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Multiphase Modelling of Thermomechanical
Behaviour of Early-Age Silicate Composites

Jiřı́ Vala
Brno University of Technology, Faculty of Civil Engineering

Czech Republic

1. Introduction

The reliable prediction of thermomechanical behaviour of early-age silicate composites is
a complicated multiphysical and multiscale problem, containing a lot of open questions.
However, silicate mixtures, namely fresh concrete, are the most commonly used materials
in building constructions throughout the world, thus such prediction is of great practical
significance. The most important modelling outputs are the macroscopic effective strain,
stress, temperature, moisture etc. time evolutions, driven by chemical reactions of particular
clinker minerals with water. Every realistic model is then expected to include thermo-, chemo-
and hygromechanical processes and phase changes, involving all available microstructural
information related to the real porous medium.
The deformation of a material sample or a building construction made from silicate
composites has to be analyzed at least as the superposition of

– reversible elastic deformation,

– viscous material flow,

– volume changes, unlike remaing contributions independent of external loads.

The crucial external and internal influences are:

– internal hydration heat, generated by the hydration hydraulic processes,

– ambient temperature variation, connected with ambient humidity variation (natural or
artificial ones),

– external mechanical loads.

The significant physical (and chemical) processes are:

a) thermal deformation,

b) autogenous shrinkage,

c) carbonation,

d) elastic and creep deformation,

e) additional thermal deformation,

f) drying shrinkage and swelling.
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2 Mass Transfer

In the first period of intense hydration a), accompanied by b), is dominant. In the later
period the role of a) decreases, but the effect of c) has to be taken into account. The external
mechanical loads cause d) (creep especially in the earliest age), the external temperature
changes simultaneously force e), modified by f).
The traditional approach to the modelling of such complex physical and technical problems
is the phenomenological one, as discussed in (Bažant, 2001): the effect of changes of density,
porosity, permeability, compressive strength, etc. on material behaviour is lumped together to
some model parameters, which must be identified by long-lasting tests in the whole range of
model applicability. On the contrary, the so-called CCBM (“Computational Cement-Based
Material”) approach, suggested in (Maruyama et al., 2001), develops the original idea of
(Tomosawa, 1997): the slight generalization of its (seemingly simple) form

ǫ̇ = Φ(ǫ,ǫ∗) , ǫ̇∗ = Ψ(ǫ,ǫ∗)

where ǫ is the radius of an unhydrated cement particle, ǫ∗ its total radius including hydrate,
dot symbols refer (everywhere in this chapter) to derivatives with respect to the time t ≥ 0
and Φ, Ψ are (in general rather complicated) material characteristics with hidden ǫ,ǫ∗ (but
not with their time derivatives) again. The analysis of (Maruyama et al., 2001) assumes ideal
spherical particles, hydration products adherent to such particles (whose size distribution is
approximated by a special Rosin-Ramler function), water diffusing through the hydrate layer
and chemically reacting with cement, up to interparticle contact effects; the amount of water is
controlled by the pore structure, modified by hydration reactions of cement constituents and
corresponding heat generation. Particular cement constituents, namely alite (C3S, typically 65
% of the total mass in the Portland cement), belite (C2S, 15 %), aluminate phase (C3A, 7 %),
ferrite phase (C4AF, 8 %), etc., have their own densities and hydration reactions, generating
hydration heat.
For various types of cement we have different hydration degree Γ, introduced as

Γ :=
µh

µh
∞

where µh denotes the (usually increasing) mass of skeleton (and corresponding sink of liquid
water mass) ans µh

∞ the final mass of hydrated (chemically combined) water in a volume unit;
alternatively (cf. (Gawin et al., 2006a), p. 309)

Γ :=
Qh

Qh
∞

in terms of the heat Qh released during hydration and of its final value Qh
∞. However, it

is difficult to guarantee above sketched model assumption in building practice, applying
also (not single-sized) additional aggregate; thus Γ is usually quantified from macroscopic
experiments (as adiabatic calorimetric or isothermal strength evolution tests) not from such
microstructural considerations. Consequently Γ can be evaluated by (Gawin et al., 2006a),
p. 309, from an auxiliary evolution problem of type

Γ̇ = A(Γ,φ, T)

with an a priori known real function A.
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Multiphase Modelling of Thermomechanical Behaviour of Early-Age Silicate Composites 3

During the same hydration process the non-negligible vapour mass source µe, caused by the
liquid water evaporation or desorption, occurs, too. Unfortunately, unlike µh, no reasonable
constitutive relation is available for the direct evaluation of µe.
Clearly, the reliable prediction of material behaviour applicable to real building objects during
hydration needs some multiscale analysis. The mechanistic approach (Pichler et al., 2007)
makes it possible to consider above sketched effects explicitly because they appear directly in
the model equations, distinguishing between 4 length scales, characterized as

I) anhydrous-cement scale (typical length of a representative volume element from 10-8 to
10-6 m), in more details decomposed into 3 subscales, where the qualitative estimate of
activity of four main clinker phases, water and air requires the detailed micromechanical
evaluation of corresponding chemical reactions,

II) cement-paste scale (from 10−6 to 10−4 m),

III) mortar scale (about 10−2 m),

IV) macroscale (about 10−1 m).

The analysis of capillary depression at scale I) (considering membrane forces on solid/liquid,
solid/gas and liquid/gas interfaces), of ettringite formation at scale II), of autogenous
deformation at scales II) and III), referring to the Hill homogenization lemma (see (Dormieux
et al., 2006), p. 105), must be completed by the interpretation of such multiscale results at
scale IV). However, different physical and chemical processes studied at particular scales do
not admit proper and physically transparent mathematical analysis of two- and more-scale
convergence, as discussed in (Cioranescu & Donato, 1999), (Vala, 2006) or (Efendiev et
al., 2009), including its non-periodic (formally complicated) generalization, introduced in
(Nguentseng, 2003-4).
The approach (Gawin et al., 2006a) applies certain mechanistic-type method to obtain the
governing equations only, using the averaging hybrid mixture theory: the developments starts
at the micro-scale and balance equations for particular phases and interfaces are introduced
at this level and then averaged for obtaining macroscopic balance equations. Four phases are
distinguished: solid skeleton, liquid water, vapour and dry air, whose densities are considered
(under the passive air assumption) as constants; the whole hygro-thermo-chemo-mechanical
process is then studied as the time evolution of capillary pressure, gas pressure, temperature
and displacement of points related to the reference (initial) configuration, driven by balance
equations of classical thermodynamics and conditioned by corresponding constitutive laws.
The detailed geometrical analysis (Sanavia et al., 2002) (without phase changes) offers the
possibility to extend such considerations beyond the assumption of small deformations and
involve some elements of fracture mechanics.
The development, laboratory testing and computational simulations of new materials, namely
those for the application of advanced engineering structures, belong to the research priorities
of the Faculty of Civil Engineering of Brno University of Technology. Moreover, these
activities should be intensified thanks to the proposed complex research institution AdMaS
(“Advanced Materials and Structures”) in the near future. The long-time behaviour of
massive structures, especially its bearing value, durability and user properties, is typically
conditioned by the early-age heat, moisture, etc. treatment, modified by foundations,
subgrades, reinforcement and connecting members; thus the aim is to design the whole
building process to minimize the development of significant tensile stresses to avoid the
the danger of cracking, or even to force volume changes and corresponding final stresses
appropriate for the future use of a structure. The deeper understanding of decissive
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4 Mass Transfer

processes in early-age materials that effects volume changes is therefore needed, although
no closed physical and mathematical models are available and all simplified calculations
contain empirical parameters and functions, whose identification, supported by laboratory
measurements or in situ observations, generates separate non-trivial problems, not discussed
in details here. However, we shall demonstrate how the thermomechanical analysis of balance
of mass, (linear and angular) momentum and energy for computational HAM (“heat, air and
moisture”) models in civil engineering is able to be extended to a complex computational
model, including the mass source or solid skeleton related to the hydration process (and
corresponding sink of liquid water mass), as well as the vapour mass source caused by the
liquid water evaporation or desorption, using some micromechanical arguments from the
theory of porous media.

2. Mixture components

To analyze the phase changes in an early-age silicate composite, we shall consider four
material phases:

– solid material, identified by an index s,

– liquid water, identified by an index w,

– water vapour, identified by an index v,

– dry air, identified by an index a.

In addition to partial derivatives of scalar quantities ψ with respect to time, i. e.

ψ̇ := ∂ψ/∂t ,

we shall introduce also the partial derivatives of such quantities with respect to xi, i ∈ {1,2,3},
x = (x1, x2, x3) being a Cartesian coordinate system in the three-dimensional Euclidean space
R3,

ψ,i := ∂ψ/∂xj .

In the case of real vector variables with values in R3 we shall write ψ briefly instead of
(ψ1,ψ2,ψ3). Even in the case of matrix variables in the with values in R3×3, the space of real
matrices of the third order, we shall write ψ only instead of ψij, i, j ∈ {1,2,3}. Consequently,

due to the preceding notation, unlike the matrix elements ψij from ψ ∈R3×3 with i, j ∈ {1,2,3},

we have e. g. for ψ ∈ R3

ψi,j := ∂ψi/∂xj .

We shall assume that the scale bridging between particular scales (if relevant scale material
data are available) can be done by means of the averaging of model variables. The basic
(averaged) variables in our model, related to a representative volume element, are:

– 4 intrinsic phase densities R = (ρs,ρw,ρv,ρa),

– 12 components of phase velocities V = (vs
i ,vw

i ,vv
i ,va

i ) with i ∈ {1,2,3},

– 3 fluid pressures P = (pw, pv, pa),

– 1 (absolute) temperature ϑ.
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Multiphase Modelling of Thermomechanical Behaviour of Early-Age Silicate Composites 5

Intrinsic phase densities evidently do not reflect the amount of particular phases in a volume
unit; thus it is useful to define (real) phase densities

ρε := ηερε

formally for any phase index ε ∈ {s,w,v, a} where

ηs = (1 − n) ,

ηw = ns ,

ηv = n(1 − s) ,

ηa = n(1 − s)(1 − φ) .

Unfortunately it is not easy to evaluate the porosity n, the saturation degree s and the relative
humidity (the volume fraction occupied by water vapour in the total gaseous phase) φ.
Nevertheless, similarly to ρε, ε ∈ {s,v,w, a}, being motivated by the Dalton law by (Bermúdez
de Castro, 2005), p. 111, we can also introduce pressures

pε := ηε pε .

We can evaluate also the “macroscopic” mixture density

ρ := ρs + ρw + ρv + ρa .

Let us also remark that, from he point of view of solid phase, fluid pressures P are
accompanied by a (partial) Cauchy stress tensor compound from components τij with i, j ∈
{1,2,3}, whose (indirect) relation to V will be discussed later.
The porosity can be evaluated from the finite strain analysis by (Sanavia et al., 2002), p. 139.
The multiphase medium at the macroscopic level can be described as the superposition of all
phases ε, whose material point with coordinates xε0

i in the reference configuration Ω in R3

occupies a point with coordinates xε
i (t); zero indices are related to the reference configuration,

here in the initial time t = 0. In the Lagrangian description of the motion the position of each
material point can be expressed as

xε
i (t) = xε0

i + uε
i (xε0

i , t)

where uε
i (xε0

i , t) denotes the displacement at chosen time and zero indices are related to a
reference configuration, here in time t = 0. Thus

Fε
ij(xε0, t) :=

∂xε
i (xε0)

∂xε0
j

= δij +
∂uε

i (xε0, t)

∂xε0
j

can be taken as a deformation characteristic, δ being a Kronecker symbol, consequently

n = 1 − (1 − n0) (det Fs)−1

where n0(xs0) denotes the porosity in the reference configuration. In the linearized geometry
this access in not available: e. g. (Gawin et al., 2006a), p. 310 presents an empirical
(nearly linear) function n(Γ), justified by the correlation analysis, exploiting the experimental
database of (De Schutter, 2002) where hardening cement pastes with 5 different values of
water/cement ratio are studied.
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6 Mass Transfer

The saturation degree s comes from the microporomechanical considerations (cf. (Dormieux
et al., 2006), p. 247); their usual result (verified by laboratory measurements) is the so-called
sorption isotherm, a real function s(pc) where pc is the capillary pressure, determined (in
general) as

pc = Ξ(pw, pv, pa)

for certain real function Ξ. For temperatures normally encountered in building structures
and for capillary saturation range (Gawin et al., 2006a), pp. 305 and 311, recommends the
simplified relation

pc = pv + pa − pw ,

justified by an exploitation of the entropy inequality by means of the Coleman-Noll method;
for more details and substantial generalizations see (Gray, 2000), p. 482.
To formulate the basic balance laws of classical thermodynamics, consequently the announced
system of partial differential or integral equations of evolution, let us introduce the simple
notation of (Vala, 2006), p. 33, applied to particular phases identified by indices ε ∈ {s,w,v, a}.
If ωε is a source corresponding to a scalar quantity ψε then the conservation of a scalar quantity
ψε reads

ψ̇ε + (ψεvε
i ),i = ωε ; (1)

this will be exploited in the following three sections.

3. Mass balance

For an arbitrary ε ∈ {s,w,v, a} let us insert a scalar quantity

ψε = ρε

and a corresponding source term ωε into (1) where

ωs = −µ̇h ,

ωw = µ̇h − µ̇e ,

ωv = µ̇e ,

ωa = 0.

To simplify our notations, we shall apply the Einstein summation convention for indices
from the set {1,2,3} without additional explanations, e. g. in the following equation the sum
over j ∈ {1,2,3} is omitted formally. The resulting system of partial differential equations of
evolution is

ρ̇s + (ρsvs
j ),j = −µ̇h ,

ρ̇w + (ρwvw
j ),j = µ̇h − µ̇e , (2)

ρ̇v + (ρvvv
j ),j = µ̇e ,

ρ̇a + (ρava
j ),j = 0.

Let us notice (here and similarly for other balance laws, too, without explicit comments) that
the system (2) contains the standard left-hand-side additive terms, well-known e. g. from
(Bermúdez de Castro, 2005), p. 4 (for one phase), and from (Dormieux et al., 2006), p. 9 (for
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Multiphase Modelling of Thermomechanical Behaviour of Early-Age Silicate Composites 7

more phases), supplied by the additional right-hand-side additive terms, containing variables
µh, determined from the hydration degree Γ, and µe, a priori unknown.
For the effective numerical calculations, finite element techniques (cf. (Efendiev et al., 2009),
p. 47) or finite volume ones (cf. (Efendiev et al., 2009), p. 52) should be applied. Therefore we
need to rewrite (2) (and analogous equations in the following sections) into the integral form,
able to include boundary conditions in a simple way. Let ∂Ω be the boundary of a domain Ω

in R3. Let us introduce the additional notation

(ς,ψ) :=
∫

Ω

ς(x)ψ(x)dx ,

〈ς,ψ〉 :=
∫

∂Ω

ς(x)ψ(x)ds(x)

for any functions ς and ψ (integrable in the needed sense) where dx refers to the standard
Lebesgue measure and ds(x) to the surface Hausdorff measure. The integration by parts
(based on the Green-Ostrogradskii theorem) then gives

(ς, ρ̇s) + 〈ς,ρsvs
j νj〉 − (ς,j,ρsvs

j ) = −(ς, µ̇h) ,

(ς, ρ̇w) + 〈ς,ρwvw
j νj〉 − (ς,j,ρwvw

j ) = (ς, µ̇h − µ̇e) , (3)

(ς, ρ̇v) + 〈ς,ρvvv
j νj〉 − (ς,j,ρvvv

j ) = (ς, µ̇e) ,

(ς, ρ̇a) + 〈ς,ρava
j νj〉 − (ς,j,ρava

j ) = 0

for any test function ς (more precisely: sufficiently smooth, otherwise only in sense of
distributions, from an appropriate function space which may be problem-specific);

ν(x) = (ν1(x),ν2(x),ν3(x))

means the local unit outward normal vector on (sufficiently smooth) ∂Ω.

4. Momentum balance

The momentum balance includes the linear balance and the angular balance. Since we
consider a non-polar continuum, the second one forces only the symmetry of any Cauchy
stress tensor τ. It remains to apply the first one. For an arbitrary ε ∈ {s,w,v, a} and
(step-by-step) for particular i ∈ {1,2,3} let us insert a scalar quantity

ψε = ρεvε
i

and a corresponding source term

ωε = σε
ij,j + ρε(gi − aε

i + θε
i )

into (1) where
σs

ij = τij

for the solid phase and
σε

ij = −δij pε

for all other phases with ε ∈ {w,v, a}, the acceleration g = (g1, g2, g3) generates ρεg, the volume
density of a gravitational force, the acceleration aε = (aε

1, aε
2, aε

3), corresponding to the velocity
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8 Mass Transfer

vε = (vε
1,vε

2,vε
3), generates the volume density of an inertia force, and the acceleration θε

i =
(θε

1,θε
2,θε

3) generates the volume density due to mechanical interaction with other phases. The
total Cauchy stress, introduced (unlike the partial Cauchy stress τ) as

σ := σs + σw + σv + σa ,

then has the components
σij = τij − δij(pw + pv + pa) .

The Clapeyron law (see (Gawin et al., 2006a), p. 305) enables us to evaluate both gas pressures
pv and pa (consequently pv and pa, too) as certain functions pv(ρv,ϑv) and pa(ρa,ϑa).
Unfortunately, for the remaining pressure pw (or pw) we do not know such constitutive
relation.
In the linear momentum balance equations we need to calculate all velocities vε and
accelerations aε from corresponding displacements uε, ε ∈ {s,w,v, a}. By the chain rule we
have

vε
i (xε0, t) = u̇ε

i (xε0, t) + uε
i,j(xε0, t)vε

j (xε0, t) ,

aε
i (xε0, t) = v̇ε

i (xε0, t) + vε
i,j(xε0, t)vε

j (xε0, t) .

The terms uε
i,jv

ε
j and vε

i,jv
ε
j , can be understood in the sense of scalar products graduε · vε,

gradvε · vε by (Sanavia, 2001), p. 139 (though the construction of such general grad-operator
is not quite trivial). More precisely, the geometry of structured continua is described
using fiber bundles and Riemanian manifold in (Yavari & Marsden, 2009), p. 8. Another
approach, explained in (Bermúdez de Castro, 2005), p. 195, results in the ALE (“Arbitrary
Lagrangian-Eulerian”) formulations by (Bermúdez de Castro, 2005), p. 195. Nevertheless,
both such generalizations lead to complicated, reader-unfriendly expressions.
The classical constitutive relation for the solid phase between τ, us, vs, etc., considers
a linearized sufficiently small strain tensor and its additive decomposition into several
parts, typically to the linear elastic and the power-law viscoelastic (creep) ones, containing
facultative corrections due to microcracking, as in (Gawin et al., 2006a), p. 343, and (in more
details) in (Gawin et al., 2006b), p. 519, with help of special mechanical and chemical damage
parameters. The finite deformation theory needs some multiplicative decomposition of Fs in
the form

Fs = Fs1Fs2 . . . FsM

into a finite number M > 1 of matrix components; the constitutive relation is then
characterized by a function

τ(Fs1, . . . , FsM, Ḟs1, . . . , ḞsM, . . .) .

Especially in the case M = 2 (Sanavia et al., 2002), p. 143 combines the first standard reversible
elastic component with the second irreversible one from the Drucker-Prager plasticity model
with linear isotropic hardening, Neff (2008) combines elasticity with nonlocal linear kinematic
hardening due to dislocation interaction, etc. Recently Majorana (2010) suggests even M = 9,
taking into account i) elastic deformation, ii) plastic deformation, iii) damage, iv) cracking, v)
creep, vi) shrinkage, vii) lits, viii) thermal strain, ix) autogenous strain, covering most items
a)-e) from Introduction. However, for all simulation of real processes the theoretical extent of
such decomposition must be supported by the competence in the laboratory identification
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Multiphase Modelling of Thermomechanical Behaviour of Early-Age Silicate Composites 9

of needed material characteristics and in the estimate of their uncertainty, imported into
constitutive relations.
The evaluation of θs

i , θw
i , θv

i and θa
i for all i ∈ {1,2,3} comes from the Darcy law, whose general

(nonlinear) form, following (Dormieux et al., 2006), p. 50, based on the knowledge of certain
material functions F1, F2 and F3, valid for each ε ∈ {w,v, a}, is

vε
i − vs

i = Fε
i (θ

ε
1,θε

2,θε
3, pε,ηε) .

The special (linear) form of these relations, suggested in (Sanavia, 2001), p. 9 (this part of
(Sanavia, 2001) contains much more technical details than its later revision (Sanavia et al.,
2002)), is

Kε
ij(ρεθε

j − pε
,j) + κεηε(vε

i − vs
i ) = 0

where, for a fixed ε ∈ {w,v, a}, Kε
ij are components of a symmetric permeability matrix and

κε is a (positive) dynamic viscosity. Such constitutive relations have to be supplied by the
constraint by (Sanavia, 2001), p. 8,

θs
i + θw

i + θv
i + θa

i = 0.

The resulting system of partial differential equations of evolution, unified (for brevity) for all
ε ∈ {w,v, a} and i ∈ {1,2,3} is

(ρεvε
i )̇ + (ρεvε

i vε
j ),j = −pε

,i + ρε(gi − aε
i + θε

i ) . (4)

For the solid phase we receive similarly for all i ∈ {1,2,3}

(ρsvs
i )̇ + (ρsvs

i vs
j ),j = τij,j + ρs(gi − as

i + θw
i + θv

i + θa
i ) . (5)

We can see that for negligible values of all components of vs and θs (5) this result degenerates
to classical Cauchy equilibrium conditions, well-know in building statics (with zero as) and
dynamics (with nonzero as),

ρsas
i + τij,j = −ρsgi .

Let us repeat the approach with a test function ς from the previous section and apply it to (4)
and (5). For any i ∈ {1,2,3} the integration by parts with ε ∈ {w,v, a} gives

(ς, (ρεvε
i )̇) + 〈ς,ρεvε

i vε
j νj〉 − (ς,j,ρεvε

i vε
j ) (6)

= −〈ς, pενi〉+ (ς,i, pε) + (ς,ρε(gi − aε
i + θε

i )) ,

whereas for the solid phase the analogous result is

(ς, (ρsvs
i )̇) + 〈ς,ρsvs

i vs
j νj〉 − (ς,j,ρsvs

i vs
j ) (7)

= 〈ς,τijνj〉 − (ς,j,τij) + (ς,ρs(gi − as
i − θw

i − θv
i − θa

i ))

for any test function ς.
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10 Mass Transfer

5. Energy balance

Let us introduce four (in general temperature-variable) heat capacities cε(ϑ) as prescribed
material characteristics and four heat fluxes qε = (qε

1,qε
2,qε

3) as additional variables. Similarly
to the mass balance, for an arbitrary ε ∈ {s,w,v, a}, let us insert a scalar quantity

ψε =
1

2
ρε(v

ε
i )

2 + ρεcεϑ

and a corresponding source term

ωε = (σε
ij,j + qε

i ),i + (ρε(gi − aε
i + θε

i )),i + ̟ε

into (1) where the exchange of energy between phases is accounted using the additive terms

̟s = −µ̇hξh ,

̟w = µ̇hξh − µ̇eξe ,

̟v = µ̇eξe ,

̟a = 0

with specific enthalpies ξh and ξe (introduced in (Bermúdez de Castro, 2005), p. 110): ξh that
of hydration (related to the mass unit of chemically bound water) and ξe that of evaporation,
following (Gawin et al., 2006a), p. 303. The resulting system of partial differential equations of
evolution is

(ρsvs
i vs

i + 2ρscsϑ)̇ + ((ρsvs
i vs

i + 2ρscsϑ)vs
j ),j

= 2τij,ij − 2qs
i,i + 2(ρs(gi − as

i − θw
i − θv

i − θa
i )),i − 2µ̇hξh ,

(ρwvw
i vw

i + 2ρwcwϑ)̇ + ((ρwvw
i vw

i + 2ρwcwϑ)vw
j ),j

= −2pw
i,i − 2qw

i,i + 2(ρw(gi − aw
i + θw

i )),i + 2µ̇hξh − 2µ̇eξe , (8)

(ρvvv
i vv

i + 2ρvcvϑ)̇ + ((ρvvv
i vv

i + 2ρscwϑ)vv
j ),j

= −2pv
i,i − 2qv

i,i + 2(ρv(gi − av
i + θv

i )),i + 2µ̇eξe ,

(ρava
i va

i + 2ρscsϑ)̇ + ((ρava
i va

i + 2ρscsϑ)va
j ),j

= −2pa
i,i − 2qa

i,i + 2(ρv(gi − aa
i + θa

i )),i .

All heat fluxes can be computed using the Fourier law by (Bermúdez de Castro, 2005), p. 42:
in general we have

qε
i + λε

ijϑ,j = 0

for every ε ∈ {s,w,v, a} and i ∈ {1,2,3} and prescribed material characteristics

λε
ij(ϑ,ϑ,1,ϑ,2,ϑ,3) .

Supposing that all these characteristics are independent of derivatives of ϑ, in the linearized
case the elements λij generate certain symmetrical matrix of real factors, allowed to be
functions of ϑ. Under the assumption of isotropy material we obtain moreover λij = λ∗δij

for some real factor λε
∗(ϑ); this is just the crucial simplification of (Gawin et al., 2006a), p. 313,

qε
i = −λε

∗ϑ,i .
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Repeating the approach with some test function ς again and applying it to (8), from the
integration by parts we obtain

(ς, (ρsvs
i vs

i + 2ρscsϑ)̇)

+ 〈ς, (ρsvs
i vs

i + 2ρscsϑ)vs
j νj〉 − (ς,j, (ρsvs

i vs
i + 2ρscsϑ)vs

j )

= 2〈ς, (τij,j − 2qs
i )νi〉 − 2(ς,i,τij,j − 2qs

i )

+ 2〈ς,ρs(gi − as
i − θw

i − θv
i − θa

i )νi〉 − 2(ς,i,ρs(gi − as
i − θw

i − θv
i − θa

i ))− 2(ς, µ̇hξh) ,

(ς, (ρwvw
i vw

i + 2ρwcwϑ)̇)

+ 〈ς, (ρwvw
i viws + 2ρwcwϑ)vw

j nuj〉 − (ς,j, (ρwvw
i vw

i + 2ρwcwϑ)vw
j )

= −2〈ς, (pw
i + qw

i )νi〉+ 2(ς,i, pw
i + qw

i )

+ 2〈ς, (ρw(gi − aw
i + θw

i ))νi〉 − 2(ς,i,ρw(gi − aw
i + θw

i )) + 2(ς, µ̇hξh − µ̇eξe) , (9)

(ς, (ρvvv
i vv

i + 2ρvcvϑ)̇)

+ 〈ς, (ρvvv
i vv

i + 2ρvcvϑ)vv
j νj〉 − (ς,j,ρvvv

i vv
i + 2ρvcvϑ)vv

j )

= −2〈ς, (pv
i + qv

i )νi〉+ 2(ς,i, pv
i + qv

i )

+ 2〈ς,ρv(gi − av
i + θv

i )νi〉 − 2(ς,i,ρv(gi − av
i + θv

i )) + 2(ς, µ̇eξe) ,

(ς, (ρava
i va

i + 2ρacaϑ)̇)

+ 〈ς, (ρava
i va

i + 2ρacaϑ)va
j )νj〉 − (ς,j,ρava

i va
i + 2ρacaϑ)va

j )

= −2〈ς, (pa
i + qa

i )νi〉+ 2(ς,i, pa
i + qa

i )

+ 2〈ς,ρa(gi − aa
i + θa

i )νi〉 − 2(ς,i,ρa(gi − aa
i + θa

i )) .

for any test function ς.

6. Initial and boundary conditions

Since the class of admissible problems (moreover, not defined properly yet) is rather large, we
shall not try to create a list of all physically reasonable types boundary conditions. However,
the following considerations demonstrate the methods of implementation of boundary
conditions into above derived systems of evolution.
Let us remind the boundary integrals occurring in the integral forms of evolution equations.
Those from (3) contain functions

ρsvs
j νj , ρwvw

j νj , ρvvv
j νj , ρava

j νj ,

those from (6) and (7), in addition to functions

ρsvs
i vs

j νj , ρwvw
i vw

j νj , ρvvv
i vv

j νj , ρava
i va

j νj

also functions
τijνj , pwνi , pvνi , paνi ,

finally those from (9) functions in addition to functions

ρsvs
i vs

i vs
j νj , ρsvw

i vw
i vw

j νj , ρsvv
i vv

i vv
j νj , ρsva

i va
i va

j νj
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still other functions

ρscsϑvs
j νj , ρwcwϑvw

j νj , ρvcvϑvv
j νj , ρacaϑva

j νj ,

τij,jνi , pw
i νi , pv

i νi , pa
i νi ,

qs
i νi , qw

i νi , qv
i νi , qa

i νi ,

ρsgiνi , ρwgiνi , ρvgiνi , ρagiνi ,

ρsas
i νi , ρwaw

i νi , ρvav
i νi , ρaaa

i νi ,

(ρw − ρs)θ
w
i νi , (ρv − ρs)θ

v
i νi , (ρa − ρs)θ

a
i νi .

Solutions of the resulting system of equations (3), (6), (7) and (9), supplied by needed
constitutive equations, should be included in certain spaces of abstract functions, mapping
each time t ≥ 0 to some Sobolev, Lebesgue, etc. function space S . Initial values of all
independent variables (whose appropriate choice will be discussed later) are supposed to be
prescribed in time t = 0. Boundary conditions on ∂Ω or its part for the resulting system of
equations (3), (6), (7) and (9), supplied by needed constitutive equations, can be then divided
into three groups:

a) conditions built in the definition of spaces V, usually prescribed values of abstract
functions from V on ∂Ω (in sense of traces) at any admissible time,

b) conditions exploiting the knowledge of above listed functions or their linear combinations,

c) other conditions.

All subsequent examples work with any x from ∂Ω or its certain part and with arbitrary time
t ≥ 0. The typical example of a) is

ϑ = ϑ∗

for the a priori known temperature ϑ∗(x, t). Another (technically more complicated, but
homogeneous) example of a) can be

ρviνi = 0

with the carefully defined “effective” velocity

vi := (ρsvs
i + ρwvw

i νi + ρava
i νi)/ρ .

The classical example of b), known even from elementary statics, is

σijνj = fi

with i ∈ {1,2,3} for the prescribed surface load

f (x, t) = ( f1(x, t), f2(x, t), f3(x, t)) .

Indirectly this is a boundary condition for u (or v, etc.), due to stress-strain constitutive
relations. Its analogy for heat transfer

qiνi = q∗

works with the total heat flux vector

q := ρsqs + ρwqw + ρvqv + ρaqa

for the prescribed heat flux q∗(x, t).
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One could expect a similar result for the total diffusive flux vector

r := ρw(v
w
i − vs

i ) + ρv(v
v
i − vs

i ) + ρa(v
a
i − vs

i ) ,

as applied in (Gawin et al., 2006a), p. 316, but this is limited by the facultative nonlinearity of
the Darcy law. If the form of Fε

i with i ∈ {1,2,3} and ε ∈ {w,v, a}. does not admit the explicit
evaluation of all corresponding vectors θε as linear combinations of vε − vs, we must refer
to c). In general, to satisfy such boundary conditions properly, additional techniques, as the
application of Lagrange multipliers, Kuhn-Tucker conditions, etc., are necessary.

7. Exact solutions and iterative algorithms

The mathematical solvability of engineering problems, whose formulation comes from
physically reasonable and transparent considerations, depends critically on the choice:

a) of the set of primary variables,

b) of the choice spaces S of functions, abstract functions, etc.,

c) of the proper formulation of boundary and initial conditions.

Nevertheless, our problem of early-age time-dependent behaviour of silicate composites
is rather complicated, thus most authors bring new versions of a), applying different
mathematical, physical and technical simplifications. From the most simple algebraic
relations, avoiding differential and integral calculus completely, referring to empirical
relations and selected statistical techniques, as presented in (Moon et al., 2005) or in (Bentz,
2008), through one evolution equation, usually of heat conduction, supplied by a lot of
empirical dependencies, justified by extensive experimental works, it is possible to trace
the development to such advanced physical and mathematical models, as to the system of
10 differential equations of evolution with 10 primary variables and numerous constitutive
relations in (Gawin et al., 2006b), p. 519.
To reduce the number of empirical relations, typically motivated by some micromechanical
considerations, but not fully compatible with quantitative lower-scale computations, we are
ready to work with 20 primary variables. In Mixture components we have introduced 20
variables R, V , P and ϑ. Only 2 of these variables, pv and pa, can be evaluated outside the
system of (differential or integral) equations of evolution. On the other hand, regardless of
the fact that the proper evaluation of Γ forces solution of an additional ordinary differential
equation, no constitutive relations are available just to µe and ϕ. This motivates us to reorder
our set of variables slightly, introducing

T = (θ, pw,µe, ϕ) .

Therefore we can take R, V and T as primary variables; finally we have 20 primary
variables and 20 equations in evolution: (2), (4) with (5) and (8), or (3), (6) with (7) and
(9), alternatively. We have noticed that the second version is much more frequently used
for numerical computations.
Because of the complexity of the problem, the mathematical verification of existence,
uniquiness, regularity etc. of solutions of initial and boundary problems, corresponding in the
case of weak solutions to (3), (6) with (7) and (9), or in the case of strong (classical) solutions to
(2), (4) with (5) and (8), due to admissible classes of initial and boundary conditions, contains
a lot of open questions. The crucial problem seems to be just in b), i. e. in the definition of
some spaces of (generalized) functions with the good properties, expected for the solutions.

61Multiphase Modelling of Thermomechanical Behaviour of Early-Age Silicate Composites

www.intechopen.com
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Even a very special case with a liquid phase only, whose some important additive terms are
neglected, derived directly from (2), (4) and (8), namely

ρ̇w + (ρwvw
j ),j = 0,

(ρwvw
1 )̇ + (ρwvw

1 vw
j ),j = −pw

,1 + ρw(g1 − aw
1 ) ,

(ρwvw
2 )̇ + (ρwvw

2 vw
j ),j = −pw

,2 + ρw(g2 − aw
2 ) ,

(ρwvw
3 )̇ + (ρwvw

3 vw
j ),j = −pw

,3 + ρw(g3 − aw
3 ) ,

(ρwvw
i vw

i )̇ + ((ρwvw
i vw

i )v
w
j ),j = −2pw

i,i + 2(ρw(gi − aw
i )),i ,

generates (with standard constitutive relations) the so-called Navier-Stokes existence and
smoothness problem, one of the Millenium Prize Problems, formulated by the Clay Mathematics
Institute; for its complete definition see www.claymath.org/millennium/Navier-Stokes Equations/
Official Problem Description.pdf.
Although the formal solvability of Navier-Stokes equations is not clear, various methods have
been developed successfully to analyze their approximate solutions. This can motivated
us to the design of an iterative algorithm for numerical simulation of our much more
complex physical (and chemical) process, clearly with expected difficulties in any convergence
analysis. The precise form of such iterative algorithm, constructing, step-by-step in time, a
finite-dimensional approximation of solution of (3), (6) with (7) and (9), depends substantially
on c), discussed briefly in the previous section. However, the main idea, coming from some
finite element or finite volume technique and from the Rothe method of discretization in time,
at least at a finite time interval, can be:

1. set R, V and T by the initial conditions at t = 0,

2. add a time step length to t, preserving R, V and T ,

3. solve R from some linearized version of (3), evaluate the correction εR of R,

4. solve V from the linearized version of (6 and 7), evaluate the correction εV of V ,

5. solve T from the linearized version of (9), evaluate the correction εT of T ,

6. if εR, εV and εT are sufficiently small, return to 3,

7. if the final time is reached, stop the computation, otherwise return to 2.

Evidently, preconditioning, mesh adaptivity, stabilization techniques and other technical
manipulations are useful to be implemented into such algorithm to force its robustness and
effectivity.

8. Computational simulations

Most non-trivial physical and technical studies of the problems of early-age behaviour of
silicate composites, or (in particular) of concrete, of mortar pastes, etc., include or refer
to some numerical experiment, modelling or simulation, applying finite element or finite
(control) volume (rarely finite difference or meshless) techniques together with methods for
time discretization, as that of lines, of characteristics or of discretization in time, including
some microstructural data. However, no specialized commercial or research software code
concentrated to such problems is available; one could expect that the complete development
of such a code (in such languages for scientific computing as Fortran or C++) would be
expensive and time-consuming and would require a team of specialists in many fields of
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knowledge, including those outside information technologies. This results in the following
rough classification of typically applied software packages:

– commercial software for HAM analysis as WUFI (Fraunhofer Institut Holzkirchen) or
DELPHIN (Technische Universität Dresden),

– large commercial software systems as ANSYS, ABAQUS, etc. (not very flexible, offering
only weak support for specific properties of silicate composites)

– specialized software for computations in civil engineering, namely ATHENA (Červenka
Consulting Prague) for calculations of strain and stress distributions in concrete structures
at various stages of their existence, including the concrete/reinforcement cooperation, the
prediction of fracture and the behaviour under extreme loads, or CESAR-LCPC (Ram
Caddsys Chennai, India) for mechanical, structural and geotechnical calculations involving
even certain analysis of phenomena associated with young hardening concrete,

– user-friendly environment MATLAB/COMSOL for the support of development of original
software.

(a) (b)

Fig. 1. Distribution of: (a) ϑ(x1, x2) for fixed x3 at t = 24s, (b) ϑ(x1, x2) for fixed x3 at t = 96s.

The attempts to predict long-time properties of concrete and other silicate mixtures from the
proper analysis of physical and chemical processes during their hardening at the Faculty of
Civil Engineering of Brno University of Technology have its own history, involving all above
sketched approaches. The original software is in progress, being still far from covering all
above discussed micro- and macrostructural aspects. For illustration see (Vala et al., 2009) with
numerical simulation of the time-variable thermomechanical behaviour of a massive concrete
bridge structure in the Czech Republic (2.5 m thick slab has been formed in 5 layers in 5 time
periods) during first 45 hours of its existence; the thermochemical evaluation of hydration
heats corresponds to 9 dominant minerals included in the Portland cement.
Another practical example (not published yet) refers to a massive concrete foundation,
prepared for the vibrational compactor. Fig. 1-3 document the temperature development
in time, using the isotherms for t ∈ {24,96,144,312,408}s (where their redistribution seems to
be most interesting) in one half of a typical cut through such structure, built in successive time
steps.
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(a) (b)

Fig. 2. Distribution of: (a) ϑ(x1, x2) for fixed x3 at t = 144s, (b) ϑ(x1, x2) for fixed x3 at
t = 312s.

9. Conclusion

We have derived a rather general (but physically transparent) model of thermomechanical
behaviour of early-age silicate composites, including four phases, their interactions and phase
changes. The related software experiments, motivated from building practice, exploit, up to
now, only a minor part of this model.
We have mentioned some mathematical and numerical difficulties, reflected in the intricacy
of software codes. From the practical point of view, even more unpleasant complication are
connected with the (often unstable and ill-conditioned) inverse problems of identification
of material characteristics, typically as nonlinear functions of several variables, in their
reliability and correlation with (often only qualitative) microstructural information – cf. (Aly
& Sanjayan, 2009) and Chap. 15 of (Kosmatka et al., 2002), called Volume Changes of Concrete.
Simultaneously still other generalization, not built in our theory explicitly, are needed in
practically motivated technical calculation, as thermal radiation of buildings, discussed in
(Šťastnı́k, 2007), or nonlocal modelling of micro- and macrocracking and damage by (Kozák
& Vlček, 2005). Continued research seems to require more expensive both laboratory
equipments and computer hardware and software, thus its extent depends on the grant
support of some complex research project, as that mentioned in Introduction, in the near future.
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Fig. 3. Distribution of ϑ(x1, x2) for fixed x3 at t = 408s
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