = x∗
)

= p(Xb(⌊t/2⌋) = x∗) · [p(X1(t) = x∗|Xb(⌊t/2⌋) = x∗)]A.

The last passage is justified because, conditionally to the event {Xb(⌊t/2⌋) = x∗} the
pheromone evolution after time ⌊t/2⌋ will be deterministic and the A ants will evolve
identically and independently from each other. Furthermore, it holds
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where (i, j) ∈ x∗. We notice that

lim
t→∞

min(i,j)∈x∗(τij(t−
⌊

t
2

⌋

))α

min(i,j)∈x∗(τij(t−
⌊

t
2

⌋

))α + ∑(i,h)/∈x∗(τih(t−
⌊

t
2

⌋

))α

= lim
t→∞

min(i,j)∈x∗(τij(t))
α

min(i,j)∈x∗(τij(t))α + ∑(i,h)/∈x∗(τih(t))α

=
1

1+ ∑(i,h)/∈x∗
limt→∞(τih(t))α

min(i,j)∈x∗ limt→∞(τij(t))α

= 1,

where we used the fact that lim
t→∞

(τij(t))
α
> 0 when (i, j) ∈ x∗. Since we also have that

lim
t→∞

p(Xb(⌊t/2⌋) = x∗) = lim
t→∞

p(Xb(t) = x∗) = 1,

it finally follows that lim
t→∞

pm(x
∗, t) = 1, that is we have convergence in model.

3. Expected time to convergence

For combinatorial optimization problems, exaustive search can provide problem solution in
a finite time, although this time grows tremendously with problem size. Therefore, it is
natural to study the expected time needed for an algorithm to solve the problem as function
of problem dimension. This problem can be studied for some classes of ACO algorithms, by
using discrete time Markov chains on a countably infinite state space. We will describe now
some general resultswhich can be used to provide upper bounds for the expected time needed
by a certain class of ACO algorithms to find an optimal solution [Gutjahr & Sebastiani (2008)].
To show their utility, we will also apply them to the MMAS algorithm [Gutjahr & Sebastiani
(2008)]. The class of ACO algorithms involved are those such that the recursive rule for the
pheromone only depends on the best-so-far-solution xb(t). This is the case for the MMAS
algorithm. We also assume that, xb(t) is changed only when there is a strict increase of the
objective function: xb(t+ 1) �= xb(t)⇔ f (xb(t+ 1)) > f (xb(t)).

Definition 1. For any objective function f (·), we assume that the elements f1, ..., fM of the finite set
{ f (x)|x ∈ X} are ordered such that f1 < f2 < ...< fM. We also define

Lj = {x ∈ S | f (x) = f j} ,

i.e. the level set of index j, with j = 1, ...,M. The number M of level sets may vary from 1, in the case
of a constant function, up to |X| when there are no points in X with the same value of f .

We notice, that if at time m we have that xb(m) ∈ Lj for some j ∈ {1, ...,M − 1}, then xb(m
′)

will be equal to xb(m) for m′ = m+ 1, ..., m̄− 1 up to iteration m̄ in which a solution with a

pm(x
∗, t) ≥ p(Xb(⌊t/2⌋) = x∗) ·

[

p(X1(t− ⌊t/2⌋) = x∗|Xb(0) = x∗)
]A

≥ p(Xb(⌊t/2⌋) = x∗) ·
(

min(i,j)∈x∗(τij(t− ⌊t/2⌋))α

min(i,j)∈x∗(τij(t− ⌊t/2⌋))α + ∑(i,h)/∈x∗ (τih(t− ⌊t/2⌋))α

)ALmax

,
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6 Ant Colony Optimization

value of f higher than x(m), so that xb(m̄) ∈ Lk with k > j. Hence, at iteration m′, the point
xb(m

′) is identical to the one of the last time or it belongs to Lk with k > j. This means that
transitions between xb(t) ∈ Lj and xb(t+ 1) ∈ Lk are allowed only if k > j.

Let us consider the homogeneous Markov process Xt = (Xb(t),τ(t)), where τ denotes the
pheromone matrix. Since the real numbers are approximated on a computer by a subset of the
set Q of the rational numbers, it is not restrictive in practice to assume that this process takes

values in the set X×Q|A|. This last set can be partitoned as

X×Q|A| =
M
⋃

k=1

Lk ×Q|A| =
M
⋃

k=1

(Lk ×Q|A|) =
M
⋃

k=1

Yk,

where Yk = Lk ×Q|A|. Analogously as before, transitions between Y(t) ∈ Yj and Y(t+ 1) ∈ Yk
are allowed only if k > j.
We can now introduce two lemmas [Gutjahr & Sebastiani (2008)].

Lemma 2. Let X0, X1, ... be a homogeneous Markov process on a countably infinite state space Y, with
partition Y1, ...,YM each of which is also countably infinite, such that, ∀k �= j, we have

p(Xt+1 = y|Xt = x) > 0, ∀y ∈ Yk, ∀x ∈ Yj ⇔ k > j ,

and let E[Tx→YM
] be the expected time to reach the set YM, that corresponds to the optimal set, starting

from x /∈ YM, that is

E[Tx→YM
] :=

∞

∑
t=1

tp(Xt ∈ YM, Xs /∈ YM, 1≤ s ≤ t− 1|X0 = x).

Then, for x ∈ Yj and j = 1, ...,M− 1, it follows that

E[Tx→YM
] ≤ E[Tx→Ȳj

] +
M−1

∑
k=j+1

∞

∑
l=1

E[Txl,k→YM
]p(x → xl,k),

where
⋃∞
l=1{xl,k} = Yk,

E[Tx→Ȳj
] :=

∞

∑
t=1

tp(Xt /∈ Yj, X
s ∈ Yj, 1≤ s ≤ t− 1|X0 = x),

p(x → xl,k) :=
∞

∑
t=1

p(Xt = xl,k, X
s ∈ Yj, 1≤ s ≤ t− 1|X0 = x).

Lemma 3. Under the same hypothesis of the last lemma, it follows that the expected value of the time
TM to reach the set YM, that is

E[TM] :=
∞

∑
t=1

tp(Xt ∈ YM, Xs /∈ YM, 0≤ s≤ t− 1),

is bounded from above by

E[TM] ≤
M−1

∑
j=1

p(X0 ∈ Yj)
M−1

∑
k=j

sup
y∈Yk

{E[Ty→Ȳk
]} ≤

M−1

∑
k=1

sup
y∈Yk

{E[Ty→Ȳk
]}.

44 Ant Colony Optimization - Methods and Applications
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Some Issues of ACO Algorithm Convergence 7

We will now apply the last lemma to the MMAS algorithm [Gutjahr & Sebastiani (2008)]. It
fullfills the hypothesis of this lemma. In fact, because of the pheromone bounds, transitions
between different xb(t) at any two consecutive times have a strictly positive probability iff the
index of the set Yj increases. To this aim, we first show a useful property of the algorithm
MMAS. If xb(0) = y ∈ Lk and τmax < 1, then exists a deterministic time t∗, independent from
the initial pheromone, such that, for any time t> t∗ where xb(t) is unchanged, the pheromone
τ(t) is constant and equal to τ(t∗) = τ∗(y), where τ∗

ij(y) = τmax for any arc (i, j) belongs to y,

and τ∗
ij(y) = τmin otherwise. The time t∗ is given by t∗ =max{t1, t2}, where

t1 =

⌈

logτmin − logτmax

log(1− ρ)

⌉

,

and

t2 =

⌈

log(1− τmax)− log(1− τmin)

log(1− ρ)

⌉

.

Based on this property, it is possible to prove the following lemma.

Lemma 4. For the algorithms MMAS and for τmax < 1 we have that

sup
y∈Yk

{E[Ty→Ȳk
]} ≤ t∗ + 1/ p̄k,

where p̄k it is the smallest probability to get out from Yk after the pheromone became constant

p̄k := inf
y∈Lk

p(X1 /∈ Yk|X0 = (y,τ∗(y))),

where 1≤ k < M.

Finally, using the last two lemmas, we have that the expected value of TM to reach the set YM

is bounded from above

E[TM] ≤
M−1

∑
k=1

(t∗k + 1/ p̄k) =
M−1

∑
k=1

t∗k +
M−1

∑
k=1

1/ p̄k.

The last lemma has been used to provide upper bounds of TM for the MMAS when used
to optimized some simple pseudo-boolean functions [Gutjahr & Sebastiani (2008)]. These
bounds provided information useful to choose among different alternatives for the parameter
ρ as function of the length of the boolean strings.
In another work, a theoretical studywas performedon the time of convergence of two variants
of the MMAS algorithms when maximizing some pseudo-Boolean functions [Neumann et al.
(2009)]. The study is asymptotical with respect to the number of binary variables. The
two algorithms differ to each other only because of the updating of the best-so-far solution,
depending whether the function value is either increased or not decreased. Moreover, some
lower bounds for the expected time to convergence are provided.

4. Restarting the algorithm

Let Xt be the stochastic process describing a given algorithm to find an optimal point of a
function f (w.l.g. we deal with the case of maximization). We consider now a new algorithm

45Some Issues of ACO Algorithm Convergence
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8 Ant Colony Optimization

which consists of the former one restarted from beginning every T iterations. Let X̃t be the
process that describes the new algorithm. Before of providing some results on the expected
time to convergence, we introduce two examples. In particular, in the first example, due to
the sub-exponential decay to zero of the failure probability pv(t), the algorithm with restart is
successful. Instead, in the second example the failure probability goes to zero at exponential
rate or even faster. Then, the restart is not convenient.

Example 1. If pv(t) =
c

tα
, then, for any t sufficiently long, there exists T < t such that the

failure probability pv(t) of the algorithm after t iterations is larger than pv(T)⌊
t
T ⌋, that is the

failure probability of the algorithm restarted
⌊

t
T

⌋

times with restart time equal to T. To this
aim, it will be sufficient to prove that

pv(t) > pv(T)
( t
T−1) .

To show this, we compute the derivate of pv(T)
1
T :

d

dT

(

pv(T)
1
T

)

=
( c

Tα

)
1
T

[

− 1

T2
ln

( c

Tα

)

+
1

T

(

−α
cTα

Tα+1c

)]

= −
( c

Tα

)
1
T 1

T2

(

ln
( c

Tα

)

+ α
)

.

This derivate vanishes when ln
(

c
Tα

)

+ α = 0 and hence for T = ec
1
α . Of course we will choose

a restart time equal to T̄ =
⌈

ec
1
α

⌉

= βec
1
α ,where β ≥ 1. After having calculated pv(T̄) =

1

(βe)α
,

we consider pv(T̄)t/T̄−1:

pv(T)
t/T̄−1 =

(

1

(βe)α

)t/βe α
√
c−1

<
c

tα
= pv(t),

where the last inequality is true for t sufficiently great. Therefore, in this case there is an
advantage to consider the process with restart.

Example 2. An example for which we have instead pv(T)⌊
t
T ⌋ ≥ pv(t) ∀T ≤ t is when pv(t) =

ct
α
with c < 1 and α ≥ 1. In this case, it holds

pv(T)⌊
t
T ⌋ ≥ pv(T)

t
T = cT

α−1t ≥ ct
α
= pv(t) ∀ T ≤ t.

We will now study the restart algorithm in terms of the expected value of the first hitting time
TC of the process X̃t into the optimal set X∗ of the function f . If each state of X∗ is “absorbent”
(i.e. P(Xt ∈ X∗ | Xs ∈ X∗) = 1 for any s, t such that s< t), then it is easy to see that the expected
value of TC is

E[TC] =
∞

∑
k=1

P(Xk /∈ X∗).

In fact, for any non-negative random variable X it’s possible to write

E[X] =
∫ ∞

0
P(X > t)dt .

46 Ant Colony Optimization - Methods and Applications
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Some Issues of ACO Algorithm Convergence 9

In our case, the random variable TC is discrete and the integral in the above equation will
be replaced by a series whose generic term is P(TC > t). We remark that the event TC > t is
equal to the event Xt �∈ X∗. In fact if the first hitting time will be greater than t, then Xt �∈ X∗ .
Viceversa, since the points in X∗ are absorbent, if Xt �∈ X∗, then Xs for s< t does not belong to
X∗ and therefore the first hitting time will be greater than t.
Let TR first hitting time of X̃t into X∗, which can written as

E[TR] =
∞

∑
k=1

P(XT �∈ X∗)⌊ k−1
T ⌋P(Xk−⌊ k−1

T ⌋T �∈ X∗) .

In general, we notice that a necessary condition for E[TC] to be finite is that P(Xt ∈ X∗) is
infinitesimal. Instead, the expected value of TR is always finite because

E[TR] ≤
∞

∑
k=1

P(XT �∈ X∗)
k−1
T −1,

and the series is convergent. Below, there is an example of a case where P(Xt ∈ X∗) is not
going to zero as t goes to infinity. Let us focus now on the algorithm known as (1+1)EA with
single flip proposed for maximizing pseudo-boolean functions [Gutjahr & Sebastiani (2008)].
This algorithm, consists at each iteration first of the flip of a single component, randomly
chosen. Then, the proposed flip is accepted if it corresponds to a non-decrease of f . For this
algorithm, the probability P(Xk �∈ X∗) has a positive lower-bound in the case when there are
more than one local maximum of the objective function f . With local maximum we mean the
existence of a point x̄ and a set R(x̄) containing it such that

f (x̄) ≥ f (x) ∀x ∈ R(x̄), f (x̄)> f (x) ∀x ∈ ∂R(x̄) ,

where ∂R(x̄) is the border of the set R(x̄). This algorithm can be modeled through a Markov
chain such that P(Xt+1 = y | Xt = x) > 0 if and only if f (y) ≥ f (x). We consider a function f
with at least two local maxima and only one global maximum. If the initial probability to be
in the interior R̄ of one of the regions not corresponding to the global maximum is positive
then

P(Xk /∈ X∗) ≥ P(Xk /∈ X∗ | X0 ∈ R̄)P(X0 ∈ R̄)> 0.

In the last inequality we have exploited the fact that P(Xk /∈ X∗ | X0 ∈ R̄) = 1. In fact, the
considered algorithm only allows transitions towards points at Hamming distance equal to 1
and with values of the objective not decreased. Therefore, if the initial point belongs to the
region R̄, it will never go outside it. Since the generic term of the series that gives E[TC] is not
infinitesimal, the series diverges and E[TC] = ∞.
A sufficient condition to have E[TR] < E[TC] is obviuosly

P(XT �∈ X∗)⌊ k−1
T ⌋P(Xk−⌊ k−1

T ⌋T �∈ X∗) < P(Xk �∈ X∗) . (4)

for any t > T. We notice that, the above condition becomes an identity for t ≤ T. In the
following, we provide different kinds of sufficient conditions for Eq. (4), that therefore also
imply E[TR] < E[TC].

Proposition 1. Let {Xt}t∈IN be a process such that it exists T > 0 and for t> T it holds

P(Xt+1 �∈ X∗ | Xt �∈ X∗)> P(XT �∈ X∗)
1
T ,

where each point of X∗ is an absorbent state for the process Xt,
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then
E[TR] < E[TC].

Proof.

P(Xt �∈ X∗) = P(Xt �∈ X∗ | Xt−1 �∈ X∗)P(Xt−1 �∈ X∗)

> P(XT �∈ X∗)
1
T P(Xt−1 �∈ X∗)

>

(

P(XT �∈ X∗)
1
T

)⌊ t−1
T ⌋T

P(Xt−⌊ t−1
T ⌋T �∈ X∗) .

Hence, we have

P(Xt �∈ X∗)> P(Xt−⌊ t−1
T ⌋T �∈ X∗)P(XT �∈ X∗)⌊ t−1

T ⌋,
that is (4).

Proposition 2. Let {Xt}t∈IN be a process such that it exists T > 0 for which it holds

P(Xt+1 �∈ X∗)
P(Xt �∈ X∗)

>

P(Xt+1−⌊ t−1
T ⌋T �∈ X∗)

P(Xt−⌊ t−1
T ⌋T �∈ X∗)

∀t > T, t �= mT ∀m ∈ IN (5)

P(XmT+1 �∈ X∗)
P(XmT �∈ X∗)

> P(X1 �∈ X∗) , (6)

where each point of X∗ is an absorbent state for the process Xt,
then

E[TR] < E[TC].

Proof. To obtain the thesis, it is sufficient to show that

P(XT �∈ X∗)⌊ t−1
T ⌋P(Xt−⌊ t−1

T ⌋T �∈ X∗) < P(Xt �∈ X∗) ∀t> T. (7)

We proceed by induction on t distinguishing two cases: the first one where
⌊

t
T

⌋

=
⌊

t−1
T

⌋

and

the second where
⌊

t
T

⌋

=
⌊

t−1
T

⌋

+ 1. The inequality (7) it’s true for t = T + 1 because it is a

particular case of inequality (6). We assume the inequality (7) to be true for t and we show

that it is true also for t+ 1. We analyze first the case where
⌊

t
T

⌋

=
⌊

t−1
T

⌋

. We have

P(XT �∈ X∗)⌊ t
T ⌋P(Xt+1−⌊ t

T ⌋T /∈ X∗) = P(XT �∈ X∗)⌊ t−1
T ⌋ P(Xt+1−⌊ t

T ⌋T �∈ X∗)

P(Xt−⌊ t
T ⌋T �∈ X∗)

P(Xt−⌊ t
T ⌋T �∈ X∗)

< P(Xt �∈ X∗)
P(Xt+1−⌊ t

T ⌋T �∈ X∗)

P(Xt−⌊ t
T ⌋T �∈ X∗)

≤ P(Xt+1 �∈ X∗).

In the case where
⌊

t
T

⌋

=
⌊

t−1
T

⌋

+ 1 we have

P(XT �∈ X∗)⌊ t
T ⌋P(Xt+1−⌊ t

T ⌋T �∈ X∗) = P(XT �∈ X∗)P(XT �∈ X∗)⌊ t−1
T ⌋P(Xt+1−⌊ t

T ⌋T �∈ X∗)

= P(XT �∈ X∗)P(XT �∈ X∗)m−1P(X1 �∈ X∗)

< P(XmT �∈ X∗)P(X1 �∈ X∗)

< P(XmT+1 �∈ X∗) = P(Xt+1 �∈ X∗).

For the last inequalities we have used that in the considered case t= mT with m ∈N.
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We remark that, since X∗ is absorbent for the chain {Xt}t∈IN then {Xt+1 �∈ X∗} ⊂ {Xt �∈ X∗}
so that {Xt+1 �∈ X∗} ∩ {Xt �∈ X∗} = {Xt+1 �∈ X∗}. Hence, the left handside of Eq. (5) is equal
to P(Xt+1 /∈ X∗ | Xt �∈ X∗), and similarly for the right handside and for Eq. (6).

Proposition 3. Let {Xt}t∈IN be a process such that it exists T > 0 for which it holds

∀m P(X1 �∈ X∗)P(XT �∈ X∗)m < P(X(m+1)T �∈ X∗) ,

where each point of X∗ is an absorbent state for the process Xt,
then

P(XT �∈ X∗)[
t−1
T ]P(Xt−[ t−1

T ]T �∈ X∗)< P(Xt �∈ X∗).

Proof. Let us consider the function ∀t → m(t) | t ∈ {m(t)T + 1, . . . , (m(t) + 1)T}. Then, we
have

P(XT �∈ X∗)⌊ t−1
T ⌋P(Xt−⌊ t−1

T ⌋T �∈ X∗) = P(XT �∈ X∗)m(t)P(Xt−⌊ t−1
T ⌋T /∈ X∗)

≤ P(XT �∈ X∗)m(t)P(X1 �∈ X∗) < P(X(m(t)+1)T �∈ X∗)

≤ P(Xt �∈ X∗).

The last inequality follows from the non-increasing property of P(Xt �∈ X∗).

We will illustrate now a simulation study where restarting an ACO algorithm is successful.
We want to maximize the following pseudo-Boolean function

f (x) =

∣

∣

∣

∣

∣

N

∑
i=1

xi −
N− 1

2

∣

∣

∣

∣

∣

, (8)

with respect to all binary strings of length N. In Fig. 1, the function considered is plotted as
function of the number of 1s in the case of N = 20.

This function has two local maxima but only one of them is a global maximum. The ACO
algorithm considered is the MMAS. The presence of the pheromone bounds τmin and τmax

ensures convergence in value of the MMAS algorithm. However, if the algorithm visits a
configuration with few 1s it takes a very long time in average to move towards the global
maximum. Therefore, we expect that in this case the restart will be successfull.
By using as construction graph, the chain graph [Gutjahr (2000)], and by setting the initial
values of the pheromone matrix equal to 0.5, the pheromone matrix coincides with the matrix
of the probability of transitions [Gutjahr & Sebastiani (2008)]. The initial string was chosen
uniformly in the state space {0,1}N . The algorithms were implemented in Matlab. The values
of the MMAS parameters were ρ = 0.01, τmin = 0.3, τmax = 0.7. We used one thousands runs of
the algorithm each with 20000 iterations. Based on these simulations, we estimated the failure
probability.
As suggested by Example 1, to find a good value of the restart time, we have computed the
power 1/t of the estimated failure probability and then we have minimized it. In Fig. 2, the

function p̂v(t)
1
t is plotted. A minimum of this function is clearly visible at iteration 2900 ca.

49Some Issues of ACO Algorithm Convergence

www.intechopen.com



Finally, in Fig. 3 we show the estimated failure probability p̂v(t) for the MMAS algorithmwith
chain graph to maximize the pseudo-binary function of Fig. 1 with N = 20 (continuous line).
On the same figure, the failure probability of the restart algorithm with T = 2900 ca. is plotted
(dashed line). As seen in the last figure, there is a clear advantage to use the restart MMAS
algorithm when compared to the standard MMAS.
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Fig. 1. The plot of the considered pseudo-Boolean function versus the number of 1s of the
binary string
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Fig. 2. The estimated failure probability raised to the power 1/t
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Fig. 3. The estimated failure probability for the standard MMAS (continuous line) and the
restarted MMAS (dashed line)
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