
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IntechOpen

https://core.ac.uk/display/322392869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


0

Predicting Chaos with Lyapunov Exponents:
Zero Plays no Role in Forecasting Chaotic Systems

Dominique Guégan1 and Justin Leroux2

1Université Paris1 Panthéon-Sorbonne, 106-112 boulevard de l’Hôpital, 75013 Paris
2Institute for Applied Economics, HEC Montréal, CIRANO and CIRPÉE, 3000 chemin de

la Côte-Ste-Catherine, Montréal, QC H3T 2A7
1France

2Canada

1. Introduction

When taking a deterministic approach to predicting the future of a system, the main premise
is that future states can be fully inferred from the current state. Hence, deterministic systems
should in principle be easy to predict. Yet, some systems can be difficult to forecast accurately:
such chaotic systems are extremely sensitive to initial conditions, so that a slight deviation
from a trajectory in the state space can lead to dramatic changes in future behavior.
We propose a novel methodology for forecasting deterministic systems using information on
the local chaoticity of the system via the so-called local Lyapunov exponent (LLE). To the
best of our knowledge, while several works exist on the forecasting of chaotic systems (see,
e.g., Murray, 1993; and Doerner et al, 1991) as well as on LLEs (e.g., Abarbanel, 1992; Wolff,
1992; Eckhardt & Yao, Bailey, 1997), none exploit the information contained in the LLE to
forecasting. The general intuition behind our methodology can be viewed as a complement
to existing forecasting methods, and can be extended to chaotic time series.
In this chapter, we start by illustrating the fact that chaoticity generally is not uniform on
the orbit of a chaotic system, and that it may have considerable consequences in terms of
the prediction accuracy of existing methods. For illustrative purposes, we describe how
our methodology can be used to improve upon the well-known nearest-neighbor predictor
on three deterministic systems: the Rössler, Lorenz and Chua attractors. We analyse the
sensitivity of our methodology to changes in the prediction horizon and in the number of
neighbors considered, and compare it to that of the nearest-neighbor predictor.
The nearest-neighbor predictor has proved to be a simple yet useful tool for forecasting chaotic
systems (see Farmer & Sidorowich, 1987). In the case of a one-neighbor predictor, it takes the
observation in the past which most resembles today’s state and returns that observation’s
successor as a predictor of tomorrow’s state. The rationale behind the nearest-neighbor
predictor is quite simple: given that the system is assumed to be deterministic and ergodic,
one obtains a sensible prediction of the variable’s future by looking back at its evolution from
a similar, past situation. For predictions more than one step ahead, the procedure is iterated
by successively merging the predicted values with the observed data.
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The nearest-neighbor predictor performs reasonably well in the short run (Ziehmann et al,
2000; Guégan, 2003). Nevertheless, by construction it can never produce an exact prediction
because the nearest neighbor on which predictions are based can never exactly coincide with
today’s state—or else the underlying process, being deterministic, would also be periodic
and trivially predicted. The same argument applies to other non-parametric predictors, like
kernel methods, radial functions, etc. (see, e.g., Shintani & Linton, 2004; Guégan & Mercier,
1998). Hence, we argue that these predictors can be improved upon by correcting this inherent
shortcoming.
Our methodology aims at correcting the above shortcoming by incorporating information
carried by the system’s LLE into the prediction. The methodology yields two possible
candidates, potentially leading to significant improvements over the nearest neighbor
predictor, provided one manages to solve the selection problem, which is an issue we address
here. We develop a systematic method for solving the candidate selection problem and show,
on three known chaotic systems, that it yields statisfactory results (close to a 100% success rate
in selecting the "right" candidate).
The rest of the paper is organized as follows. In Section 2, we present our methodology on
the use of LLEs in forecasting and introduce the candidate selection problem. In Section 3,
we solve the selection problem and show using simulated chaotic systems that the size of the
LLEs plays no role in the optimality of the selection procedure. However, the size of the LLEs
does matter for the success rate of our selection algorithm and has an impact on the size of
errors. These findings, as well as the sensitivity analysis of our methodology to the prediciton
horizon and the number of neighbors, are presented in Section 4. Section 5 concludes.

2. Chaoticity depends on where you are

Consider a one-dimensional series of T observations from a chaotic system, (x1, ...xT), whose
future values we wish to forecast. Here, we consider that a chaotic system is characterized
by the existence of an attractor in a d-dimensional phase space (Eckmann & Ruelle, 1985),
where d > 1 is the embedding dimension.1 A possible embedding method involves building
a d-dimensional orbit, (Xt), with Xt = (xt, xt−τ , ..., xt−(d−1)τ).2 For the sake of exposition, we
shall assume τ = 1 in the remainder of the paper.
By definition, the local Lyapunov exponent (LLE) of a dynamical system characterizes the rate
of separation of points infinitesimally close on an orbit. Formally, two neighboring points in
phase space with initial separation δX0 are separated, t periods later, by the distance:

δX = δX0e
λ0t,

where λ0 is the (largest) LLE of the system in the vicinity of the initial points. Typically, this
local rate of divergence (or convergence, if λ0 < 0) depends on the orientation of the initial
vector δX0. Thus, strictly speaking, a whole spectrum of local Lyapunov exponents exists, one
per dimension of the state space. A dynamic system is considered to be (locally) chaotic if
λ0 > 0, and (locally) stable if λ0 < 0. (see, e.g., Bailey, 1997)
We develop a methodology which exploits the local information carried by the LLE to improve
upon existing methods of reconstruction and prediction. Our methodology utilizes the

1 The choice of the embedding dimension has been the object of much work (see Takens, 1996, for a
survey) and is beyond the scope of this work.

2 Throughout the paper, capital letters will be used to denote vectors (e.g., X) while small caps letters
denote real values (e.g., x).
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(estimated) value of the LLE to measure the intrinsic prediction error of existing predictors
and corrects these predictors accordingly. Note that this methodology applies regardless of
the sign of λi; i.e., regardless of whether the system is locally chaotic or locally stable. The
only drawback of our approach is that it generates two candidate predictions, denoted x̂−T
and x̂+

T , one being an excellent predictor (which improves upon existing methods) and the
other being rather poor. For instance, when applied to the nearest-neighbor predictor, the
candidates are the two solutions to the equation:

(z− xi+1)
2 + (xT − xi)

2 + ... + (xT−d+2 − xi−d+2)
2 − |XT − Xi|

2e2λ̂i = 0, (1)

where Xi is the phase-space nearest neighbor of the last observation, XT. λi is estimated by λ̂i
using the method developed in Wolff (1992).34

Hence, accurate prediction boils down to being able to select the better of the two candidate
predictors. Our goal here is to improve on previous work in Guégan & Leroux (2009a,
2009b) by developing a systematic selection method to accurately select the best of the two
candidates, x̂−T and x̂+

T . To do so, we further exploit the information conveyed by the LLE.
Indeed, the LLE being a measure of local chaoticity of a system (Abarbanel, 1992; Wolff, 1992),
it may also yield important clues regarding the regularity of the trajectory.
In fact, even “globally chaotic” systems are typically made up of both “chaotic regions", where
the LLE is positive, and more stable regions where it is negative (Bailey, 1997), as we illustrate
in Figures 1, 2 and 3 for the Rössler5, the Lorenz6, and the Chua7 systems, respectively8. In
each figure we display, clockwise from the upper left corner: the 3-dimensional attractor in
the (x, y, z)-space, the value of the LLE along the orbit (λ is displayed on the vertical axis), the
value of the LLE along the trajectory, and the distribution of LLE values ranked from highest

3 Other estimations of Lyapunov exponents exist. See, e.g., Gençay (1996), Delecroix et al (1997) and Bask
& Gençay (1998).

4 Details on this step of the method can be found in Guégan & Leroux (2009a, 2009b).
5 We followed the z variable of the following Rössler system:

⎧

⎪

⎨

⎪

⎩

dx
dt = −y− z
dy
dt = x + 0.1y

dz
dt = 0.1 + z(x− 14)

,

with initial values x0 = y0 = z0 = 0.0001 and a step size of 0.01 (Guégan, 2003).
6 We followed the x variable of the following Lorenz system:

⎧

⎪

⎨

⎪

⎩

dx
dt = 16(y− x)

dy
dt = x(45.92 − z)− y

dz
dt = xy− 4z

,

with initial values x0 = −10, y0 = −10 and z0 = 30, and a step size of 0.01 (Lorenz, 1963).
7 We followed the z variable of the following Chua system:

⎧

⎪

⎨

⎪

⎩

dx
dt = 9.35(y− h(x))

dy
dt = x− y + z
dz
dt = −14.286y

,

with h(x) = 2
7 x−

3
14 (|x + 1| − |x− 1|) initial values x0 = 0.3, y0 = −0.3 and z0 = 0.28695, and a step

size of 0.01. For an exhaustive gallery of double scroll attractors, see Bilotta et al (2007).
8 For each attractor, we simulated 30,000 observations and deleted the first 5,000 ensure that we are

working within the attractor.

27Predicting Chaos with Lyapunov Exponents: Zero Plays no Role in Forecasting Chaotic Systems

www.intechopen.com



to lowest. Notice that for each attractor, the value of the LLE takes on positive and negative
values (i.e., above and below the λ = 0 plane depicted in the upper-right corner). Hence, we
may expect very stable trajectories where the LLE is small, wheras regions where the LLE is
large yield highly unstable behavior.

Fig. 1. Evolution of the LLE for the Rössler system

3. Solving the selection problem

Assuming that we observe x1, ..., xT , and following the insights of the previous section, we
now investigate conditioning our selection process on the value of the LLE. Formally, our
algorithm can be defined as follows:

{

If λT ≤ λ̄, select the "colinear" candidate

otherwise, select the "non colinear" candidate,
(2)

where λ̄ is an exogenously given threshold value. We abuse terminology slightly and denote
by "colinear" the candidate which maximizes the following scalar product:

X̂c
T+1 = arg max

X̂T+1∈C

(X̂T+1 − XT) · (Xi+1 − XT)

||X̂T+1 − XT|| × ||Xi+1 − XT ||
(3)

where C = {(x̂−T+1, xT, ..., xT−d+2), (x̂+
T+1, xT, ..., xT−d+2)} and Xi+1 is the successor of the

nearest neighbor of XT in phase space. Likewise, we denote by X̂nc
T+1, and call "non colinear",

the candidate which minimizes the scalar product in Expression (3).
In words, the algorithm assumes that when the value of the LLE is low, the orbit is relatively
smooth, suggesting that the trajectory to be predicted behaves similarly as the nearest
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Fig. 2. Evolution of the LLE for the Lorenz system

Fig. 3. Evolution of the LLE for the Chua system
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neighbor’s trajectory. Alternatively, when the LLE is "large", the trajectory is considered to
behave erratically, so that the trajectory to be predicted is assumed to differ from that of its
nearest neighbor.
Intuition suggests that one may need to estimate the optimal value of the threshold λ̄ in
terms of prediction accuracy for each chaotic system. Hence, we calculate the mean squared
error (MSE) of the predictor using the above selection algorithm (2) in order to assess which
threshold λ̄ minimizes the MSE:

MSEs(λ̄) =
1

n

T

∑
t=T−n+1

(

X̂s
t (λ̄) − Xt

)2
,

with X̂s
t (λ̄) = X̂c

t or X̂nc
t according to selection algorithm (2), and where n is the number of

predictions. We compute MSEs(λ̄) across all values of λ̄ in the range of the system’s LLE
over the last 1000 observations of our sample (n = 1000) using the entire, true information set
leading up to the predictee for each prediction. Figure 4 plots the values of MSEs as a function
of λ̄ for the Rössler, Lorenz and Chua attractors. We find that MSEs(λ̄) is smallest when λ̄ is
the upper bound of the range. In other words, our method seems to not require estimating
the optimal threshold, λ̄, as one is better off always selecting the colinear candidate and not
conditioning the selection process on the LLE, as intuition might have suggested.
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Fig. 4. MSE as a function of threshold λ̄

In the remainder of the chapter, we shall focus on the performance of X̂c, the predictor which
systematically selects the colinear candidate. For this predictor, the MSE writes as follows:

MSEc =
1

n

T

∑
t=T−n+1

(

X̂c
t − Xt

)2
. (4)
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Table 1 displays the values of MSEc along with the performances of the nearest-neighbor
predictor:

MSENN =
1

n

T

∑
t=T−n+1

(

X̂NN
t − Xt

)2
(5)

and of the best of the two possible candidates

MSEb =
1

n

T

∑
t=T−n+1

min
i=c,nc

(

X̂i
t − Xt

)2
.9 (6)

Table 1 also shows the success rate, ρ, in selecting the better of the two candidate as well as
information on the value of the LLE on the orbit (line 6) and information on the LLE on the
observations where "wrong" candidate was selected (line 7).

Table 1: Prediction results. n =1,000 predictions.

Rössler Lorenz Chua

MSEc 0.0053 0.0039 2.6038e-6

MSENN 0.0156 0.0091 5.1729e-6

MSEb 0.0052 0.0037 2.4947e-6

ρ 97.3% 94.30% 98.7%

λ̂t mean 0.1302 0.1940 0.0593

(min;max) (-1.2453,0.9198) (-1.4353;1.4580) (-1.0593;1.1468)

λ̂t| f ail mean 0.2582 0.4354 0.3253

(min;max) (-0.4824,09198) (-0.5142;1.3639) (-0.5648;0.5554)

Table 1. MSEc, MSENN and MSEb are as defined in (4), (5) and (6). ρ is the selection success
rate of the colinear selector. λ̂t is the value of the LLE on the 1,000 observations to be
predicted. λ̂t| f ail is the value of the LLE on the observations where the colinear selector does
not select the best candidate.

For all three systems, we find that MSEc is substantially smaller than MSENN. Moreover,
MSEc is relatively close to MSEb, suggesting that our procedure selects the best of the two
candidates quite often. In fact, on all three attractors, we obtain success rate, ρ, close to 100%.
Finally, on the few predictions where our predictor does select the "wrong" candidate, the
value of the LLE is relatively high compared to the average LLE on the attractor (0.25 versus
0.13 for Rössler, 0.44 versus 0.19 for Lorenz, and 0.33 versus 0.06 for Chua). These findings
are consistent with the intuition that prediction is more difficult in regions of the attractor
which are more sensitive to initial conditions. While this finding seems to confirm that the
value of the LLE plays a small role in the selection problem, recall that our results show that
conditioning selection on the value of the LLE would not lead to improved predictions, as
measured by MSEs(λ̄).

4. Forecasting

In this section, we detail the role of the value of the LLE on the size of errors and on the
performance of the selection procedure as well as the performance of the predictor in the
short and medium run.
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4.1 Role of the LLE on error size

The following tables show the success rates of the selection procedure of X̂c and the resulting
MSE broken down in small value intervals for the LLE. Doing so allows one to assess how
the performance of the procedure and of the predictor depends on the (local) chaoticity of
the region considered. ρ represents the ratio of the number of times the best candidate
was selected over the number of predictions in the interval considered. These predictions
are then broken down into the number of good selection (nsucc) and the number of failures
to select the best candidate (n f ail). Next, MSEc shows the mean squared error of our
predictor (using colinear selection) on each interval. MSEc|succ. and MSEc| f ail show the
value of MSEc considering only the predictions where the best candidate was correctly and
incorrectly selected, respectively. Finally, MSENN displays the mean squared error of the
nearest neighbor predictor on the relevant interval.

Table 2: Rössler attractor, n =1000 predictions

λ̂t range ρ nsucc n f ail MSEc MSEc|succ MSEc| f ail MSENN

[-1.3,-1.1] 1 1 0 3.91e-11 3.91e-11 - 3.91e-11

[-1.1,-0.9] - - - - - - -

[-0.9,-0.7] 1 5 0 1.32e-6 1.32e-6 - 1.34e-6

[-0.7,-0.5] 1 68 0 0.0073 0.0073 - 0.0073

[-0.5,-0.3] 0.98 106 2 0.0033 0.0033 2.096e-5 0.0034

[-0.3,-0.1] 0.97 105 3 0.0059 0.0060 0.0001 0.0072

[-0.1,0.1] 0.98 125 3 0.0089 0.0091 0.0000 0.0176

[0.1,0.3] 0.97 149 4 0.0019 0.0019 0.0009 0.0054

[0.3,0.5] 0.97 222 8 0.0059 0.0056 0.0132 0.0101

[0.5,0.7] 0.97 192 6 0.0051 0.0052 0.0009 0.0127

[0.7,0.9] - - - - - - -

[0.9,1.1] 0 0 1 9.34e-10 - 9.34e-10 2.79e-11

Table 2. Each row relates to observations Xt for which the LLE belongs to λ̂t range. ρ is the
selection success ratio (1=100%). nsucc and n f ail are the number of predictions for which the

colinear selector selects correctly and incorrectly, respectively. MSEc and MSENN are as
defined in (4) and (5). MSEc|succ and MSEc| f ail correspond to MSEc restricted to the
previously defined nsucc and n f ail observations, respectively.

Notice that for all three attractors the size of errors is relatively stable over the range of
LLEs when selection is successful. This indicates that our method accurately corrects for the
dispersion of neighboring trajectories as measured by the value of the LLE. If this were not
the case, one would expect the MSE to increase monotonically with the value of LLE. In fact,
errors become large only for values of the LLE near the upper end of their range (above 0.9 for
the Rössler attractor, above 1.1 for the Lorenz attractor, and above 0.5 for the Chua attractor).
A possible reason for this sudden increase may be that our estimator for the value of the LLEs
is not sufficiently robust in regions of high chaoticity. We expect that a more sophisticated
estimation method for the LLE may solve this issue, which we address in a companion paper.
Notice that for the Rössler attractor, for most values of the LLE, the size of errors when failing
to select is on average less than when selecting accurately. For example, for λ̂ ∈ [0.5, 0.7],
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Table 3: Lorenz attractor, n =1000 predictions

λ̂t range ρ nsucc. n f ail. MSEc MSEc|succ. MSEc| f ail. MSENN

[-1.5,-1.3] 1 1 0 0.0001 0.0001 - 0.0001

[-1.3,-1.1] - - - - - - -

[-1.1,-0.9] 1 3 0 0.0016 0.0016 - 0.0016

[-0.9,-0.7] 1 3 0 0.0013 0.0013 - 0.0013

[-0.7,-0.5] 0.99 67 1 0.0033 0.0034 0.0003 0.0035

[-0.5,-0.3] 0.99 92 1 0.0049 0.0049 0.0000 0.0054

[-0.3,-0.1] 0.98 98 2 0.0056 0.0054 0.014 0.0098

[-0.1,0.1] 0.93 108 8 0.0038 0.0039 0.0026 0.0052

[0.1,0.3] 0.94 109 7 0.0041 0.0036 0.011 0.0077

[0.3,0.5] 0.96 195 8 0.0021 0.0020 0.0049 0.0088

[0.5,0.7] 0.91 223 22 0.0044 0.0038 0.0102 0.0079

[0.7,0.9] 0.90 18 2 0.0011 0.0008 0.0033 0.0012

[0.9,1.1] 0.81 13 3 0.0006 0.0003 0.0016 0.0016

[1.1,1.3] 0.82 9 2 0.0034 0.0031 0.0047 0.0027

[1.3,1.5] 0.80 4 1 0.042 0.052 0.0019 0.0015

Table 3. Each row relates to observations Xt for which the LLE belongs to λ̂t range. ρ is the
selection success ratio (1=100%). nsucc and n f ail are the number of predictions for which the

colinear selector selects correctly and incorrectly, respectively. MSEc and MSENN are as
defined in (4) and (5). MSEc|succ and MSEc| f ail correspond to MSEc restricted to the
previously defined nsucc and n f ail observations, respectively.

MSEc|succ = 0.0052 > 0.0009 = MSEc| f ail.This apparently surprising observation is actually
encouraging as it indicates that selection mistakes occur mostly when there is little need for
correction. Such situations may arise because XT ’s nearest neighbor is very close to XT or,
alternatively, when both candidates, x̂−T+1 and x̂+

T+1 are both very close to xi+1 due to space
orientation considerations. The same phenomenon can be observed for the Lorenz system up
to λ̂ = 0.1 and for λ̂ > 1.3, but is less systematic for the Chua system.
Regarding the selection accuracy, as measured by ρ, we find that our algorithm selects almost
perfectly for all three attractors, and in most ranges of λ̂. As expected, ρ dips slightly for
larger values of λ̂ in the case of the Rössler and Lorenz attractors, which is in line with the
common intuition according to which trajectories are more stable, or smoother, where the
value of the LLE is small and more irregular for large values of the LLE. Surprisingly, the
Chua attractor behaves somewhat differently. Interestingly, selection mistakes occur on all
attractors for negative values of the LLE, where the system is supposedly locally "stable".
Hence, our results suggest that the focal value of λ = 0, traditionally separating order from
chaos, bears little meaning in terms of forecasting.
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Table 4: Chua attractor, n =1000 predictions

λ̂t range ρ nsucc. n f ail. MSEc MSEc|succ. MSEc| f ail. MSENN

(×10−4) (×10−4) (×10−4) (×10−4)

[-1.3,-1.1] 1 1 0 0.3111 0.3111 - .3111

[-1.1,-0.9] 1 1 0 0.1765 0.1765 - 0.1765

[-0.9,-0.7] - 0 0 - - - -

[-0.7,-0.5] 0.9873 78 1 0.0376 0.0381 0.0002 0.0391

[-0.5,-0.3] 0.98 98 2 0.0339 0.0332 0.0686 0.0362

[-0.3,-0.1] 1 116 0 0.0218 0.0218 - 0.0244

[-0.1,0.1] 0.9918 241 2 0.0074 0.0072 0.0285 0.0241

[0.1,0.3] 0.9917 120 1 0.0097 0.0097 0.0124 0.0228

[0.3,0.5] 0.9884 171 2 0.0199 0.0199 0.0183 0.0221

[0.5,0.7] 0.9740 150 4 0.0553 0.0508 0.2261 0.0239

[0.7,0.9] 0.8750 7 1 0.1333 0.0721 0.5619 0.0981

[0.9,1.1] 1 2 0 0.0884 0.0884 - 0.0025

[1.1,1.3] 1 2 0 0.2440 0.2440 - 0.0091

Table 4. Each row relates to observations Xt for which the LLE belongs to λ̂t range. ρ is the
selection success ratio (1=100%). nsucc and n f ail are the number of predictions for which the

colinear selector selects correctly and incorrectly, respectively. MSEc and MSENN are as
defined in (4) and (5). MSEc|succ and MSEc| f ail correspond to MSEc restricted to the
previously defined nsucc and n f ail observations, respectively.

4.2 Forecasting several steps ahead

We now explore the possibility of forecasting a chaotic time series several steps ahead using
our correction method. In order to make predictions h-steps ahead, we proceed iteratively,
including the successive one-step predictions.10

In addition to extending our predictions to several steps ahead, we jointly investigate the role
of the number of neighbors to consider in the prediction and in the estimation of the LLE. We
estimated the LLE using Wolff’s (1992) algorithm with infinite bandwith and k neighbors, and
applied our correction method to the average of the images of these neighbors (k−NNP).

4.2.1 Rössler attractor

The following table shows MSEc and MSENN as a function of the number of neighbors
and the prediction horizon in the top and bottom half of the table, respectively. For each
column, and for each predictor, the numbers shown in bold are the smallest mean squared
error for each horizon. Therefore, the corresponding number of neighbors, k, is optimal for
that horizon.
As expected, predictions are more accurate in the shorter run. Moreover, increasing the
number of neighbors, k, generally seems to decrease the accuracy of the prediction. Note

10 For instance, X̂t+2 is obtained by constructing the (estimated) history (X1, ...,Xt, X̂t+1). Next, X̂t+3 is
obtained via history (X1, ...,Xt, X̂t+1, X̂t+2), and so on. Hence,no further information is injected to the
true information set (X1, ...,Xt).
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Rössler attractor

h = 1 h = 2 h = 6 h = 7 h = 10

k = 1 0.0053 0.0117 0.1889 0.3107 0.8575

k = 2 0.0045 0.0144 0.2901 0.4890 1.6762

k = 3 0.0058 0.0184 0.2114 0.3212 0.8501

k = 4 0.0077 0.0240 0.3074 0.4301 1.3332

k = 5 0.0091 0.0278 0.3650 0.5193 1.1830

k = 10 0.0103 0.0412 0.6380 0.9228 2.2703

k = 20 0.0283 0.1178 1.8714 2.7681 6.4980

MSE1−NN
0.0156 0.0315 0.2392 0.3402 0.7928

MSE2−NN 0.0194 0.0384 0.2229 0.3017 0.6318

MSE3−NN 0.0228 0.0485 0.2784 0.3710 0.7410

MSE4−NN 0.0242 0.0560 0.3513 0.4711 0.9528

MSE5−NN 0.0295 0.0684 0.4224 0.5623 1.1133

MSE10−NN 0.0500 0.1306 0.9188 1.2228 2.3539

MSE20−NN 0.1247 0.3282 2.2649 2.9775 5.4714

Table 5. The top and bottom half of the table display MSEc and MSENN as a function of the
number of neighbors k and the prediction horizon, h, respectively.

that this is also true for the uncorrected nearest-neighbor predictor. Finally, our correction
method improves upon the uncorrected nearest-neighbor predictor up until six steps ahead.

4.2.2 Lorenz attractor

Here also, predictions are more accurate in the shorter run. However, unlike for the Rössler
attractor, the simulation results suggest that accuracy increases with k up to a point (k = 4).
Beyond that, increasing the number of neighbors is detrimental to the accuracy of the method
(except for h = 20, which is too large a horizon for our predictions to be trusted).
As is the case with the Rössler attractor, our method performs uniformly better than the
corresponding uncorrected nearest-neighbor predictor for horizons of up to seven steps
ahead.

4.2.3 Double scroll attractor

Again, we see that our prediction results improve upon those of the corresponding
uncorrected k-nearest-neighbor predictor, but only in the very short run (up to h = 2). Also, as
was the case with the other systems, the optimal number of neighbors is low: k = 2. Beyond
that number, any information carried by neighbors farther away seems to only pollute the
prediction results

5. Concluding comments

We further developed the methodology on using the information contained in the LLE to
improve forecasts. Our contributions is threefold. First, the selection problem is not an issue,
and does not require conditioning candidate selection on the value of the LLE. Next, our
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Lorenz attractor

h = 1 h = 2 h = 7 h = 8 h = 10

k = 1 0.0039 0.0176 0.6821 1.0306 1.9406

k = 2 0.0024 0.0102 0.4151 0.6249 1.2429

k = 3 0.0020 0.0081 0.3387 0.5103 0.9955

k = 4 0.0014 0.0057 0.2873 0.4347 0.8803

k = 5 0.0014 0.0061 0.3179 0.4852 0.9724

k = 10 0.0016 0.0071 0.3374 05124 1.0329

k = 20 0.0021 0.0101 0.4322 0.6474 1.2333

MSE1−NN 0.0091 0.0246 0.3485 0.4877 0.8730

MSE2−NN 0.0084 0.0226 0.2994 0.4152 0.7318

MSE3−NN
0.0081 0.0220 0.2951 0.4087 0.7181

MSE4−NN 0.0086 0.0231 0.2974 0.4096 0.7133

MSE5−NN 0.0091 0.0243 0.2991 0.4104 0.7123

MSE10−NN 0.0129 0.0349 0.3775 0.5001 0.8136

MSE20−NN 0.0207 0.0562 0.5397 0.6893 1.0423

Table 6. The top and bottom half of the table display MSEc and MSENN as a function of the
number of neighbors k and the prediction horizon, h, respectively.

Chua double scroll

h = 1 h = 2 h = 3 h = 5 h = 10

k = 1 2.6038e-6 1.1247e-5 3.2935e-5 1.3694e-4 0.0012

k = 2 1.6569e-6 5.5148e-6 1.5541e-5 6.1758e-5 5.5566e-4

k = 3 1.5344e-6 5.6257e-6 1.5912e-5 6.3038e-5 6.1618e-4

k = 4 2.0762e-6 6.9228e-6 1.9519e-5 7.4392e-5 6.7625e-4

k = 5 2.6426e-6 8.7472e-6 2.3965e-5 8.7017e-5 6.6244e-4

k = 10 4.4688e-6 1.7896e-5 5.2198e-5 1.9949e-4 0.0014

k = 20 6.4272e-6 2.7342e-5 9.3183e-5 4.4513e-4 0.0042

MSE1−NN 5.1729e-6 8.7554e-6 1.6178e-5 5.2720e-5 4.8311e-4

MSE2−NN
4.3528e-6 7.9723e-6 1.5174e-5 4.9276e-5 4.3521e-4

MSE3−NN 5.9985e-6 1.1757e-5 2.2003e-5 6.4616e-5 4.7283e-4

MSE4−NN 8.6114e-6 1.7168e-5 3.1539e-5 8.6965e-5 5.6469e-4

MSE5−NN 1.1190e-5 2.3201e-5 4.2647e-5 1.1362e-4 6.7550e-4

MSE10−NN 1.7453e-5 4.5731e-5 9.4048e-5 2.6532e-4 0.0014

MSE20−NN 5.5861e-5 1.6005e-4 3.3975e-4 9.4208e-4 0.0042

Table 7. The top and bottom half of the table display MSEc and MSENN as a function of the
number of neighbors k and the prediction horizon, h, respectively.
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results confirm that it is indeed possible to use information on the LLE to improve forecasts.
We also highlight an interesting fact: the focal value of λ = 0, which traditionally separates
order from chaos, does not play any role in the forecasting of chaotic systems. In other words,
our methodology performs equally well on both stable and chaotic regions of the attractors
studies. Finally, we examined the sensitivity of our methodology to varying the number k of
neighbors as well as of the step-ahead horizon, h. While our goal was not to determine the
optimal number of neighbors to consider for forecasting, it seems that each attractor admits a
rather low optimal number of neighbors. We have worked with a fixed embedding dimension,
d, throughout. Now that we have ascertained the validity of the approach, the next step is to
confirm its performance on real physical or financial data.
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