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1. Introduction      

Since 1957 when the first manmade satellite launched, humankind has made splendid 
progress in space exploration. However, we must face some new problems, which have 
affected or will affect new space activities: (i) space debris problem. There are more than 
8700 objects larger than 10~30 cm in Low Earth Orbit (LEO) and larger than 1m in 
Geostationary Orbit (GEO) registered in the US Space Command Satellite Catalogue 
(D.Mehrholz, 2002). Among these space objects, approximately 6% are operational 
spacecrafts, that is to say, about 94% of the catalogued objects no longer serve any useful 
purpose and are collectively referred to as ‘space debris’. If we don’t track, detect, model for 
these space debris, the hazards of on-orbit spacecrafts or future spacecrafts will be 
enhanced. Fortunately, this problem has been recognized; (ii) maintenance for disable 
satellites. Sometimes an operational spacecraft is out of use only due to some simple faults. 
If it is maintained properly, it can still work as usual. So this is an economical way to use 
space resource. For example, a tyre of an expensive car has been broken, we can take a few 
of money to maintain it, and it can work as well as before. First of all, the problem of 
tacking, detecting and relative posing for disable spacecrafts must be solved, and then we 
can capture them or do some on-orbit service; (iii)on-orbit assembling of large-scale space 
platform. Along with the space exploring, it is a challenge and profound space project to 
build a large-scale space platform through launching in batches and assembling in orbit, and 
this will provide a valid platform for human to explore deep space. Whereas, the key 
technology of on-orbit assembling of large-scale space platform is space rendezvous and 
docking, it is also needed tracking, detecting and relative posing space objects. To solve 
those above problems successfully, the problem about space detection and relative posing 
must be researched and solved firstly. In recent twenty years, a series of important plans for 
space operations, including Demonstration of Autonomous Rendezvous Technology 
(DART) (Ben Iannotta, 2005 ; Richard P. Kornfeld, 2002 ; LiYingju, 2006),Orbital Express 
(OE) (Kornfeld, 2002 ; Michael A. Dornheim, 2006 ; Joseph W. Evans, 2006 ; Richard T. 
Howard, 2008), HII Transfer Vehicle (HTV) (Isao Kawano, 1999 ; Yoshihiko Torano, 2010), 
Automated Transfer Vehicle (ATV) (Gianni Casonato, 2004) etc, are paid greatly attention to 
by National Aeronautics and Space Administration (NASA) and Defense Advanced 
Research Projects Agency of America (DARPA) or National Space Development Agency of 
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Japan (NASDA) or European Space Agency (ESA) etc. And the operations, such as 
autonomous rendezvous and docking (AR&D), capturing, maintaining, assembling and 
attacking etc, have been involved in the plans above. As mentioned above, autonomous 
relative navigation is one of key technologies in all these space activities. And autonomous 
relative navigation based on machine vision is a direction all over the world currently. But 
there are some disadvantages of some traditional algorithms, such as complicated 
description, huge calculation burden, and lack of real-time ability etc (Wang Guangjun, 
2004; Li Guokuan, 2000 ; H. P. Xu , 2006). 
In order to overcome these disadvantages above, the algorithms of shape & state feature 
extraction and relative navigation for spacecraft are emphatically researched in this chapter.  

2. Shape & state feature extraction algorithm based-on mathematical 
morphology 

Mathematical morphology (MM) is a new discipline for imaging analysis and processing. 
Based on these characters, such as the character of nonlinear, morphological analysis, fast 
and parallel processing, simple and apt operation etc., mathematical morphology is very 
suitable for automation and intelligence object detection, and make it become a hotspot in 
imaging processing and correlation field. Recently, some successful applications of 
mathematical morphology have been made at home and abroad (Richard Alan Peters II, 
1995; Joonki Paik, 2002; Ulisses Braga-Neto, 2003). 

2.1 Basic four operation of MM 

MM is a theory for the analysis of spatial structures which is a tool for extracting image 
components. It is called “Morphology” since it aims at analyzing the shape and form of object. 
The four basic morphological set transformations are dilation, erosion, opening and closing. 

2.1.1 Dilation 

Let A  be an original image, and B  be a SE. The dilation of A  by B  is defined as follows, 

 
i

i

b
b ∈

⊕ =
B

A B A∪  (1) 

Where  }|{ AA ∈+= aba ibi
. 

2.1.2 Erosion  

The erosion of A  by B  is defined as follows, 

A $ CC
BAB
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⊕＝  

 C)}(|{
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ij
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ji
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The superscript C in C
A stands for the complement of A  such that C +A A =constant; %

B stands for the reflection of B , that is, { | }i ib b= − ∈
%
B B ; The superscript C in ( )A and { }A  

also stand for the complements of them. 
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2.1.3 Opening 

The opening of A  by B  is defined as follows, 

 A B=(Ac $ B) B⊕  (3) 

2.1.4 Closing 

The closing of A  by B  is defined as follows, 

 A B=[A (-B)]• ⊕ $ (-B)  (4) 

2.2 The vital function of the structuring element (SE) 

Using a probe called as SE to detect the image information is the principle idea of MM. 
When the probe is moving in the image, we can find and know the correlation the structure 
feature of the image each part. This method is similar to the human FOA (Focus of 
Attention) from detecting thought. As a probe, SE can be included some knowledge directly, 
such as shape, size, further more, the information of gray and colour, and we can use the 
knowledge and information to detect and study the characters of the image (Cui Yi, 2002). 
So how to select a convenient SE is very important. 
Fig. 1 gives the different feature extraction results of  the satellite according to the different 
SEs. From the Fig. 1, we can see that the feature extraction result from SE (b1) is better than 
the result from (b2). Therefore it is necessary to select SE according to the different 
applications. In the feature extraction of distributed spacecraft system, we can select the 
convenient structure element according to the character and the approximate attitude and 
orbital information of the spacecraft. Additionally,  spacecraft move regularly in orbit, the 
relative position and attitude is changed every time. Thus dynamically re-structured 
element based-on the approximate attitude and orbital information of the spacecraft system 
is one of the research directions. 
 

 
Fig. 1. The different feature extraction results of  the satellite according to the different SEs. 
(a) The original image of satellite; (b1) and (b2) are two kind of SEs; (c) and (d) are the 
feature extraction results according to (b1) and (b2) 

2.3 Dynamically re-structured element based-on the approximate attitude and orbital 
information of the spacecraft system 

In the idea conditions, spacecraft move regularly in orbit according to their six basis orbital 
elements (semi-major axis: a ; excentricity: e ; ascending node: Ω ; inclination of orbit: i ; 
argument of perigee:ω ; time of perigee passage: pt ) and their relative navigation angles 
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(yaw angle: ψ ; roll angle: φ ; pitch angle: θ ;). As mentioned above, it is very important to 
select a valid SE in feature extraction of distributed spacecraft system, thus we can build the 
relationship between the movement rule of the spacecraft and dynamically re-structured 
element by using the SE database built beforehand. Considering that function 

( , , , , , , , , )a e i fω ψ ϕ θΓ Ω  to stand for the spacecraft transformation form time 1t  to time 

2t (see Figure 2). On the basis theory of the attitude dynamics of spacecraft (Y. L. Xiao, 2003), 
we will build the function Γ  as follow. 
Two frame must be defined when the relative attitude described. Commonly, one is the 
space reference frame  r r rox y z , and the other is body frame b b box y z  of the spacecraft. Thus 

the attitude Euler form is described as 

 

arctan[ ]
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A
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A
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 (5) 

xzA , yxA , yyA , yzA , zzA  stand for the cosine between r r rox y z  and b b box y z . 

The spacecraft attitude differential equation can be calculated form this equation, 
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$
 (6) 

xω , yω , zω is the angle velocity. 

So the absolute attitude expression of time kt  can be deduced from eq. (5) and (6), 
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 (7) 

To calculate the relative attitude of spacecraft, we always build the relationship by 
geocentric equatorial inertial frame, the transformation formulation can be described as 
follow, 
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R R R R

 (8) 

Thus the absolute attitude angle of kt  defined in geocentric equatorial inertial frame can be 

calculated from eq. (9), 
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When the ( , , , , , , , , )a e i fω ψ ϕ θΓ Ω  is calculated, how to select the SE dynamically? As Fig. 2 

shows, consider the track spacecraft attitude of time 1t  and time 2t  are orderly 1Λ  and 2Λ , 

the tracked spacecraft attitude of time 1t  and time 2t  are orderly 1Θ  and 2Θ , then we can 

build the expression as follows, 

 
1 11 1 Θ ΛΔΛ Θ = Γ − Γ  (10) 

 
2 22 2 Θ ΛΔΛ Θ = Γ − Γ  (11) 

 1,2 1,2 2 2 1 1ΔΛ Θ = ΔΛ Θ − ΔΛ Θ  (12) 

 

θ
1
t

2
t

l

track spacecraft(sat-t)

tracked spacecraft(sat-ed)

track spacecraft orbit

tracked spacecraft orbit

1
t

2
t

t

d

 
Fig. 2. Track and tracked spacecraft sketch map 

∇ 1,2 1,2ΔΛ Θ stands for the relative attitude between track and tracked spacecraft from time 

1t  to time 2t  . So dynamically re-structured element can be implemented from eq. (12). 

2.4 Simulations and analyses 

To prove the algorithm above, a simulation about a track and tracked satellites formation is 
studied in this section. 
 

             
(a) 0.15 period              (b) 0.40 period             (c) 0.65 period               (d) 0.90 period 

Fig. 3. The original image of tracked satellite corresponding periods 

According to Fig. 3, the corresponding SEs are designed from the solar panels character of 
the tracked spacecraft corresponding period (see Fig. 4). On the basis of these SEs, the 
feature extraction results are described as Figure 5 and Figure 6. 
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(a) 0.15 period        (b) 0.40 period       (c) 0.65 period         (d) 0.90 period 

Fig. 4. SEs of corresponding periods 
 

             
(a) 0.15 period            (b) 0.40 period               (c) 0.65 period             (d) 0.90 period 

Fig. 5. The feature extraction results corresponding SE of Fig. 4 (a) 
 

             
(a) 0.15 period            (b) 0.40 period               (c) 0.65 period             (d) 0.90 period 

Fig. 6. The feature extraction results corresponding period SEs of Fig. 4 

From Fig. 5 and Fig. 6, we can see: (ⅰ) the feature extraction results of Fig. 5 are worse, 
especially the results (b) and (d) are distorted by using the SE of Figure 4 (a), because the 
shape of (b) and (d) are different from the SE of Fig. 4 (a); (ⅰ) the feature extraction results of 
Fig. 6 are better because the corresponding period SEs are used in data processing. 

3. Static forecast algorithms based-on quaternion and Rodrigues 

3.1 Static forecast algorithm based-on quaternion 

There already exists Hall algorithm for positioning and posing (Schwab A. L,2002). We now 
propose a new algorithm that we believe in better than Hall’s. In this section, we explain in 
some detail our algorithm. We just add some pertinent remarks to listing the two topics of 
explanation. The first topic is: quaternion based method for determining position and 
attitude. Its two subtopics are: the quaternion based description of the rotational 
transformation for three dimensional bodies (subtopic 3.1.1), the camera model and the basic 
equation for machine vision for determining position and attitude (subtopic 3.1.2) and the 
quaternion based model for determining position and attitude by machine vision (subtopic 
3.1.3). In subtopic 3.1.3, the initial position values are calculated by eq.(25) in this section; 
eq.(25) is based on Taylor expansion and least squares method. The second topic is: the 
algorithm for positioning and posing based on quaternion and spacecraft orbit and attitude 
information. Finally we give an example of numerical simulation, whose results are given in 
Figs. 8 through 10 in this section. These results show preliminarily that our proposed 
algorithm is much faster than Hall’s. 
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3.1.1 Representation of 3D vector transformation by quaternion 

Considering that x  stands for 3D vector, and ′x is a 3D vector from x  by transformation 
matrix R , this transformation can be represented as 

 (0, )=xQ x  (13) 

 (0, )′='x
Q x  (14) 

 0 0 1 2 3( , )q q q q q= = + + +Q q i j k  (15) 

 1−= =' x xx
Q Q Q Q Q Q Qc c c c  (16) 

Where , ,'x x
Q Q Q  are all quaternions, 1 ,−Q Q  are inverse and onjugate of Q , and Q is the 

corresponding quaternion of matrix R . 
The relation of matrix R  and Q  can be described as 

 2
0 0( ) 2 ( ) 2( )q q′ = − ⋅ + × + ⋅ =x q q x q x q x q Rx  (17) 

3.1.2 The camera model and the basic equation of computer vision 

The process of relative position and pose based on computer vision is: first to extract and 
match the feature of the image; secondly to calculate the position and pose between the 
camera and the object. Therefore, camera model is the basis model of relative position and 
pose based on computer vision. And camera model is a simple style of optics imaging. This 
model represents the transformation from 3D to 2D object. Usually, two kinds of camera 
model, viz. linear and nonlinear camera model, are classified by the imaging process, 
whether object point, centre point and image point are co-lined or not. Nonlinear camera 
model is from linear camera model added by the aberration correction. In this paper we will 
apply linear camera model. The detail of nonlinear camera model can be see literature (Z.G. 
Zhu, 1995 ; S. D. Ma, 1998 ; G. J. Zhang, 2005 ; Marc Pollefeys, 2002). 
Fig. 7 shows the projection relation of object point, centre point and image point. Where 

IO uv− stands for image frame, i i iO x y− stands for physical image frame, 

C C C CO x y z− stands for camera frame, W W W WO x y z− stands for object frame, this is 
consistent with body frame of objective spacecraft later. 
 

 
Fig. 7. Sketch of image frame, camera frame and object frame 

The projection relation of object point, centre point and image point can be represented as, 
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Where f is the focus of camera. 

According to eq. (17) and (18), the relation of object frame and camera frame can be describe as 

 

11 12 13 1

21 22 23 2

31 32 33 3

0 0 0 0 0 0

0 0 0 0 0 0
1

0 0 1 0 0 0 1 01
0 0 0 11 1

W W
i

W W
C i T

W W

x xl l l t
x f f

y l l l t y
z y f f

l l l tz z

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

R t

0

 

(19)

 

From formula (19), co-line equation is get as follows 
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Eq. (20) is the basic equation of computer vision, ( 1,2,3; 1,2,3)ijl i j= = is the relative 

attitude, ( 1,2,3)it i = is the objective spacecraft coordinate defined in camera frame. 

3.1.3 The relative position and pose model based-on quaternion 

In eq. (20), there are six absolute parameters: three attitude parameters and three translation 
parameters. In order to reduce the calculation parameters, quaternion is applied here. Let 
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Then eq. (20) can be rewritten as 
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Obviously, eq. (22) are nonlinear equations, then the linearisations are accomplisationed by 
expanding the function in a Taylor series to the first order (linear term) as, 
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Where 0 0,Fx Fy are the results of entered the initial value of 0 1 2 3, , ,q q q q ， 1 2 3, ,t t t  into eq. 

(22). ,Fx FyΔ Δ  are calculated as follows, 
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0

0
0

x x x
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q

y y y
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q
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q t
q t

q t
q t

 (24) 

In eq. (24), T
1 2 3( , , )q q qΔ = Δ Δ Δq ， T

1 2 3( , , )t t tΔ = Δ Δ Δt . 

The iterative calculation above will be continued until the corrections less than the threshold 
values. 
When observation point number 4n > , the results will be calculated by using least squares 
method. According to literature (Z.G. Zhu, 1995), the results of least squares method can be 
get from eq. (25) as follow, 

 T T( )−Δ = −X A PA A Pl  (25) 

Where [ ]T0 1 2 3 1 2 3, , , , , ,q q q q t t tΔ = Δ Δ Δ Δ Δ Δ ΔX ; A  is the coefficient matrix of X coefficients of 
eq. (24). P stands for weight matrix; T

0 1 0 1 0 0[(( ) ( ) ( ) ( ) )n nFx Fy Fx Fy=l A  
T

1 1( ) ]Tn nx y x y− A ;  n is the number of observation. 

3.1.4 Relative navigation based on quaternion and spacecraft orbit & attitude 
information 

From above, we can see that the calculation speed of the relative position and pose 
algorithm based-on quaternion of least squares method depends on the initial value 
selection. In this section, we look spacecraft orbit & attitude information as initial values. 
And next section will introduce how to calculate the relative position and pose of spacecraft 
according to spacecraft orbit & attitude information. 
a. Relative position calculated by using differential method 
Considering there are active spacecraft A  and objective spacecraft P , and their  orbital 
elements are known, according to literature (Y. L. Xiao, 2003), the coordinates ( , , )A A Ax y z , 

( , , )P P Px y z  of inertial frame of active spacecraft A  and objective spacecraft P  can be 

calculated. So the relative position can be described as 

                       
AP P A

AP P A

AP P A

x x x

y y y

z z z

Δ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                                 (26) 

Finally we can transform [ ]TAP AP APx y zΔ Δ Δ  from inertial frame to body frame defined 

in active spacecraft A , and the relative position between spacecraft  A  and P  is calculated. 
b. Relative pose calculated by using quaternion 
Considering AS  is the body frame of spacecraft A , PS  is the body frame of spacecraft P , 

the relation of AS , PS  and inertial frame iS  can be represented by using Rodrigues as 
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Thus relative attitude of spacecraft A  and P  can be described as 
 

 AP iP Ai=Q Q Qc  (28) 

 

Where c is quaternion multiplication sign. 

Usually, camera is fixed on the active spacecraft A , we can transform [ ]Tb b bx y z from 

the body frame of the active spacecraft A to the camera frame C C C CO x y z−  as follows 
 

 
C b

C b

C b

x x

y y

z z

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

M T  (29) 

 

Where M  is the attitude transition matrix, and T  is the transition matrix from body frame 
defined in active spacecraft A  to camera frame. They can be designed or measured. 
Hereto, the relative attitude and position parameters between objective spacecraft P  and 
camera frame are calculated. Then let these parameters as the initial value of eq. (25). And 
then the relative attitude and position between active spacecraft A and objective spacecraft 
P  can be determined quickly. 

3.1.5 Simulations and analyses 

On the basis of the algorithm above, let the camera focus f = 350mm, the objective 
spacecraft P  is a 2 2 2m m m× ×  cube, and its body frame coordinates of feature points are 
respectively { }-1,-1,1 , { }1, 1, 1− − − , { }-1,1,1 , { }-1,1, -1 , { }1,0, 1− − , { }0, 0, 1 , { }1, 1,1− , 
{ }1,1,1 . Table 1 lists the initial parameters of the simulations. According to the parameters 
of table 1, calculate the relative position and pose parameters between active spacecraft 
A and objective spacecraft P  by eq. (26) and (28). And let these relative parameters as true 

value X# . Then calculate image coordinates by eq. (22), and add one pixel white noise to the 
image coordinates and let them as the simulation observations. Finally, calculate the relative 
position and pose parameters X̂ between active spacecraft A and objective spacecraft P  by 
eq. (23) and (25). The simulation time is 1200 seconds. Fig. 8 – Fig. 10 are the simulation 
results. It is not intuitionistic to represent the attitude results by quaternion, yet the attitude 
results are described as their Euler form. In Fig. 8 – Fig. 10, (a) stands for the results based on 
spacecraft orbit & attitude information, (b) stands for the results based on optional value. 
The results of simulation are calculated by using the computer of HP Pavilion Intel (R), 
Pentium (R) 4, CPU 3.06GHz, 512 MB, the consumable times of method (a) and (b) are 4662 
ms and 7874 ms respectively. 
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 Active spacecraft A  Objective spacecraft B  
ascending node/deg 0.0 0.0 

inclination of orbit/deg 96.498 96.498005 
argument of perigee/deg 0.0 0.0 

excentricity 0.0 0.00000001 
semi-major axis/km 7146.768 7146.768 

time of perigee passage/s 0 0.008 
yaw/deg 0.5 0.5 
pitch/deg 0.2 0.2 
roll/deg 0.4 0.5 

yaw angle velocity/(deg/s) 5×10-7 5×10-7 
pitch  angle velocity/(deg/s) 5×10-7 5×10-7 
roll  angle velocity/(deg/s) 5×10-7 5×10-7 

Table 1. The Initial parameters of the simulations 
 

 
Fig. 8. Iterative number of the algorithm based-on quaternion 
 

 
Fig. 9. Relative attitude errors of the algorithm based-on quaternion 
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Fig. 10. Relative position errors of the algorithm based-on quaternion 

From the simulation results, we can see that both two methods of (a) and (b) can get the 
high and similar precision results, whereas the iterative number of (a) is 11-12, and the 
iterative number of (b) is 18-19, moreover the consumable times of (a) is about half of the 
times of (b). All these show that the algorithm (a) is better than (b). 

3.2 Static forecast algorithm based-on Rodrigues 

As mentioned as 3.1 section, the algorithm based on quaternion is better than Hall’s, because 
the Jacobi matrix of this method is lower than Hall’s. But there is redundance value by using 
quaternion to represent the attitude. Rodrigues has three parameters to describe the attitude 
with no redundance variable. In this section we will discuss the static forecast algorithm by 
using Rodrigues. 

3.2.1 Representation of 3D vector transformation by Rodrigues 

Considering that x  stands for 3D vector, and ′x is a 3D vector from x  by transformation 
matrix R , this transformation can be represented as 

 ′ =x Rx  (30) 

Where 

2 2 2
11 12 13

2 2 2
21 22 23

2 2 2
31 32 33

1 2( ) 2( )
1

2( ) 1 2( )

2( ) 2( ) 1

a b c ab c ac b l l l

ab c a b c bc a l l l

l l lac b bc a a b c

⎡ ⎤+ − − + − ⎡ ⎤⎢ ⎥ ⎢ ⎥= − − + − + =⎢ ⎥ ⎢ ⎥Δ ⎢ ⎥ ⎢ ⎥+ − − − + ⎣ ⎦⎢ ⎥⎣ ⎦

R

,  

2 2 21 a b cΔ = + = + + +I S . 
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3.2.2 The relative position and pose model based-on Rodrigues 
In eq. (20), there are six absolute parameters: three attitude parameters and three translation 
parameters. In order to reduce the calculation parameters, Rodrigues is applied here. Let 

 

2 2 2 2 2 2
11 12 13 1 1

2 2 2 2 2 2
21 22 23 2 2

2 2 2
31 32 33 3

(1 ) 2( ) 2( ) (1 )

2( ) (1 ) 2( ) (1 )

2( ) 2( ) (1 )

W W W W W W

W W W W W W

W W W W W

X l x l y l z t a b c X ab c Y ac b Z a b c t

Y l x l y l z t ab c X a b c Y bc a Z a b c t

Z l x l y l z t ac b X bc a Y a b c Z

= + + + = + − − + + + − + + + +

= + + + = − + − + − + + + + + +

= + + + = + + − + − − + 2 2 2
3(1 )W a b c t

⎫
⎪⎪
⎬

+ + + + ⎪
⎪⎭

(31) 

Then formula (20) can be rewritten as 

 
i

i

X
x f

Z

Y
y f

Z

⎫
= ⎪⎪

⎬
⎪= ⎪⎭

 (32) 

Obviously, eq. (32) are nonlinear equations, then the linearisations are accomplisationed by 
expanding the function in a Taylor series to the first order (linear term) as, 

 0

0

x Rodrx Rodrx

y Rodry Rodry

= + Δ ⎫
⎬= + Δ ⎭

 (33) 

Where 0 0,Rodrx Rodry are the results of entered the initial value of , ,a b c  into eq. (32). 

,Rodrx RodryΔ Δ  are calculated as follows, 

 1 2 3
1 2 3

x x x x x x
Rodrx a b c t t t

a b c t t t

∂ ∂ ∂ ∂ ∂ ∂
Δ = Δ + Δ + Δ + Δ + Δ + Δ

∂ ∂ ∂ ∂ ∂ ∂
 (34) 

 1 2 3
1 2 3

y y y y y y
Rodry a b c t t t

a b c t t t

∂ ∂ ∂ ∂ ∂ ∂
Δ = Δ + Δ + Δ + Δ + Δ + Δ

∂ ∂ ∂ ∂ ∂ ∂
 (35) 

In eq. (34) and (35), 1 2 3, , , , ,a b c t t tΔ Δ Δ Δ Δ Δ are the corrections of the initial value of , ,a b c , 

, , ,
x x x

a b c

∂ ∂ ∂
∂ ∂ ∂

 , , ,
y y y

a b c

∂ ∂ ∂
∂ ∂ ∂ 1 2 3 1 2 3

, , , , ,
y y yx x x

t t t t t t

∂ ∂ ∂∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

 are partial derivatives. 

The iterative calculation above will be continued until the corrections less than the threshold 
values. 
When observation point number 4n > , the results will be calculated by using least squares 
method. According to literature (Z.G. Zhu, 1995), the results of least squares method can be 
get from formula (12) as follow, 

 T T( )−Δ = −X A PA A Pl  (36) 

Where [ ]T1 2 3, , , , ,a b c t t tΔ = Δ Δ Δ Δ Δ ΔX ; A  is the coefficient matrix of X coefficients of 

formula (34) and (35). P stands for weight matrix; 
T

0 1 0 1 0 0[(( ) ( ) ( ) ( ) )n nRodrx Rodry Rodrx Rodry=l A  T
1 1( ) ]Tn nx y x y− A ;  n is the 

number of observation. 
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3.2.3 Relative navigation based on Rodrigues and spacecraft orbit & attitude 
information 

Considering aS  is the body frame of spacecraft A , PS  is the body frame of spacecraft P , 

the relation of aS , PS  and inertial frame iS  can be represented by using Rodrigues as 

 

i Pi P

i Ai A

P AP A

S S

S S

S S

⎫
⎪⎪
⎬
⎪
⎪⎭

Rodr

Rodr

Rodr

iiiiiiif

iiiiiiiif

iiiiiiiif

 (37) 

Thus relative attitude of spacecraft A  and P  can be described as 

 *AP iP Ai=Rodr Rodr Rodr  (38) 

Where * is Rodrigues multiplication sign. 
Hereto, as section 3.1, the relative attitude and position parameters between objective 
spacecraft P  and camera frame are calculated. Then let these parameters as the initial value 
of eq. (36). And then the relative attitude and position between active spacecraft A and 
objective spacecraft P  can be determined quickly. 

3.2.4 Simulations and analyses 

On the basis of the algorithm based-on Rodrigues above, considering the simulation 
conditions as 3.1.5 section, we can get the rusults as Fig. 11-Fig. 13. In Fig. 11-Fig. 13, (a) 
stands for the results based on spacecraft orbit & attitude information, (b) stands for the 
results based on optional value. 
 

 
Fig. 11. Relative attitude errors of the algorithm based-on Rodrigues 
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Fig. 12. Relative position errors of the algorithm based-on Rodrigues 
 

 
Fig. 13. Iterative number of calculation of the algorithm based-on Rodrigues 

The results of simulation are calculated by using the computer of HP Pavilion Intel (R), 
Pentium (R) 4, CPU 3.06GHz, 512 MB, the consumable times of method (a) and (b) are 3281 
ms and 6344 ms respectively. 
From the simulation results, we can see that both two methods of (a) and (b) can get the 
high and similar precision results, whereas the iterative number of (a) is 1-5, and the 
iterative number of (b) is 4-9, moreover the consumable times of (a) is about half of the times 
of (b). All these show that the algorithm (a) is better than (b). 

4. Pose and motion and estimation for spacecraft 

4.1 Autonomous relative navigation for spacecraft based-on Quaternion and EKF 
(QEKF) 

It is an innovative way to solve some difficult space problems by distributed spacecraft 
system, which depends on the collaboration each satellite of the system. And these difficult 
spacecraft problems always can not be solved by one satellite alone. Recent years, many 
researches about distributed spacecraft system have been developed. And considerable 
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progresses have been made in space exploration, earth observation and military domain etc 
(Graeme B. Shaw, 1998; Dr. Kim Luu, 1999; RF Antenna C. Sabol, 1999; H. P. Xu , 2006). But 
autonomous relative navigation, which is one of key technologies for distributed spacecraft 
system, and the relative theories need to be studied yet.  
In this section, we first introduce how to select the state variable and build the state 
equations according to C-W equation and quaternion differential equation; Then how to 
build observation equation according to con-line equation of vision navigation and the state 
variable is described. 

4.1.1 State equation of QEKF 

To solve the dynamic estimation problem based on EKF, the state equation must be built. 
And how to select state variable is introduced here firstly. Since the filter computation time 
is proportional to the number of state variables, fewer variables are desirable. Based on the 
approach given by T. J. Broida (1990), J. S. Goddard (1997), Daniël François Malan (2004), 
thirteen variables are used. In these applications, angle velocity vector is regarded as 
constant. But in the application of relative navigation for spacecraft, relative angle velocity 
vector ( )AP bω  is a variable. In this chapter, we can estimate ( )AP bω  in advance, and look it 
as an input variable of time t . In this way, the number of state variables is reduced, but also 
the practical problem is solved well. Thus the state variables are three relative position 
variables ( , , )T

PA O PA O PA Ox y z′ ′ ′− − −Δ Δ Δ , three relative velocity variables ( , , )TVx Vy VzΔ Δ Δ  and 
four relative attitude variables 0 1 2 3( , , , )Tq q q qΔ = Δ Δ Δ ΔQ . Where the vector 
( , , , , , )T

PA O PA O PA Ox y z Vx Vy Vz′ ′ ′− − −Δ Δ Δ Δ Δ Δ  is defined in orbital frame of objective spacecraft, 
vector ΔQ  is defined in body frame of active spacecraft A . However, vision relative 
navigation is based on camera frame, and we must build the relationship of the camera 
frame, orbital frame and body frame each other. This will be studied in section three. 
As mentioned above, the state variable assignment is 

 0 1 2 3( , , , , , , , , , )T
PA O PA O PA Ox y z Vx Vy Vz q q q q′ ′ ′− − −= Δ Δ Δ Δ Δ Δ Δ Δ Δ ΔS  (39) 

Without disturbances, according to literature (Y. L. Xiao, 2003), the nonlinear continuos 
equation of  S  is 
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0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 2 0 0 0 0

0 0 0 0 0 4 0 0 0 0
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0 0 0 0 0 0 0
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⎢ ⎥− Ω Δ⎢ ⎥
= ⎢ ⎥Ω − Ω Δ⎢ ⎥

− − −⎢ ⎥ Δ
⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

S

1

2

3

q

q

q

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥Δ
⎢ ⎥Δ⎢ ⎥
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 (40)  
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Where Ω  is the angle velocity of objective satellite P , ( , , )T
x y zω ω ω is the vector ( )AP bω . 

From eq. (40), we can get the linearization matrix Φ . 

4.1.2 Observation equation of QEKF 

From equations (20) and (39), we can see that the state variables we selected are not related 
with image coordinate directly. So we must build the relationship between them before 
observation equation is built. Hereinafter, we will talk about the transformation of 

( , , )T
PA O PA O PA Ox y z′ ′ ′− − −Δ Δ Δ firstly, and then will discuss the transformation of ΔQ . 

4.1.2.1 The transformation of ( , , )T
PA O PA O PA Ox y z′ ′ ′− − −Δ Δ Δ  

a. Transform  ( , , )T
PA O PA O PA Ox y z′ ′ ′− − −Δ Δ Δ  from orbital frame defined in objective 

spacecraft P  to  inertial frame defined in active spacecraft  A  as follows 

 
AP i PA i PA O

AP i PA i P iO P OO PA O

AP i PA i PA O

x x x

y y x

z z x

′− − −

′ ′− − − − −

′− − −

Δ Δ Δ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ = − Δ = − Δ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ Δ Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

L L  (41) 

Where P iO−L  is the transition matrix from orbital frame defined in objective spacecraft 

P  to   its inertial frame; P OO′−L  is the transition matrix from second orbital frame 

defined in objective spacecraft P  to its geocentric orbital frame. 

b. Transform ( )T
AP i AP i AP ix y z− − −Δ Δ Δ form inertial frame defined in active spacecraft 

A  to its body frame by the formulation 

 
AP b AP i

AP b A bO A O O A Oi AP i

AP b AP i

x x

y y

z z

− −

′ ′− − − − −

− −

Δ Δ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥Δ = Δ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥Δ Δ⎣ ⎦ ⎣ ⎦

L L L  (42) 

Where A bO′−L  is the transition matrix from second orbital frame defined in active 

spacecraft A  to its body frame; A O O′−L  is the transition matrix from geocentric orbital 

frame in active spacecraft A  to its second orbital frame; A Oi−L  is the transition matrix 

from inertial frame defined in active spacecraft A  to its geocentric orbital frame. 

c. Transform ( )T
AP b AP b AP bx y z− − −Δ Δ Δ  from body frame defined in active spacecraft A  

to camera frame by the formulation as follows 

 
AP C AP b

AP C AP b

AP C AP b

x x

y y

z z

− −

− −

− −

Δ Δ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥Δ = Δ +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥Δ Δ⎣ ⎦ ⎣ ⎦

M T  (43) 

Where M  is the attitude transition matrix, and T  is the transition matrix from body frame 
defined in active spacecraft A  to camera frame. They can be designed or measured. 
Thus the relative relationship between active spacecraft A  and objective spacecraft P  
is built, we can described this relation by the formulation as follows 
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111 12 13

21 22 23 2

31 32 33 3

AP C PA O PA O

AP C A bO A O O A Oi P iO P OO PA O PA O

AP C PA O PA O

x x x Tr r r

y y r r r y T

r r rz z z T

′ ′− − −

′ ′ ′ ′ ′− − − − − − − −

′ ′− − −

Δ Δ Δ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥Δ = − Δ + = Δ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥Δ Δ Δ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

ML L L L L T  (44) 

4.1.2.2 The transformation of ΔQ   

We can translate the relative attitude  M  into quaternion CbQ  form according to the 

transformation between cosine matrix and quaternion. 

 0 1 2 3( )T
Cb Cb Cb Cb Cbq q q q− − − −=Q  (45) 

And we can transform ΔQ  form body frame defined in active spacecraft A  to camera 

frame by CbQ  as follows 

 0 1 2 3( )T
CP CP CP CPq q q q− − − −= =CP CbQ ΔQ Qc  (46) 

Substitute ( , , )T
CP CP CPx x xΔ Δ Δ  of eq. (44), CPQ  of eq. (46) for ( 1,2,3)it i =  and 

( 1,2,3; 1,2,3)ija i j= =  of eq. (20) in turn, observation equation about state variable S  can be 

represented as 
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i i i
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Where                                        
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 (48) 

Let                 

11 12 13 11 12 13 1

21 22 23 21 22 23 2

31 32 33 31 32 33 3

i i i

i i i

i i i

W W W PA O PA O PA O

W W W PA O PA O PA O

W W W PA O PA O PA O

X l X l Y l Z r x r y r z T

Y l X l Y l Z r x r y r z T

Z l X l Y l Z r x r y r z T

′ ′ ′− − −

′ ′ ′− − −
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⎧ = + + + Δ + Δ + Δ +
⎪⎪ = + + + Δ + Δ + Δ +⎨
⎪

= + + + Δ + Δ + Δ +⎪⎩

 (49) 

 

Then the formulation (47) can be simplified as 

www.intechopen.com



State Feature Extraction and Relative Navigation Algorithms for Spacecraft 

 

371 

 
i

i

X
x f

Z

Y
y f

Z

⎧
=⎪⎪

⎨
⎪ =⎪⎩

 (50) 

Obviously, the equations of eq. (50) are nonlinear about S . And they must be linearized in 
visual relative navigation estimation based-on EKF. On the basis of the theory of EKF, we 
can get the linearization matrix  kH  of observation equation. 

 
( )

( )
( ( ))

k

k k

h

= −

∂
− =

∂ S S

S
H S

S &

&
 (51) 

Where kH  is a 2i n×  matrix, i  is the number of feature point, n  is the number of state 

variable. 

4.1.3 Simulations and analyses  

On the basis of the algorithm above, let the camera focus f = 50mm, the objective spacecraft  

P  is a 4.0 4.0 4.0m m m× ×  cube, and its body frame coordinates of feature points are 
respectively { }-2.25,-8.5,2.25 , { }-2.25,-7.8,-2.25 , { }-2.25,9,2.25 , { }-2.25,7.8,-2.25 , 
{ }-2.25,6.0,-2.25 , { }1.25,7.6,2.25 , { }2.25,-9,2.25 , { }2.25,8.9,2.25 . Table 2 lists the initial 
parameters of the simulations. The initial variance covariance matrix of [ ]Tx y zΔ Δ Δ is 

3 30.4 ×I , the variance covariance matrix of [ ]TVx Vy Vz is 4
3 32 10− ×× I , the variance 

covariance matrix of  ΔQ  is 7
4 41 10− ×× I  ( I is identity matrix).The simulation time is three 

periods. Fig. 14 is the simulation results. 
 

Initial parameters 
 spacecraft A  spacecraft P

 
ascending node/deg 

inclination of orbit/deg 
argument of perigee/deg 

excentricity 
semi-major axis/km 

time of perigee passage/s 
yaw/deg 
pitch/deg 
roll/deg 

yaw angle velocity/(deg/s) 
pitch  angle velocity/(deg/s) 
roll  angle velocity/(deg/s) 

 

0 
57.5005 

0 
0.000005 
7051.000 

0 
0.5 
0.2 
0.5 

5×10-7 
5×10-7 
5×10-7 

0 
57.5 

0 
0.0 

7051.000 
0 

0.4 
0.2 
0.5 

5×10-7 
5×10-7 
5×10-7 

Δ x/m 
Δ y/m 
Δ z/m 

Vx/(m/s) 
Vy/(m/s) 
Vz/(m/s) 

Δ q0 
Δ q1 
Δ q2 
Δ q3 

0.0 
0.0 

35.25502 
0.07518633 
-0.06561435 

0.0 
1 
0 
0 
0 

Table 2. The initial parameters of the simulations 

It is not intuitionistic to represent the attitude results by quaternion, yet the attitude results 
are described as their Euler form. 
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Fig. 14. Relative position and attitude errors of QEKF 

From Fig. 14, we can see that this algorithm is convergent. And Fig. 14 shows the relative 
position x error is within -0.03m to 0.04m; y error is within -0.02m to 0.015m; z error is 
within -0.025m to 0.01m; relative yaw angle error is about -1.4 to zero mrad when the 
simulation time is about 400 seconds before, but after 400 seconds relative yaw angle error 
tend to zero; relative pitch error is within -0.025 to 0.005 mrad; relative roll angle error is 
within -0.03 mrad to 0.07 mrad.  

4.2 Autonomous relative navigation for spacecraft based-on Rodrigues and EKF 
(REKF) 
4.2.1 State equation of REKF 

For Rodrigues with no redundance valvate to represent the attitude. So here we use 
Rodrigues ( )1 2 3

T
AP b AP b AP b AP b− − − − − − −= Φ Φ ΦΦ instead of quaternion. As section 4.1, we 

can select the state variable assignment as eq. (52).  
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 (52) 
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Where Ω  is the angle velocity of objective satellite P , 11 2 x y zRodr a b cω ω ω= Δ + Δ + Δ  , 

12 y zRodr aω ω= Δ + , 13 y zRodr aω ω= − + Δ , 21 x zRodr bω ω= Δ − , 22 2x y zRodr a b cω ω ω= Δ + Δ + Δ , 

23 x zRodr bω ω= + Δ , 31 x yRodr cω ω= Δ + , 32 x yRodr cω ω= − + Δ , 33 2x y zRodr a b cω ω ω= Δ + Δ + Δ , 

( , , )T
x y zω ω ω is the vector ( )AP bω . 

From eq. (52), we can get the linearization matrix Φ . 

4.2.2 Observation equation of REKF 

The structural observation equation of REKF is simular to the QEKF’s. Here we mainly 
discuss the transformation of [ ]1 2 3

T
AP b AP b AP b AP b− − − − − − −= Φ Φ ΦΦ . Transform M  of eq. 

(44) into Rodrigues [ ]1 2 3
T

Cb Cb Cb Cb− − −= Φ Φ ΦΦ , transform AP b−Φ  form body frame of 
active spacecraft to the camera frame as follows 

 CP AP b Cb−= ∗Φ Φ Φ  (53) 

Substitute ( , , )T
CP CP CPx x xΔ Δ Δ  of eq. (44), CPΦ  of eq. (53) for ( 1,2,3)it i =  and 

( 1,2,3; 1,2,3)ija i j= =  of eq. (20) in turn, observation equation about state variable S  can be 
represented as  

 

11 12 13

31 32 33

21 22 23

31 32 33

i i i

i i i

i i i

i i i

W W W AP C
i

W W W AP C

W W W AP C
i

W W W AP C

l X l Y l Z x
x f

l X l Y l Z z

l X l Y l Z y
y f

l X l Y l Z z

−

−

−

−

+ + + Δ⎧
=⎪ + + + Δ⎪

⎨ + + + Δ⎪ =⎪ + + + Δ⎩

 (54) 

Where                              

2 2 2 2
11 1 2 3

2
12 1 2 3

2
13 1 3 2

2
21 1 2 3

2 2 2 2
22 1 2 3

2
23 2 3 1

31

(1 ) /(1 )

2( ) /(1 )

2( ) /(1 )

2( ) /(1 )

(1 ) /(1 )

2( ) /(1 )

2(

CP CP CP

CP CP CP

CP CP CP

CP CP CP

CP CP CP

CP CP CP

CP

l

l

l

l

l

l

l

− − −

− − −

− − −

− − −

− − −

− − −

−

= + Φ −Φ −Φ +Φ

= Φ Φ +Φ +Φ

= Φ Φ −Φ +Φ

= Φ Φ −Φ +Φ

= −Φ +Φ −Φ +Φ

= Φ Φ +Φ +Φ

= Φ 2
1 3 2

2
32 2 3 1

2 2 2 2
33 1 2 3

) /(1 )

2( ) /(1 )

(1 ) /(1 )

CP CP

CP CP CP

CP CP CP

l

l

− −

− − −

− − −

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪Φ +Φ +Φ ⎪
⎪= Φ Φ −Φ +Φ
⎪
⎪= −Φ −Φ +Φ +Φ ⎭

 (55) 

The linear method of eq. (54) is simular to 4.1.2.2 section. 

4.2.3 Simulations and analyses 

On the basis of the theories of REKF, considering the simulation conditions as 4.1.3, and let 

[0 0 0]TAP b− =Φ , the initial variance covariance matrix of AP b−Φ is 7
3 31 10− ×× I , we get 

the simulation results as Fig. 15. 
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From Fig. 15, we can see that this algorithm is convergent. And Fig. 15 shows the relative 
position x error is within -0.02m to 0.03m; y error is within -0.015m to 0.01m; z error is 
within -0.03m to 0.01m; relative yaw angle error is about -0.7 to zero mrad when the 
simulation time is about 400 seconds before, but after 400 seconds relative yaw angle error 
tend to zero; relative pitch error is about -0.16 mrad when the simulation time is about 400 
seconds before, but after 400 seconds relative pitch error is within -0.08 to 0.02 mrad; relative 
roll angle error is abot -0.12 mrad when the simulation time is about 400 seconds before, but 
after 400 seconds relative roll error is within -0.04 to 0.04 mrad. 
 

 
Fig. 15. Relative position and attitude errors of REKF 

4.3 Autonomous relative navigation for spacecraft based-on Dual Quaternion and EKF 
(DQEKF) 
4.3.1 How to depict a 3-D line and its transformation with dual quaternion 

According to geometric algebra theory (D. Hestenes, G. Sobczyk,1984), dual quaternion can 
be found in special 4D even subalgebra of 3,0,1Ξ  and is spanned by the following basis 

 m m2 3 3 1 1 2 4 1 4 2 4 3

6

1 , , , , ,
unitscalar pseudoscalar

bivectors

e e e e e e e e e e e e I'******(******)  (56) 

Since a rigid motion consists of the transformations rotation and translation according to 
Euler theorem, a simple rotor in its Euler representation for a rotation by an angle θ  

 0 1 2 3 2 3 1 3 1 2 0 0cos( / 2) sin( / 2) sq q q q q q qθ θ= + + + = + = + = +R e e e e e e q n n  (57) 

Where n  is the unit 3D bivector of the rotation-axis spanned by the bivector basis 2 3e e , 

3 1e e , 1 2e e  and 0 , ( 1,2,3)sq q s R= ∈ . 
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In 3,0,1Ξ , a translation t  is represented by a spinor T . Thus applying T  from the left and 

its conjugated from the right to the R  in eq. (57), we can get the modified rotor 

 *
0 0(1 )( )(1 ) ( )

2 2
q q= = + + − = + + ∧

t t
M TRT I q I q I q t  (58) 

As we know a 3D line al  can be represented by PlÜcker coordinate 

 a a aε= +l l m
%

 (59) 

Hence the Euclidean transformation of the 3D line al  by the modified rotor M  can be 

represented 

 *
b b b aε= + =l l m Ml M
% %

 (60) 

4.3.2 State equation of DQEKF 

The structural state equation of DQEKF is simular similar to the QEKF’s. It is unnecessary to 
go into details. 

4.3.3 Observation equation of DQEKF 

On the basis of 4.3.1, here we will build the observation equations according to the 
observation valuable. Fig.16 shows the relation of projective line and projective plane with 
space object frame.  
 

 
Fig. 16. Relation of projective line and projective plane with space object frame  

W W W WO x y z−  stands for object frame, i.e. body frame of passive spacecraft in this paper;  

C C C CO x y z−  stands for camera frame; i i iO x y−  stands for image frame. In Fig.16, al  stands 
for a 3D object line and its projective line is bl . We can represent the transformation 
between al  and bl  as formulation (60). But how to calculate the translator M  using image 
coordinates and object coordinates? In order to process the data simply, first we give a 
definition as follow. 
Definition: Feature line point is the intersection point of the projective line bl  and a 
perpendicular line passing though the origin iO , it is unique. 
In camera frame, the projective plane, which is shown in grey, can be represented as 
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 0bx C by C bz Cm x m y m z+ + =  (61) 

Where ( )T
bx by bz bm m m = m . 

From Fig.16, we can see that the projective line bl  lies in either projective plane or image 
plane. When Cz f=  ( f  is the focus of the camera), the equation of the projective line bl  lies 
in image plane can be described as 

 0bx i by i bzm x m y m f+ + =  (62) 

Thus we can get the vector bPm  containing the feature line point of bl  normal to the 
projective plane 

 
2 2

[ ]TbP bx by bz

bx by

f
m m m

m m
=

+
m  (63) 

Then the feature line point of bl  coordinates is described as 

 

2 2

2 2

bx bz
iP

bx by

by bz
iP

bx by

m m
x f

m m

m m
y f

m m

⎧ = −⎪ +⎪
⎨
⎪ = −⎪ +⎩

 (64) 

bm  can be calculated according to literature (LI K. Z, 2007). 
Obviously, eq. (64) are nonlinear equations about S . And they must be linearized in visual 
relative navigation estimation based-on EKF. The partial differential equations to eq. (64) 
about S  can be represented as follows 

 

byiP iP bx iP iP bz

bx by bz

byiP iP iP iPbx bz

bx by bz

mx x m x x m

m m m

my y y ym m

m m m

∂∂ ∂ ∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂ ∂ ∂ ∂

∂∂ ∂ ∂ ∂∂ ∂
= + +

∂ ∂ ∂ ∂ ∂ ∂ ∂

⎫
⎪
⎪
⎬
⎪
⎪
⎭

S S S S

S S S S

 (65) 

From eq. (57)-(60), we can get the equation as follows 

 * * * * * * * *1 1 1
( )( )( ) ( )

2 2 2 2b b a a a a a aε ε ε ε ε+ = + + + = + + +
t

l m q q l m q q t ql q ql q t qm q tql q  (66) 

And from eq. (66), we can get 

 * * * *1 1

2 2b a a a= + +m ql q t qm q tql q  (67) 

According to the theories of quaternion, we can described the eq. (67) as follows 

 * * * *

1 1

2 2b a a a

− + − + − + + −
= + +q q t qt q q q

m M M M l M M m M M M l  (68) 
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         Let *

2 2 2 2
0 1 2 3 1 2 0 3 3 1 0 2

2 2 2 2
1 2 0 3 0 1 2 3 2 3 0 1

2 2 2 2
3 1 0 2 2 3 0 1 0 1 2 3

1 0 0 0

0 2( ) 2( )

0 2( ) 2( )

0 2( ) 2( )

q q q q q q q q q q q q

q q q q q q q q q q q q

q q q q q q q q q q q q

+ −

⎡ ⎤
⎢ ⎥

+ − − + −⎢ ⎥
= = ⎢ ⎥− − + − +⎢ ⎥

⎢ ⎥+ − − − +⎣ ⎦

M q q
R M M            (69) 

Where [ ] [ ]0 1 2 3 0 1 2 3
T T

CP CP CP CPq q q q q q q q− − − −= ,  

 *
3 2

,
3 1

2 1

0 0 0 0

0 0
2

0 0

0 0

t t

t t

t t

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥

−⎣ ⎦

t t
M  (70) 

Eq. (68) can be simplified as follows  

 *,

1

2b a a= +M Mt t
m R m M R l  (71) 

So the partial differential equations of S  can be calculated simply from eq. (71). 

4.3.4 Simulations and analyses 

On the basis of the theories of DQEKF, considering the simulation conditions as 4.1.3 
section, we can get the results as Fig. 17. 
 

 
 

Fig. 17. Relative position and attitude errors of DQEKF 
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From Fig. 17, we can see that this algorithm is convergent. And Fig. 17 shows the relative 
position x error is within -0.03m to 0.04m; y error is within -0.025m to 0.02m; z error is 
within -0.03m to 0.015m; relative yaw angle error is about -1.4 to zero mrad when the 
simulation time is about 400 seconds before, but after 400 seconds relative yaw angle error 
tend to zero; relative pitch error is about 0.1 mrad when the simulation time is about 400 
seconds before, but after 400 seconds relative pitch error is within -0.02 to 0.04 mrad; relative 
roll angle error is within -0.08 to 0.06 mrad. 

4.4 Autonomous relative navigation for spacecraft based-on Dual Rodrigues-
Quaternion and EKF (DRQEKF) 
4.4.1 State equation of DRQEKF 

Compare with section 4.3, here we use Rodrigues ( )1 2 3
T

AP b AP b AP b AP b− − − − − − −= Φ Φ ΦΦ  

instead of quaternion. Thus the structural state equation of DRQEKF is simular similar to 
section 4.2.1. It is unnecessary to go into details. 

4.4.2 Observation equation of DRQEKF 

For attitude matrix has a unique attribute, MR  of eq. (69) can also be represented as 

 11 12 13

21 22 23

31 32 33

1 0 0 0

0

0

0

l l l

l l l

l l l

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

MR  (72) 

( 1,2,3; 1,2,3)ijl i j= =  of eq. (72) equal to ijl  of eq. (55). 

So the partial differential equations to eq. (71) about ( 1,2,3)AP b i i− −Φ =  can be represented as 

follows 

 *,

1
,( 1,2,3)

2
b

a a
AP b i AP b i AP b i

i
− − − − − −

∂ ∂ ∂
= + =

∂Φ ∂Φ ∂Φ
M M

t t

m R R
m M l  (73) 

The other partial differential of the state valuable parameters can be deduced as section 
4.3.3. 
 

4.4.3 Simulations and analyses 

On the basis of the theories of DRQEKF, considering the simulation conditions as 4.1.3 and 
4.1.3 sections, we can get the results as Fig. 18. 
From Fig. 18, we can see that this algorithm is convergent. And Fig. 18 shows the relative 
position x error is within -0.02m to 0.03m; y error is within -0.02m to 0.01m; z error is within 
-0.03m to 0.01m; relative yaw angle error is about -0.5 to zero mrad when the simulation 
time is about 400 seconds before, but after 400 seconds relative yaw angle error tend to zero; 
relative pitch error is about -0.1 mrad when the simulation time is about 400 seconds before, 
but after 400 seconds relative pitch error is within -0.08 to 0.02 mrad; relative roll angle error 
is within -0.08 to 0.08 mrad. 
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Fig. 18. Relative position and attitude errors of DRQEKF 

5. Conclusion 

In section 2, a feature extraction algorithm based-on dynamically structured element is 
proposed. The simulation results show that this algorithm is an accurate valid method in 
feature extraction for distributed spacecraft system.  
In section 3, we propose the relative position and pose algorithms based on 
quaternion/Rodrigues and the orbit & attitude information of the spacecrafts. The 
algorithms reduces the Jacobian matrix rank by using quaternion/Rodrigues. The 
simulations show that the iterative numbers of this algorithm are reduced when the orbit & 
attitude information of the spacecrafts has been used. The algorithm based-on Rodrigues is 
better than quaternion’s when attitude angles are smaller. This thought is valuable for the 
similar applications based on least squares method.  
In section 4, four pose and motion estimation algorithms are proposed. And they can meet 
the high requirement of spacecraft. QEKF and REKF are based-on point observations, and 
DQEKF and DRQEKF are based-on line observations. The results of simulation are 
calculated by using the computer of HP Pavilion Intel (R), Pentium (R) 4, CPU 3.06GHz, 512 
MB, the consumable times of method QEKF, REKF, DQEKF and DRQEKF are 6688 ms, 4187 
ms, 12437 ms and 7141 ms respectively. So if the observations are points, REKF is proposed 
when the attitude angles are smaller; if the observations are lines, DRQEKF is proposed 
when the attitude angles are smaller. 
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In our future work, the theories in SE reconstruction and relative position and attitude 
combination will be further studied, and the corresponding simulations about them will be 
also researched. And we will consider the disturbance factor of satellites in order to improve 
the practicability of the static forecast and the pose and motion estimation algorithms. 
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