
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322392843?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


11 
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Jonghee Bae, Seungho Yoon, and Youdan Kim 
School of Mechanical and Aerospace Engineering, Seoul National University, 

Republic of Korea 

1. Introduction 

Satellites provide various services essential to the modern life of human being. For example, 

satellite images are used for many applications such as reconnaissance, geographic 

information system, etc. Therefore, design and operation requirements of the satellite 

system have become more severe, and also the system reliability during the operation is 

required. Satellite attitude control systems including sensors and actuators are critical 

subsystems, and any fault in the satellite control system can result in serious problems. To 

deal with this problem, various attitude estimation algorithms using multiple sensors have 

been actively studied for fault tolerant satellite system (Edelmayer & Miranda, 2007; 

Jiancheng & Ali, 2005; Karlgaard & Schaub, 2008; Kerr, 1987; Xu, 2009).  

Satellites use various attitude sensors such as gyroscopes, sun sensors, star sensors, 

magnetometers, and so on. With these sensors, satellite attitude information can be obtained 

using the estimation algorithms including Kalman filter, extended Kalman filter (EKF), 

unscented Kalman filter (UKF), and particle filter. Agrawal et al. and Nagendra et al. 

presented the attitude estimation algorithm based on Kalman filter for satellite system 

(Agrawal & Palermo, 2002; Nagendra et al., 2002). Mehra and Bayard dealt with the 

problems of satellite attitude estimation based on the EKF algorithm using the gyroscope 

and star tracker as attitude sensors (Mehra & Bayard, 1995). In the EKF algorithm, the 

nonlinearities of the satellite system are approximated by the first-order Taylor series 

expansion, and therefore it sometimes provides undesired estimates when the system has 

severe nonlinearities. Recently, researches on UKF have been performed because the UKF 

can capture the posterior mean and covariance to the third order of nonlinear system. It is 

known that the UKF can provide better results for the estimation of highly nonlinear 

systems than EKF (Crassidis & Markley, 2003; Jin et al., 2008; Julier & Uhlmann, 2004). 

Crassidis and Markley proposed the attitude estimation algorithm based on unscented filter, 

and showed that the fast convergence can be obtained even with inaccurate initial 

conditions.  The UKF was used to solve the relative attitude estimation problem using the 

modified Rodrigure parameter (MRP), where the gyroscope, star tracker, and laser 

rendezvous radar were employed as the attitude sensors (Jin et al., 2008).  

For multi-sensor systems, there are two different filter schemes for the measured sensor data 

process: centralized Kalman fileter (CKF) and decentralized Kalman filter (DKF) (Kim & 

Hong, 2003). In the CKF, all measured sensor data are processed in the center site, and 
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therefore information loss can be minimized. However, it causes severe computational 

problem and may provide unreliable results, when the CKF is overloaded with more data 

than it can handle. In the DKF, the local estimators of each sensor can generate the global 

optimal or suboptimal state estimates according to the data fusion criterion. Wei and 

Schwarz presented a decentralized Kalman filter strategy and applied to GSP/INS 

integration (Wei & Schwarz, 1990). Edelmayer and Miranda applied the decentralized 

extended Kalman filter to the fault tolerant estimation (Edelmayer & Miranda, 2007). A 

decentralized unscented Kalman filter in federated configuration was developed for multi-

sensor navigation data fusion (Jiancheng & Ali, 2005). Jiancheng and Ali used the inertial 

navigation system (INS) integrated with astronavigation system and global positioning 

system (GPS). In (Kim & Hong, 2003; Lee, 2008), a decentralized information filter was 

proposed by combining unscented transformation method with the extended information 

filtering architecture, and the algorithm was extended to perform the decentralized 

estimation for sensor networks. The decentralized scheme has advantages in the sense that 

(i) much more data can be treated because of the parallel structure, and (ii) the fault can be 

easily detected and isolated due to the decentralized scheme (Bae & Kim, 2010; Edelmayer & 

Miranda, 2007).  

In this study, the decentralized Kalman filter scheme in a federated configuration is adopted 

for satellite attitude estimation. The federated UKF can be employed to detect and isolate 

the sensor fault effectively (Jiancheng & Ali, 2005; Edelmayer & Miranda, 2007). Using the 

fault detection and isolation (FDI) algorithm, the accurate attitude information can be 

provided despite sensor fault occurrence, and therefore satellite can perform its mission 

continuously. There exist various FDI algorithms (Hwang et al., 2010). Fault can be detected 

and identified by (i) monitoring the measurement residual, or (ii) using sensitivity factor. In 

this study, sensitivity factor is used to detect and identify the sensor failure. To verify the 

performance of the proposed algorithm, numerical simulations are performed for a satellite 

with gyroscope and star tracker as attitude sensor. The numerical simulation shows that the 

federated UKF with FDI algorithm detects and isolates the sensor faults effectively, and 

therefore it provides accurate and robust attitude estimation results when the attitude 

sensor has a fault.  

This paper is organized as follows. In Section 2, the attitude kinematics, dynamics, and 

sensor modeling are described. The attitude estimation algorithms using UKF and the 

federated configuration, and FDI algorithm are derived in Section 3. Numerical simulation 

and analysis to verify the proposed algorithm are shown in Section 4. Finally, conclusions 

are presented in Section 5. 

2. Attitude kinematics, dynamics, and sensor modeling 

2.1 Attitude kinematics and dynamics 

In this study, quaternion is used for describing attitude dynamics of satellite (Schaub & 

Junkins, 2003). The quaternion is a four-dimensional vector, defined as 

 
[ ] [ ]1 2 3 4 4

ˆ TT
q q q q q q q= ≡

 (1) 

where 
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 [ ]1 2 3
ˆ ˆsin

2

T
q q q q e

ϑ⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 (2) 

 4 cos
2

q
ϑ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (3) 

where ê  is the unit Euler axis, and ϑ  is the rotation angle. The quaternion satisfies the 
following constraint. 

 2 2 2 2
1 2 3 4 1Tq q q q q q= + + + =  (4) 

The direction cosine matrix can be written in terms of quaternion as 

 ( )22
4 3 3 4

ˆ ˆ ˆ ˆ( ) 2 2 ( ) ( )T TA q q q I qq q q q q×
×= − + − = Ξ Ψ  (5) 

where 3 3I ×  is a 3 3×  identity matrix and 

 4 3 3
ˆ

( )
ˆT

q I q
q

q

×
×⎡ ⎤+

Ξ = ⎢ ⎥
−⎢ ⎥⎣ ⎦

 (6) 

 4 3 3
ˆ

( )
ˆT

q I q
q

q

×
×⎡ ⎤−

Ψ = ⎢ ⎥
−⎢ ⎥⎣ ⎦

 (7) 

Also, q̂×  is the cross-product matrix defined by 

 
3 2

3 1

2 1

0

ˆ 0

0

q q

q q q

q q

×
−⎡ ⎤

⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 (8) 

The kinematic differential equation for the quaternion is given by 

 
1 1

( ) ( )
2 2

q q qω ω= Ξ = Ω$  (9) 

where ω is the three-dimensional angular rate vector and 

 ( )
0T

ω ω
ω

ω

×⎡ ⎤−
Ω = ⎢ ⎥

−⎢ ⎥⎣ ⎦
 (10) 

Quaternion provides successive rotation using quaternion multiplication as 

 1 2 1 2( ( )) ( ( )) ( ( ) ( ))A q t A q t A q t q t= ⊗  (11) 

The composition of the quaternion is defined by 

 [ ] [ ]1 2 1 1 2 2 2 1( ) ( ) ( ( )) ( ) ( ) ( ( )) ( ) ( )q t q t q t q t q t q t q t q t⊗ = Ψ = Ξ  (12) 
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Also, the inverse quaternion is defined by 

 1

4

q̂
q

q
− −⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (13) 

Note that [ ]1 0 0 0 1
T

q q−⊗ = , which is the identity quaternion. 

The attitude dynamics of a spacecraft can be represented from the Euler’s momentum 

equation as follows (Schaub & Junkins, 2003). 

 J Jω ω ω τ×= − +$  (14) 

where J  is a 3 3×  moment of inertia matrix, and 3Rτ ∈  is a control torque vector. 

2.2 Sensor modeling 
2.2.1 Gyroscope model 

A gyroscope is a general sensor that measures the angular rate of the satellite. The 

gyroscope system can be expressed mathematically by Frarrenkopf’s model (Karlgaard & 

Schaub, 2008). In this model, the measured angular velocity is represented by the sum of the 

true angular velocity, an additive bias, and Gaussian white-noise. The bias dynamics are 

considered to be driven by a Gaussian white-noise process. Also, in this model, it is 

assumed that the bias term can be regarded as the net effect of several systematic error 

sources such as scale factor errors, non-orthogonality, misalignment, and so on. The 

gyroscope model can be represented as  

 vω ω β η= + +#  (15) 

 uβ η=$  (16) 

where ω#  is the measured angular velocity, ω  is the true angular velocity, β  is the drift, 

and vη  and uη  are independent zero-mean Gaussian white-noise processes with 

 2
3 3( ) ( ) ( )T

v v vE t t Iη η τ σ δ τ ×⎡ ⎤ = −⎣ ⎦  (17) 

 2
3 3( ) ( ) ( )T

u u uE t t Iη η τ σ δ τ ×⎡ ⎤ = −⎣ ⎦  (18) 

where [ ]E  denotes expectation, and ( )tδ τ−  is the Dirac-delta function.  

2.2.2 Star tracker model 

The rate signal from the gyroscope is integrated to estimate the attitude of the satellite, and 

therefore it causes a drift of the estimates away from the true value. For this reason, it is 

necessary to use additional sensors such as a star tracker for the compensation of the drift 

error. A star tracker is an optimal device, which recognizes the star pattern and provides the 

attitude information of a spacecraft (Jayaraman et al., 2006). The output of the star tracker is 

an estimated quaternion that relates the orientation of the body with respect to the inertial 
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frame. The quaternion estimates are assumed to be unbiased, but it contains a random 

measurement noise. A star tracker model can be represented as (Karlgaard & Schaub, 2008) 

 s sq q qδ= ⊗  (19) 

where sq  is a star tracker output vector which is a continuously measured quaternion 
vector, q  is the quaternion representing the true orientation, and sqδ  is an independent 
zero-mean Gaussian white-noise process with 

 [ ]( ) 0sE q tδ =  (20) 

 2
4 4( ) ( ) ( )T

s s sE q t q t Iδ δ τ σ δ τ ×⎡ ⎤ = −⎣ ⎦ . (21) 

 

3. Fault-tolerant attitude estimation 

To incorporate the various sensor data of the multi-sensor system, there are two schemes 
which provide accurate and robust state estimation: CKF and DKF. The decentralized 
scheme in a federated configuration has the benefit of detecting a fault in a local sensor 
during the process. Therefore, a federated UKF is adopted to detect and isolate the sensor 
faults, in this study. Federated UKF algorithm can prevent mission failures because an 
effective FDI algorithm is employed in the federated configuration. 

3.1 Federated configuration filter 

Federated filtering consists of two parts: local filters and master filter. The local filters are 
parallel processed and independent of each other, and the estimated results of the local 
filters are fused in the master filter. In each local filter, local estimate is obtained using the 
measurements of the local sensors. The master filter uses the estimates of the local filters to 
update the global state estimate in a fusion process, and this result is used for the 
initialization of the local filters. Federated filtering scheme has an advantage; it can detect 
and isolate the fault of the local sensor during the process. The master filter is not affected 
by the failure of the local sensor (Edelmayer & Miranda, 2007; Jiancheng & Ali, 2005). The 
structure of the federated configuration filter is shown in Fig. 1. The filtering algorithm 
based on UKF in the local filter and the data fusion in the master filter are explained in the 
subsequent sections, respectively. 

3.2 Local filter: unscented Kalman filter 

For the satellite attitude estimation, several algorithms have been studied: Kalman filter, 
EKF, UKF, and particle filter. The EKF is widely used for the state estimation of the 
nonlinear systems. The EKF is based on approximating the nonlinearities by the first-
order Taylor series expansion, and therefore this filter may sometimes provide unreliable 
estimates if the system has severe nonlinearities. On the other hand, the UKF is the 
extension of the Kalman filter to reduce the linearization errors of the EKF. It is known 
that the UKF provides good estimation results not only for linear systems but also for 
nonlinear systems. In this study, the UKF is considered to estimate the attitude of the 
satellite. 
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Fig. 1. The structure of the federated filter 

Consider the n-state nonlinear system for UKF algorithm (Simon, 2006). 

 1 ( , , ) , ~ (0, )

( , ) , ~ (0, )
k k k k k k k

k k k k k k

x f x u t w w N Q

z h x t v v N R
+ = +
= +

 (22) 

where n
kx ∈ℜ  is the state vector, m

kz ∈ℜ  is the measurement vector, n
kw ∈ℜ  is the 

process noise vector, and m
kv ∈ℜ  is the measurement noise vector. It is assumed that the 

noise vectors are uncorrelated white Gaussian process. The UKF is initialized as follows. 

 
[ ]

( )( )
0 0

0 0 0 0 0

ˆ

ˆ ˆ
T

x E x

P E x x x x

+

+ + +

=

⎡ ⎤= − −⎢ ⎥⎣ ⎦

 (23) 

The UKF is derived based on the unscented transformation which is simpler to approximate 
a Gaussian distribution than to approximate an arbitrary nonlinear function. A set of sigma 
points is first chosen which are selected to express the probability distribution, and the mean 

and covariance of the set of sigma points are x  and P . The nonlinear function is then 

applied to each sigma point, and the results provide a set of transformed points with the 
mean and covariance. Now, time update is performed to propagate the state estimate and 
covariance from on measurement time to the next. To propagate from time step (k-1) to k, 
the set of sigma points is chosen using the current best guess of the mean and covariance as 
follows. 

 ( )
( )

1 1

1

1

ˆ ˆ

1,...,

1,...,

i i
k k

T
i

k
i

T
n i

k
i

x x x

x nP i n

x nP i n

+
− −

+
−

+ +
−

= +

= =

= − =

#

#

#

 (24) 

For the state propagation, a priori state estimate ˆ
kx−  and error covariance kP−  are computed 

using the propagated sigma point vectors as 
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 1
ˆ ˆ( , , )i i

k k k kx f x u t−=  (25) 

 
2

1

1ˆ ˆ
2

n
i

k k
i

x x
n

−

=
= ∑  (26) 

 ( )( )
2

1
1

1
ˆ ˆ ˆ ˆ

2

n T
i i

k k k k k k
i

P x x x x Q
n

− − −
−

=
= − − +∑  (27) 

where ˆ i
kx  denotes the transformed sigma points using the nonlinear function.  

Then, the measurement update is performed using the time propagation results. Sigma 
points are again chosen with the appropriate changes using the current best guess of the 
mean and covariance. 

 ( )
( )

ˆ ˆ

1,...,

1,...,

i i
k k

T
i

k
i

T
n i

k
i

x x x

x nP i n

x nP i n

−

−

+ −

= +

= =

= − =

#

#

#

 (28) 

Each predicted measurement vector ˆ i
kz  is obtained through the measurement model, and 

the predicted measurement ˆ
kz  is calculated as follows. 

 ˆ ˆ( , )i i
k k kz h x t=  (29) 

 
2

1

1
ˆ ˆ

2

n
i

k k
i

z z
n =

= ∑  (30) 

The innovation covariance zzP  and the cross correlation xzP  are obtained with the 

assumption that the measurement noise is additive and independent as follows. 

 ( )( )
2

1

1
ˆ ˆ ˆ ˆ

2

n T
i i

zz k k k k k
i

P z z z z R
n =

= − − +∑  (31) 

 ( )( )
2

1

1
ˆ ˆ ˆ ˆ

2

n T
i i

xz k k k k
i

P x x z z
n

−

=

= − −∑  (32) 

Finally, a posteriori state and covariance estimates can be performed using the predicted 
values as  

 ˆ ˆ ˆ( )k k k k kx x K z z+ −= + −  (33) 

 T
k k k zz kP P K P K+ −= −  (34) 

where kK  is the filter gain selected to minimize the mean squared error of the estimate as 
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 -1
k xz zzK P P=  (35) 

This completes the UKF algorithms. Note that the EKF algorithm is based on the 

linearization while the UKF algorithm is based on the unscented transformations which are 

more accurate than the linearization for propagating mean and covariance. 

3.3 Master filter: data fusion 

The master filter is processed at the same rate of the local filter. If all local estimates are 

uncorrelated, the global estimate from the master filter is given by 

 { }1 1 1
1 1 2 2

ˆ ˆ ˆ ˆ
M M N Nx P P x P x P x− − −= + + +A  (36) 

 1 1 1 1
1 2M NP P P P− − − −= + + +A  (37) 

where ˆ
ix  and iP  are the local estimate and its covariance of the i-th local filter, and 1

MP−  is 

called the information matrix. Note that the global estimate is the sum of local estimates and 

linear weighted combination with weighting matrices, 1 ( 1,2, , )iP i N− = A , and 1
MP− .  

The federated UKF scheme has two operating modes according to initializing the local filter 

of the fused data: reset mode and no-reset mode. In the reset mode, the local filters are 

initiated by the global estimate as follows: 

 
1

ˆ ˆ
i M

i i M

x x

P Pβ −

=

=
 (38) 

where iβ  is the information sharing coefficient satisfying 1 2 1N Mβ β β β+ + + =A . This 

mode provides a continuous information feedback from the master filter to the local filters. 

In the no-reset mode, on the other hand, information is not feedback, and thereby the global 

fused data does not have an effect on the local filters. Also, local filters retain their 

information which is given locally. It is known that the reset mode can provide accurate 

estimates, while the no-reset mode gives the tolerance of sensor failure. In this study, the 

reset mode in the federated configuration filter is used to obtain better and more accurate 

estimation values. Instead, the FDI algorithm is adopted for the fault tolerance as described 

in the next subsection. 

3.4 Fault detection and isolation algorithm 

The federated UKF provides accurate and robust state estimation values, when all attitude 
sensors normally operate during the maneuver. However, if one of the attitude sensors has a 
problem, the performance of the federated UKF is degraded. To overcome this problem, the 
FDI algorithm is employed in the federated configuration. 
Fault detection usually requires the careful monitoring of the measured output data. In 
normal situation, the output data follow the known patterns of evolution under the 
condition of the limited random disturbance and measurement noise. However, the 
measured output data change their nominal evolution pattern, when sensor failures occur. 
Fault detection algorithms are generally based on considering the differences between the 
evolution patterns and the measured output data (Bae & Kim, 2010). 
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General fault detection algorithms are monitoring the measurement residual and utilizing 

the sensitivity factor. In this study, the sensitivity factor is used to detect the sensor failure. 

The sensitivity factor is defined as follows. 

 ( ) ( ) ( )1ˆ ˆ ˆ ˆT
i i M i M i MS x x P P x x

−= − + −  (39) 

When iS  is smaller than a threshold value, then i-th sensor is considered as a healthy one, 

and therefore the sensor output can be used to calculate the global estimates ˆ
Mx  and MP . 

However, if iS  is larger than a threshold value, then i-th sensor might have some problems. 

In this case, the global estimates  ˆ
Mx  and MP  should be computed without using the output 

of i-th sensor, that is a faulty one. The threshold value can be selected based on Chi-square 

distribution and optimized by the experiment for the particular application. Figure 2 shows 

the time histories of the sensitivity factor for the sensor normal case and the sensor failure 

case. 
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Fig. 2. Time histories of sensitivity factor: (a) normal case (left), (b) failure case (right) 

Figure 2 (a) illustrates the sensitivity factor histories for normal sensors. The sensitivity 
factor of the first sensor is larger than others. This is because the less accuracy of the first 
sensor leads to provide less reliable state estimate and covariance. Therefore the 
corresponding first sensitivity factor is large compared with others. Figure 2 (b) shows the 
sensitivity factor histories when the fault of the second sensor occurs at 150 seconds. This 
failure causes a significantly large sensitivity factor after 150 seconds compared with Fig. 2 
(a). The change of the sensitivity factor is larger than the threshold value, and the fault of the 
second sensor can be detected and isolated. 

4. Numerical simulation and analysis 

Numerical simulations are performed to verify the performance of the proposed attitude 
estimation algorithm based on the federated UKF. In the simulation, two types of attitude 
sensors are considered to estimate the attitude of the satellite: one gyroscope and two star 
trackers. The integrated system of the gyroscope and the star tracker provides accurate 
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estimates in spite of the sensor uncertainties such as drift, scale factor errors, shutting off the 
power, etc. 
Two failure cases in each attitude sensor are considered: (i) the fault in the gyroscope, and 

(ii) the fault in the star tracker. The fault detection index is defined as summarized in Table 

1. Note that the fault detection index is 0 when all sensors are normal. The fault detection 

index 1 indicates the fault of the gyroscope, the index 2 indicates the fault of the star tracker 

A, and the index 3 indicates the fault of the star tracker B, respectively. 
 

Sensor fault type Fault detection index 

No sensor fault 0 

Gyroscope fault 1 

Star tracker A fault 2 

Star tracker B fault 3 

Table 1. Fault detection index 

The quaternion history in a normal condition is considered as a reference. Sensor fault is not 

included in the normal condition. The time histories of the reference quaternion are shown 

in Fig. 3. Initial quaternion of all simulations is chosen as 

 ( ) [ ]0 0 0 0 1
T

q t = .  

The local estimates and the global estimate are shown in Fig. 4. The quaternion estimates in 

the local and master filters are perfectly matched to the true values shown in Fig. 3, because 

all sensors are healthy. The attitude errors between true quaternion and the estimated 

quaternion are shown in Fig. 5. The first three windows from the top present the estimated 

attitude in three local filters, and the last window presents the global estimate in the master 

filter. The magnitude of the error is less than 0.05 between true quaternion and the 

estimated quaternion in the gyroscope. The magnitude of the error in the star tracker A and 

B is less than 0.02. In the master filter, the magnitude of the error between true quaternion 

and the global estimate is less than 0.02 since three sensor signals are fused as described in 

Eqs. (36)-(38). 
 

4.1 Failure in the gyroscope 

In this section, a sudden failure in the gyroscope is considered to verify the fault-tolerant 

performance. A failure of the gyroscope occurs at 100 seconds, and the output signals from 

the gyroscope to the corresponding local filter are zero after 100 seconds. The time histories 

of quaternion measured by the gyroscope, the star tracker A, and the star tracker B are 

shown in Fig. 6. The estimation results without the FDI algorithm are shown in Figs. 7 and 8. 

The local and global estimates are shown in Fig. 7, and the attitude errors between true 

quaternion and the estimated quaternion are shown in Fig. 8. The estimation results with the 

FDI algorithm are shown in Figs. 9 and 10. The local and global estimates are shown in Fig. 

9, and the attitude errors are shown in Fig. 10. Fault detection and isolation result is 

presented in Fig. 11 with the fault detection index defined in Table 1. 
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Fig. 3. Quaternion history (normal condition) 
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Fig. 4. Local and global estimates (normal condition) 
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Fig. 5. Error between true quaternion and estimates (normal condition) 
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Fig. 6. Quaternion history (gyroscope fault) 
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Fig. 7. Local and global estimates without FDI algorithm (gyroscope fault) 
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Fig. 8. Error between true quaternion and estimates without FDI algorithm (gyroscope fault) 
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Fig. 9. Local and global estimates with FDI algorithm (gyroscope fault) 
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Fig. 10. Error between true quaternion and estimates with FDI algorithm (gyroscope fault) 
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Fig. 11. Fault detection index (gyroscope fault) 

As shown in Fig. 8, the maximum magnitude of the error between true quaternion and the 
local estimate in the gyroscope increases from 0.05 to 1.21 due to the sudden fault in the 
gyroscope at 100 seconds. At the same time, the maximum magnitude of the error in the 
master filter increases from 0.02 to 0.2. This error increase in the master filter is because the 
global estimate is calculated using not only healthy sensors but also the faulty sensor. 
Although the fault detection and isolation is not performed, the magnitude of the global 
estimate in the master filer is less than 0.2 as shown in Fig. 8. This result comes from the 
federated configuration. As shown in Fig. 10, the magnitude of the global estimate in the 
master filter becomes less than 0.02 when the fault detection and isolation is applied. Note 
that, when all sensors are normal, the maximum magnitude of the error in the gyroscope is 
less than 0.05 and the maximum magnitude of the error in the master filter is less than 0.02 
as illustrated in Fig. 5. Consequently, the federated UKF reduces the attitude error from 1.21 
(in the gyroscope) to 0.2 (in the master filter), and the FDI algorithm in the federated 
configuration reduces the attitude error of the master filter from 0.2 to 0.02. 

4.2 Failure in the star tracker A 

In this section, a sudden failure in the star tracker A is considered to verify the fault-tolerant 
performance. A failure of the star tracker A occurs at 100 seconds, and the output signals 
from the star tracker A are zero after 100 seconds. The time histories of quaternion measured 
by the gyroscope, the star tracker A, and the star tracker B are shown in Fig. 12. The 
estimation results without the FDI algorithm are shown in Figs. 13 and 14. The local and 
global estimates are shown in Fig. 13, and the attitude errors between true quaternion and 
the estimated quaternion are shown in Fig. 14. The estimation results with the FDI algorithm 
are shown in Figs. 15 and 16. The local and global estimates are shown in Fig. 15, and the 
attitude errors are shown in Fig. 16. Fault detection and isolation result is presented in Fig. 
17 with the fault detection index defined in Table 1. 
As shown in Fig. 14, the maximum magnitude of the error between true quaternion and the 
local estimates in all sensors is suddenly increased due to the sudden fault in the star tracker 
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A at 100 seconds: the errors in the gyroscope and the star tracker B exceed 0.1, and the error 
in the star tracker A exceeds 0.8. The maximum magnitude of the error in the master filter 
increases from 0.02 to 0.48. Similar to the gyroscope fault case described in Section 4.1, the 
federated UKF reduces the attitude error from 0.8 (in the star tracker A) to 0.48 (in the 
master filter), and the FDI algorithm in the federated filter reduces the attitude error in the 
master filter from 0.48 to 0.02. 
The performance of the proposed algorithm is summarized in Table 2. Each failure in the 

gyroscope and the star tracker A is considered to verify the fault-tolerant performance of the 

federated UKF. The errors between true quaternion and the global estimate in the master 

filter are integrated regardless of the fault isolation. A single UKF is additionally simulated 

for comparison with the federated UKF. The federated UKF is beneficial in two respects. 

First, compared with the single UKF, the error sum of the federated UKF is significantly 

decreased from 145.21 to 12.69 in the gyroscope failure case, and from 89.40 to 40.96 in the 

star tracker A failure case, respectively. As shown in Figs. 8 and 14, the federated filter 

accommodates the fault effect in the local sensors even though any FDI logic is not included. 

Second, the error sum of the federated UKF including fault detection and isolation is 

remarkably decreased from 12.69 to 1.00 in the gyroscope failure case, and from 40.96 to 1.28 

in the star tracker A failure case, respectively. As shown in Figs. 10 and 16, the FDI 

algorithm enhances the estimation performance by providing robust and accurate global 

estimate of the satellite attitude. Note that the error sum of the star tracker failure is larger 

than the error sum of the gyroscope failure because the star tracker provides more accurate 

measurement than the gyroscope. 
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Fig. 12. Quaternion history (star tracker fault) 
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Fig. 13. Local and global estimates without FDI algorithm (star tracker fault) 
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Fig. 14. Error between true quaternion and estimates without FDI algorithm (star tracker 
fault) 
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Fig. 15. Local and global estimates with FDI algorithm (star tracker fault) 
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Fig. 16. Error between true quaternion and estimates with FDI algorithm (star tracker fault) 
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Fig. 17. Fault detection index (star tracker fault) 

 

Federated UKF 
Sensor Fault Type Single UKF 

Without FDI With FDI 

Gyroscope failure 145.2083 12.6870 1.0022 

Star tracker failure 89.4021 40.9636 1.2780 

Table 2. Error sum of attitude estimates 

5. Conclusion 

In this study, the federated UKF with the FDI algorithm is proposed for the estimation of the 

satellite attitude. The UKF gives the accurate estimates for nonlinear systems, and the 

federated UKF makes the system fault-tolerant and reliable. Since the FDI algorithm can 

detect and isolate the sensor failure immediately, the global estimate is not affected by the 

poor local estimate due to the faulty sensor. In this respect, the error of the global estimate 

using the federated UKF and the FDI algorithm is smaller than that using the federated UKF 

only. Numerical simulation results show that the proposed algorithm provides efficient and 

accurate attitude estimation of the satellite despite the fault of the attitude sensors. The 

proposed algorithm can be applied not only for the satellite systems but also for the ground 

mobile robots and aerial robot systems. 
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