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1. Introduction

Induction heating is a physical process extensively used in the metallurgical industry for
different applications involving metal melting. The main components of an induction heating
system are an induction coil connected to a power-supply providing an alternating electric
current and a conductive workpiece to be heated, placed inside the coil. The alternating
current traversing the coil generates eddy currents in the workpiece and by means of ohmic
losses the workpiece is heated (see Fig. 1).
The design of an induction heating system mainly depends on its application. In this chapter
we are interested in modelling the behavior of a coreless induction furnace like those used
for melting and stirring. A simple sketch of this furnace is presented in Fig. 2(a). It consists
of a helical copper coil and a workpiece formed by the crucible and the load within, which
is the material to melt. The crucible is a cylindrical vessel made of a refractory material
with higher temperature resistance than the substances it is designed to hold in. The coil,
which is water-cooled to avoid overheating, is usually enclosed into a refractory material
for safety reasons. Alternating current passing through the coil induces a rapidly oscillating
magnetic field which generates eddy currents in the workpiece. These induced currents heat
the load. When the load melts, the electromagnetic field produced by the coil interacts with

Fig. 1. Induction heating furnace off (left) and on (right). Photographs courtesy of Mr. Vı́ctor
Valcárcel, Instituto de Cerámica, Universidade de Santiago de Compostela.
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2 Advances in Induction and Microwave Heating

Fig. 2. Sketch of the induction furnace (a) and radial section of inductors and workpiece (b).

the electromagnetic field produced by the induced current. The resulted force causes a stirring
effect helping to homogenize the melt composition and its temperature.
It is well known that the high frequencies used in induction heating applications gives rise to
a phenomenon called skin effect. This skin effect forces the alternating current to flow in a thin
layer close to the surface of the workpiece, at an average depth called the skin depth. Thus,
the ohmic losses are concentrated in the external part of the workpiece in such a way that the
higher the frequency the thinner the skin depth. It is crucial to control the distribution of these
ohmic losses, since they could cause very high temperatures in the crucible thus reducing
its lifetime. Moreover, the frequency and intensity of the alternating current also affect the
stirring of the molten bath. Since stirring mainly determines some of the properties of the
final product, it is convenient to accurately know the influence of these parameters to achieve
the desired result.
Our goal is to understand the influence on the furnace performance of certain geometrical
parameters such as the crucible thickness, its distance to the coil, the number of turns of the
coil, or physical parameters such as the thermal and electrical conductivity of the refractory
materials. In the last years, numerical simulation reveals as an important tool for this purpose,
since it allows to introduce changes in the above parameters in silico, thus avoiding long and
costly trial-error procedures in plant.
The overall process is very complex and involves different physical phenomena:
electromagnetic, thermal with phase change and hydrodynamic in the liquid region; all of
them are coupled and it is essential to consider a suitable mathematical model to achieve a
realistic simulation.
Many papers have been published concerning the numerical simulation of induction
heating devices, from some pioneering articles published in the early eighties (see,
for instance, (Lavers, 1983) and references therein) to more recent works dealing with
different coupled problems, such as the thermoelectrical problem appearing in induction
heating (Chaboudez et al., 1997; Rappaz & Swierkosz, 1996), the magnetohydrodynamic
problem related to induction stirring (Natarajan & El-Kaddah, 1999) and also a
thermal-magneto-hydrodynamic problem (Henneberger & Obrecht, 1994; Katsumura et al.,
1996) but not fully coupled because material properties are not supposed to be dependent
on temperature. Some other related works include mechanical effects in the workpiece
(Bay et al., 2003; Hömberg, 2004). A more extensive bibliographic review can be found in
(Lavers, 2008).
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Numerical Modelling of Industrial Induction 3

The aim of this chapter is to deal with the coupled thermo-magneto-hydrodynamic simulation
of an induction heating furnace like the one described above. It is a survey of previous
works by the authors (Bermúdez et al., 2007;b; 2009; Vázquez, 2008). Section 2 is devoted
to describe the mathematical model to compute the electromagnetic field and the temperature
in the furnace, and the velocity field in the molten region; the coupled mathematical model
is a system of partial differential equations with several non-linearities. In Section 3 a weak
formulation of the electromagnetic model, defined in an axisymmetric setting, is derived. In
Section 4 we present the time-discretization of the thermal and hydrodynamic models and
the corresponding weak formulations. In Section 5we describe the spatial discretization and
the algorithms used to deal with the coupling formulation and the non-linearities. Finally, in
Section 6, several numerical results are given for an industrial heating furnace designed for
melting.

2. Mathematical model for the induction furnace

In this section we introduce the mathematical model to study the thermo-magneto-hydro
dynamic behavior of an induction furnace.

2.1 The electromagnetic model

In order to model the electric current traversing the coil and the eddy currents induced in
the workpiece, we introduce an electromagnetic model which is obtained from Maxwell
equations. We state below a three-dimensional model defined in the whole space R3 and
deduce an axisymmetric formulation in Section 3. Since the full description from the 3D
model to the axisymmetric one involves a lot of technical steps and it has been done in
(Bermúdez et al., 2009), we only give here a brief description and refer the reader to the quoted
paper for further details.
We begin by introducing some assumptions and notations related with the geometry that will
be used in the sequel. Since the material enclosing the coil is not only a good refractory but
also a good electrical insulator, the induction process in the workpiece is almost unaffected by
the presence of this material. Thus, in the electromagnetic model, it will be treated as air. For
simplicity, we do not consider the water refrigerating the coil.
In order to state the problem in an axisymmetric setting, the induction coil has to be replaced
by m rings having toroidal geometry. Let Ω0 be the radial section of the workpiece and
Ω1,Ω2, . . . ,Ωm be the radial sections of the turns of the coil, which are assumed to be simply
connected (see Fig. 2(b)). Moreover, let us denote by Ω the radial section of the set of
conductors, i.e., inductors and conducting materials in the workpiece, given by,

Ω =
m⋃

k=0

Ωk,

and Ωc = R2 \ Ω̄. In particular, the refractory layer enclosing the coil is part of Ωc.
Let ∆ ⊂ R3 be the bounded open set generated by the rotation about the z−axis of Ω and
∆c the complementary set of ∆ in R3. Notice that ∆c is an unbounded set corresponding to
the air surrounding the whole device. Analogously, we denote by ∆k, k = 0, . . . ,m the subset
of R3 generated by the rotation of Ωk, k = 0, . . . ,m, respectively, around the z−axis (see Fig.
3). For simplicity, we will assume that ∆0 is simply connected and that ∆k, k = 1, . . . ,m is a
solid torus, in the sense that one single cutting surface Ωk is enough for the set ∆k \ Ωk to be
simply–connected (see Fig. 3).

77Numerical Modelling of Industrial Induction
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4 Advances in Induction and Microwave Heating

Fig. 3. Cylindrical coordinate system (a) and sketch of a toroidal turn ∆k (b).

We denote by Σ the boundary of ∆ and by Γ its intersection with the half-plane {(r,z)∈ R2;r>
0}. We notice that Σ = ∪m

k=0Σk, where Σk denotes the boundary of ∆k. Moreover, we assume
that the boundary of Ω is the union of Γ and Γs, the latter being a subset of the symmetry axis
(see Fig. 2(b)).
The induction furnace works with alternating current so we can consider that all fields vary
harmonically with time in the form:

F(x, t) = Re [eiωt F(x)], (1)

where t is time, x ∈ R3 is the spatial variable, i is the imaginary unit, F(x) is the complex
amplitude of field F and ω is the angular frequency, ω = 2π f , f being the frequency of the
alternating current.
For low and moderate frequencies, displacement currents can be neglected. Then, Maxwell’s
equations can be reduced to the so-called eddy currentmodel (see (Bossavit, 1998)):

curlH = J in R
3, (2)

iωB+ curlE = 0 in R
3, (3)

divB = 0 in R
3, (4)

whereH, J, B and E are the complex amplitudes associatedwith themagnetic field, the current
density, the magnetic induction and the electric field, respectively.
System (2)-(4) needs to be completed with the following constitutive relations:

B = µH in R
3, (5)

J =

{
σE in ∆,

0 in ∆c,
(6)

where µ is the magnetic permeability –which is supposed to be independent of H– and σ is
the electric conductivity. Both are assumed to be bounded from below by a positive constant
and dependent on both the spatial variable and the temperature T, i.e., µ = µ(x,T) and σ =
σ(x,T). Nevertheless, for the sake of simplicity, we drop this dependency in the notation until
forthcoming sections.
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Numerical Modelling of Industrial Induction 5

Notice that we have neglected the fluid motion in the Ohm’s law (6), because a dimensionless
analysis shows that it is negligible in comparison with the other terms for this kind of
applications.
Since the previous equations hold in R

3, we also require for the fields a certain behavior at
infinity. More specifically, we have,

E(x) =O(|x|−1), uniformly for |x| → ∞, (7)

H(x) =O(|x|−1), uniformly for |x| → ∞. (8)

Model (2)-(8) must be completed with some source data related to the energizing device.
In particular, we would like to impose the current intensities I = (I1, . . . , Im) crossing each
transversal section of the inductor, i.e.,

∫

Ωk

J · ν = Ik, k = 1, . . . ,m, (9)

where ν denotes a unit normal vector to the section Ωk.

Remark 2.1 Imposing these constraints is not trivial at all and requires to relax in some sense equation
(3). We refer the reader to Remarks 2.1 and 2.2 of (Bermúdez et al., 2009). To this respect, we also
cite the paper (Alonso et al., 2008) where the authors give a systematic analysis to solve eddy current
problems driven by voltage or current intensity in the harmonic regime and in bounded domains.

To solve the eddy current problem in an axisymmetric setting, we are going to propose a
formulation based on the magnetic vector potential. To do that, we also need to introduce a
suitable scalar potential. Firstly, equation (4) allows us to affirm that there exists a magnetic
vector potential A defined in R3 such that,

B = curlA, (10)

and from equation (3), we obtain

iω curlA+ curlE = 0 in ∆.

Taking into account the form of the kernel of the curl operator in each connected component
of the conductor, we can say that (see, for instance (Amrouche et al., 1998))

iωA+ E = −v in ∆, (11)

where

v = gr̃ad Ũ,

and Ũ is a scalar potential having a constant jump through each Ωk, for k = 1, · · · ,m. We have
denoted by gr̃ad the gradient operator in the space H1(∆ \ ∪m

k=1Ωk). As we will show below,
this representation allows us to impose the sources in the closed circuits ∆k (see also Section
5.2 of (Hiptmair & Sterz, 2005)).
For k = 1, . . . ,m, let us denote by ηk the solution in H1(∆k \ Ωk), unique up to a constant, of
the following weak problem:

∫

∆k\Ωk

σgr̃adηk · gradξ = 0, ∀ξ ∈H1(∆k), (12)

[ηk]Ωk
= 1, (13)

79Numerical Modelling of Industrial Induction
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6 Advances in Induction and Microwave Heating

where [ηk]Ωk
denotes the jump of ηk through Ωk along ν.

By using functions ηk, k = 1, · · · ,m, the scalar potential Ũ can be written as (see again
(Amrouche et al., 1998)),

Ũ = Φ +
m

∑
k=1

Vkηk, (14)

with Φ ∈ H1(∆) and Vk, k = 1, . . . ,m being some complex numbers. From the definition of ηk
we deduce that Vk is the constant jump of Ũ through each surface Ωk, k = 1, · · · ,m. From
a physical point of view, these complex numbers Vk can be interpreted as voltage drops
(Hiptmair & Sterz, 2005).
Then, taking into account that H = µ−1 curlA and equation (2) we obtain

iωσA+ curl(
1

µ
curlA) = −σv = −σ(gradΦ +

m

∑
k=1

Vk gr̃adηk). (15)

Notice, however, that the vector potential A is not unique because it can be altered by any
gradient. Thus, in order to get uniqueness we need to impose some gauge conditions. In the
conductor region ∆, we set div(σA) = 0 and the boundary condition σA · n = 0 on Σ, where
n is a unit normal vector to Σ outward from ∆.
From these gauge conditions, we can easily deduce that gradΦ = 0. Consequently,

v =
m

∑
k=1

Vk gr̃adηk

and equation (15) can be written as

iωσA+ curl(
1

µ
curlA) = −σv = −σ

m

∑
k=1

Vk gr̃adηk in ∆. (16)

Notice that, in particular, the electric field in ∆ is given by

E = −iωA−
m

∑
k=1

Vk gr̃adηk. (17)

On the other hand, in the air region, we impose the gauge conditions

divA= 0 in ∆c and
∫

Σj

A · n = 0, j = 0, . . . ,m. (18)

In Section 3we will obtain a weak formulation from equations (16), (18) and the imposition of
the current intensities (9) in the axisymmetric setting.

2.2 The thermal model

The electromagnetic model must be coupled with the heat equation to study the thermal
effects of the electromagnetic fields in the workpiece. We will describe the equations of the
model in an axisymmetric setting, paying attention to the terms coupling the thermal problem
with the electromagnetic one.
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Numerical Modelling of Industrial Induction 7

Fig. 4. Computational domain for the thermal problem

The computational domain for the thermal model is the radial section ΩT of the whole furnace,
that is,

ΩT := Ω0 ∪ Ω1 ∪ · · · ∪ Ωm ∪ Ωm+1,

where Ωm+1 denotes the radial section of the dielectric parts of the furnace (see Fig. 4). We
notice that we now take into account that the coil is water-cooled and replace each turn by a
hollow torus. An appropriated boundary conditionwill be considered on the inside boundary.

Remark 2.2 For simplicity, in Section 2.1 the coil was replaced by rings with toroidal geometry, i.e.,
by solid tori. Since we are now considering a refrigeration tube along the coil, it will be replaced by
hollow tori. We refer the reader to Remark 4.4 of (Vázquez, 2008) to see that, under axisymmetric
assumptions, the electromagnetic model does not change in this topology.

Since the metal is introduced in solid state and then melted, we use the transient heat transfer
equation with change of phase, written in terms of the enthalpy. Furthermore, since the
molten metal is subject to electromagnetic and buoyancy forces, we also need to consider
convective heat transfer. Let us suppose that we already know the velocity field u which is
null in the solid part of the workpiece, and the current density J. Then, the equation for energy
conservation is

ė− div(k(x,T) gradT) =
|J|2

2σ
in ΩT, (19)

where T is the temperature, k is the temperature-dependent thermal conductivity and ė is the
material derivative of the enthalpy density. It is given by

ė=
∂e

∂t
+ u · grad e.

The source term on the right-hand side of (19) represents the heat released due to the Joule
effect; it is obtained by solving the electromagnetic model introduced in the previous section.

Remark 2.3 Notice that the time scale for the variation of the electromagnetic field is much smaller
than the one for the variation of the temperature. Indeed, the physical parameters used in a typical
industrial situation give a time scale for temperature of the order of 60 seconds while for the

81Numerical Modelling of Industrial Induction
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electromagnetic problem it is of the order of 10−5 seconds. Thus, we may compute the electromagnetic
field in the frequency domain using the eddy current model and then the heat source due to Joule effect
is determined by taking the mean value on a cycle, namely,

ω

2π

∫ 2π/ω

0
J (x, t) · E(x, t)dt, (20)

J and E being the current density and the electric field, respectively, written in the form of (1). It is
not difficult to prove that expression (20) coincides with the right-hand side of (19).

In general, the metal in the crucible undergoes a phase change during the heating process. For
this reason, the enthalpy in (19) must take into account the latent heat involved in the phase
change. This can be done by introducing an enthalpy function similar to that used for Stefan
problems (see (Elliot & Ockendon, 1985)). More precisely, the enthalpy density is expressed
as a multi-valued function of temperature by

e(x, t) ∈ H(x,T(x, t)), (21)

with

H(x,T) =

⎧
⎨

⎩

Ψ(x,T) T < Ts(x),
[Ψ(x,Ts),Ψ(x,Ts) + L ρ(x,Ts)] T = Ts(x),
Ψ(x,T) + L ρ(x,Ts) T > Ts(x),

(22)

and

Ψ(x,T) =
∫ T

0
ρ(x,ζ)c(x,ζ) dζ, (23)

ρ being the density, c the specific heat and L the latent heat per unit mass, i.e., the heat per
unit mass necessary to achieve the change of state at temperature TS.

Remark 2.4 It is to be noted that H is a multivalued function rather than discontinuous. Indeed,
an element of volume at the solidification temperature may have any enthalpy value in the interval
[Ψ(x,Ts),Ψ(x,Ts) + ρ(x,Ts)L].

2.2.1 Thermal boundary conditions

Equation (19) must be completed with suitable initial and boundary conditions. Let ΓT be the
boundary of ΩT; we denote by ΓS its intersection with the symmetry axis, by ΓR the part of the
boundary in contact with air and by ΓC the internal boundary of the coil which is in contact
with the cooling water (see Fig. 4). On ΓC we consider a convection condition

k(x,T)
∂T

∂n
= α(Tw − T), (24)

α being the coefficient of convective heat transfer and Tw the temperature of the cooling water.
On boundary ΓR we impose the radiation-convection condition

k(x,T)
∂T

∂n
= α(Tc − T) + γ(T4

r − T4), (25)

where Tc and Tr are the external convective and radiative temperature, respectively, and γ is
the product of the emissivity by the Stefan-Boltzmann constant (5.669e-8 W/m2K4). Finally,
on ΓS we set the symmetry condition

k(x,T)
∂T

∂n
= 0. (26)
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Fig. 5. Computational domain Ωl(t) for the hydrodynamic problem.

2.3 The hydrodynamic model: Boussinesq approximation

As mentioned before, in order to achieve a realistic simulation of the overall process occurring
in the furnace, convective heat transfer must be taken into account. The hydrodynamic
domain is the molten region of the metal, which varies as the metal melts or solidifies,
making our hydrodynamic domain time-dependent. This molten metal is subjected to both
electromagnetic and buoyancy forces, the latter due to the variation of mass density with
temperature.
Since the range of temperatures in the molten region is not very large, we use the Boussinesq
approximation to model the fluid motion. Roughly speaking, this approximation consists on
assuming that the mass density is constant in the inertial term, and that it depends linearly
on the temperature in the right-hand side. Denoting by Ωl(t) the radial section of the molten
metal, and by Γs(t), Γd(t) and Γn(t) the different parts of the boundary at time t (see Fig. 5),
the fluid motion is modeled by the following equations

ρ0

(
∂u

∂t
+ (gradu)u

)
− div(2η0D(u)) + grad p = −ρ0β0(T − T0)g+ fl , (27)

divu = 0, (28)

where u is the velocity field, p is the (modified) pressure, and D(u) is the strain rate tensor,
namely D(u) = (gradu + gradut)/2. Constants ρ0, η0 and β0 denote the mass density,
the dynamic viscosity and the thermal expansion coefficient, respectively, at the reference
temperature T0. The first term in the right-hand side takes into account the buoyancy forces (g
denotes the gravity acceleration), whereas fl represents the Lorentz force which is computed
as

fl =
ω

2π

∫ 2π/ω

0
J (x, t)×B(x, t)dt, (29)

where B is the magnetic induction field written in the form (1).

83Numerical Modelling of Industrial Induction
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Equations (27)-(28) are completed with the following boundary and initial conditions:

u = 0 on Γd(t) , (30)

Sn = 0 on Γn(t) , (31)

Sn = 0 on Γs(t) , (32)

u = 0 in Ωl(0) , (33)

where S denotes the Cauchy stress tensor, S = −pI + 2η0D(u) and I is the identity tensor.
When using the Boussinesq approximation, the thermal model is modified in such a way that
the material properties in the molten region are considered at the reference temperature, that
is to say,

ρ0c0

(
∂T

∂t
+ u · gradT

)
− div(k0 gradT) =

|J|2

2σ
, (34)

where c0 and k0 represent the specific heat and the thermal conductivity at the reference
temperature, respectively. We remark that this approximation is only used in the molten
region of the metal. In the rest of the domain the heat equation remains non-linear.

2.3.1 An algebraic turbulence model: Smagorinsky’s model

To take into account the possibility of turbulent flows, it is necessary to introduce a turbulence
model. The basic methodology consists in modifying equations (27), (28) and (34), in the form

ρ0

(
∂û

∂t
+ (grad û) û

)
− div(2ηe f fD(û)) + grad p̂ = −ρ0β0(T̂ − T0)g+ fl , (35)

div û = 0 (36)

ρ0c0

(
∂T̂

∂t
+ û · grad T̂

)
− div(ke f f grad T̂) =

|J|2

2σ
, (37)

where ηe f f and ke f f denote the effective viscosity and thermal conductivity, respectively;
namely, ηe f f = η0 + ηt and ke f f = k0 + kt, ηt being the turbulent viscosity and kt the turbulent
thermal conductivity.
Notice that fields u, p and T in (27), (28) and (34) have been replaced by their corresponding
filtered fields û, p̂ and T̂ (see (Wilcox, 2008)). Hereafter, and for the sake of simplicity, we will
eliminate the symbol ˆ when referring to these variables.
For a rigorous derivation of turbulence models we refer the reader to, for instance,
(Mohammadi & Pironneau, 1994; Wilcox, 2008). The turbulence models differ essentially on
the way the turbulent viscosity ηt and the turbulent conductivity kt are computed. An efficient
and easy to implementmodel is the one proposed by Smagorinsky,which has been considered
in the present work. It belongs to the family of Large Eddy Simulation (LES) models. In this
case, ηt and kt are given by

ηt = ρ0Ch2 |D(u)|, C ∼= 0.01, kt = c0
ηt
Prt

, (38)

where h(x) is the mesh size of the numerical method around point x, and Prt is the turbulent
Prandtl number, which is taken equal to 0.9.
It is worth noting that more accurate turbulent models, such as the well-known k-ǫ model,
can also be used. The drawback is that the computational effort to apply those models is
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much higher, since they require the solution of some additional partial differential equations
in order to compute the turbulent viscosity ηt. However, if an accurate simulation of the fluid
motion is necessary -as for instance in electromagnetic stirring- the use of one of these models
might become unavoidable.

3. Weak formulation of the electromagnetic problem in an axisymmetric setting

In this section we present the weak formulation of the electromagnetic problem. We start by
introducing some functional spaces and sets. Let X be the Beppo-Levi space (see (Nédélec,
2001), Section 2.5.4)

X = {G :
G(x)√
1+ |x|2

∈ L2(R3), curlG ∈ L2(R3)},

and its subset

Y = {G ∈ X : divG = 0 in ∆c,
∫

Σj

G · n = 0, j= 0, . . . ,m}.

We recall that we are interested in finding a solution of the eddy current problem satisfying
the intensity conditions (9). To attain this goal, we start by writing these constraints in a weak
sense.
Since current density J= σE satisfies div J= 0 in ∆ and J · n= 0 on Σ, we have for k= 1, . . . ,m,

∫

∆k\Ωk

J · gr̃adηk = −
∫

∆k\Ωk

divJηk +
∫

∂(∆k\Ωk)
J · nηk =

∫

Ωk

[ηk] J · νk = Ik, (39)

where νk is the unit vector normal to the radial section Ωk. Hence, we can impose the current
intensities as follows:

m

∑
k=1

W̄k

∫

∆k\Ωk

σE · gr̃adηk =
m

∑
k=1

IkW̄k, ∀W = (W1, . . . ,Wm) ∈ C
m.

Then, taking into account (17), we obtain the following weak form of constraint (9) which is
well defined for any vector function A ∈ Y and vector W ∈ Cm:

−
m

∑
k=1

W̄k

∫

∆k\Ωk

iωσgr̃adηk ·A−
m

∑
k=1

W̄k

∫

∆k\Ωk

σVk |gr̃adηk|
2 =

m

∑
k=1

IkW̄k. (40)

On the other hand, multiplying equation (16) by the complex conjugate of a test function G,
denoted by Ḡ, integrating in R3 and using a Green’s formula we can easily obtain,

iω
∫

R3
σA · Ḡ+

∫

R3

1

µ
curlA · curl Ḡ+

m

∑
k=1

Vk

∫

∆k\Ωk

σgr̃adηk · Ḡ, ∀G ∈ Y . (41)

Thus, we are led to solve the following mixed problem:

ProblemMPI.- Given I= (I1, . . . , Im) ∈ Cm, find A ∈ Y and V ∈ Cm, such that

iω
∫

R3
σA · Ḡ+

∫

R3

1

µ
curlA · curl Ḡ+

m

∑
k=1

Vk

∫

∆k\Ωk

σgr̃adηk · Ḡ = 0,∀G ∈ Y .

m

∑
k=1

W̄k

∫

∆k\Ωk

σgr̃adηk ·A+
1

iω

m

∑
k=1

W̄k

∫

∆k\Ωk

σVk |gr̃adηk|
2 = −

1

iω

m

∑
k=1

IkW̄k,∀W ∈ C
m.
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Notice that the vector field V of voltage drops, can be interpreted as a Lagrange multiplier
introduced to impose the current intensities in a weak sense. The mathematical analysis of
this mixed formulation can be found in (Bermúdez et al., 2009), where the simpler formulation
with the voltage drops as data is also studied.

3.1 An axisymmetric BEM/FEM formulation of problemMPI
Notice that the above formulation is written in the whole space R3; in (Bermúdez et al.,
2007) we have approximated the problem in a bounded domain by defining approximated
boundary conditions far from the conducting region and using a finite element technique.
However, in this work, we consider a hybrid boundary element/finite element method (in
the sequel BEM/FEM) to solve the problem in the whole space. To attain this goal, we are
going to write the problem MPI in another form involving only the values of the magnetic
vector potential A in ∆ and on its boundary Σ. Notice first that the field µ−1 curlA, which is
the intensity of the magnetic field, belongs to X , and then its tangential trace µ−1 curlA× n
is continuous across Σ. Besides

curl

(
1

µ0
curlA

)
= curlH= 0 in ∆c, (42)

where µ0 denotes the vacuummagnetic permeability. Then, by using a Green’s formula in ∆c,
we have,

∫

R3

1

µ
curlA · curl Ḡ =

∫

∆

1

µ
curlA · curl Ḡ+

∫

∆c

1

µ0
curlA · curl Ḡ

=
∫

∆

1

µ
curlA · curl Ḡ−

∫

Σ

1

µ0
curlA× n · Ḡ, ∀G ∈ Y .

Thus, the first equation of problemMPI can be formally written as:

iω
∫

∆
σA · Ḡ+

∫

∆

1

µ
curlA · curl Ḡ−

∫

Σ

1

µ0
curlA× n · Ḡ

+
m

∑
k=1

Vk

∫

∆k\Ωk

σgr̃adηk · Ḡ = 0, ∀G ∈ Y . (43)

We notice that the value of µ−1
0 curlA × n on Σ can be determined by solving an exterior

problem in ∆c. Since we are interested in the numerical solution of the problem in an
axisymmetric domain, we directly transform this term in the axisymmetric case.
We consider a cylindrical coordinate system (r,θ,z) with the z−axis coinciding with the
symmetry axis of the device, (see Figure 3). Hereafter we denote by er, eθ and ez the local
unit vectors in the corresponding coordinate directions. Now, cylindrical symmetry leads us
to consider that no field depends on the angular variable θ. We further assume that the current
density field has non-zero component only in the tangential direction eθ , namely

J = Jθ(r,z)eθ .

We remark that, due to the assumed conditions on J, (3), (6) and (10), only the θ-component of
the magnetic vector potential, hereafter denoted by Aθ , does not vanish, i.e.,

A= Aθ(r,z)eθ . (44)
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Thus A automatically satisfies (18). Let G = ψ(r,z)eθ be a test function and n = nr er + nz ez.
By taking into account the expression for curl in cylindrical coordinates and the fact that

gr̃adηk =
1

2πr
eθ , in ∆k, k = 1, . . . ,m, (45)

the axisymmetric version of the problem formally writes as follows:

Given I= (I1, . . . , Im) ∈ C
m, find Aθ and V ∈ C

m, satisfying,

iω
∫

Ω
σAθ · ψ̄r drdz+

∫

Ω

1

µr

∂(rAθ)

∂r

∂(rψ̄)

∂r
drdz+

∫

Ω

1

µ

∂Aθ

∂z

∂ψ̄

∂z
r drdz

−
∫

Γ

1

µ0

∂(rAθ)

∂n
ψ̄dγ +

1

2π

m

∑
k=1

Vk

∫

Ωk

σψ̄ drdz = 0, (46)

1

2π

m

∑
k=1

(
∫

Ωk

σAθ drdz)W̄k +
1

4π2iω

m

∑
k=1

(
∫

Ωk

σ
Vk

r
drdz)W̄k = −

1

2πiω

m

∑
k=1

IkW̄k, (47)

for all test function ψ and W ∈ C
m.

On the other hand, the term
∫

Γ
µ−1
0 ∂(rAθ)/∂n ψ̄dγ can be transformed by using the

single-double layer potentials. We refer the reader to (Bermúdez et al., 2007b) for further
details concerning this transformation and introduce the same notation of that paper, namely

A
′

θ = rAθ,

λ
′
(r,z) =

∂A
′

θ

∂r
nr +

∂A
′

θ

∂z
nz.

We are led to solve the following weak problem

ProblemWEPI.- Given I= (I1, . . . , Im)∈Cm, find A
′

θ : Ω−→C,V∈Cm and λ
′
: Γ −→C such that

iω
∫

Ω

σ

r
A

′

θψ̄
′
drdz+

∫

Ω

1

µr
gradA

′

θ · grad ψ̄
′
drdz−

∫

Γ

1

µr
λ

′
ψ̄

′
dγ +

1

2π

m

∑
k=1

Vk

∫

Ωk

σ

r
ψ̄

′
drdz = 0,

1

2π

m

∑
k=1

W̄k

∫

Ωk

σ

r
A

′

θ drdz+
1

4π2iω

m

∑
k=1

W̄k

∫

Ωk

σ
Vk

r
drdz = −

1

2πiω

m

∑
k=1

IkW̄k,

∫

Γ

1

µr
A

′

θ ζ̄ dγ −
∫

Γ

1

µ
(GnA

′

θ)ζ̄ dγ +
∫

Γ

1

µ
(Gλ

′
)ζ̄ dγ = 0

for all test functions ψ
′
, ζ and W ∈ Cm. In the previous equations, G and Gn denote

the fundamental solution of Laplace’s equation and its normal derivative, respectively, in
cylindrical coordinates (see again (Bermúdez et al., 2007b)).

4. Time discretization and weak formulation of the thermal and hydrodynamic

problems

In this section we introduce a time discretization and a weak formulation of the thermal and
hydrodynamic models. Again, we exploit the cylindrical symmetry and we assume that u

87Numerical Modelling of Industrial Induction

www.intechopen.com



14 Advances in Induction and Microwave Heating

does not depend on θ and it has zero component in the tangential direction eθ . In order to
simplify the notation, in what follows we shall drop index t for Ωl(t).
To obtain a suitable discretization of the material time derivative in equations (19) and (27) we
shall use the characteristics method (see, for instance, (Pironneau, 1982)).
Given a velocity field u we define the characteristic curve passing through point x at time t as
the solution of the following Cauchy problem:

{
d

dτ
X(x, t;τ) = u(X(x, t;τ),τ) ,

X(x, t; t) = x .
(48)

Thus X(x, t;τ) is the trajectory of the material point being at position x at time t. In terms of X,
the material time derivative of e is defined by

ė(x, t) =
d

dτ
[e(X(x, t;τ),τ)]|τ=t. (49)

Let us consider a time interval [0, t f ] and a discretization time step ∆t = t f/N to obtain a
uniform partition Π = {tn = n∆t,0≤ n ≤ N}. Let en and un be the approximations of e and u
at time tn, respectively. We approximate the material time derivative of e at time tn+1 by

ė(x, tn+1) ≃
en+1(x)− en(χn(x))

∆t
, (50)

where χn(x) = Xn(x, tn+1; tn) is obtained as the solution of the following Cauchy problem
⎧
⎨
⎩

d

dτ
Xn(x, tn+1;τ) = un(Xn(x, tn+1;τ),τ) ,

Xn(x, tn+1; tn+1) = x ,
(51)

at time tn. Notice that, since u = 0 in the solid region, the solution of this Cauchy problem is
Xn(x, tn+1;τ) = x for any τ. Hence equation (50) in the solid part is equivalent to a standard
time discretization without using the method of characteristics.
Analogous to (50), we consider in (35) the above two-point discretization for the material time
derivative of the velocity. Thus, taking into account the cylindrical symmetry, multiplying
equations (35) and (36) by suitable test functions, and integrating in the liquid domain
Ωl we obtain, after using the Green’s formula, the following weak formulation of the
semi-discretized hydrodynamic problem (the : representing the scalar product of two tensors)

Problem WHP.- For each n = 0,1, . . . ,N − 1, find functions un+1 and pn+1 such that un+1 = 0 on
Γd and furthermore

1

∆t

∫

Ωl

ρ0u
n+1 ·wrdrdz +

∫

Ωl

ηe f f

(
gradun+1 : gradw

)
rdrdz +

∫

Ωl

ηe f f

(
(gradun+1)t : gradw

)
rdrdz−

∫

Ωl

pn+1divwrdrdz =

−
∫

Ωl

ρ0β0(T
n − T0)g ·wrdrdz +

∫

Ωl

fn+1
l ·wrdrdz+

1

∆t

∫

Ωl

ρ0(u
n ◦ χn) ·wrdrdz,

∫

Ωl

divun+1 qrdrdz = 0,
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for all test functionsw null on Γd, and q.

On the other hand, assuming cylindrical symmetry and the fact that the temperature does not
depend on the angular coordinate θ, we can write equation (19) in cylindrical coordinates.
Then, applying the time discretization (50), multiplying by a suitable test function and using
a Green’s formula we obtain the following weak formulation of the semi-discretized thermal
problem:
ProblemWTP.- For each n = 0,1, . . . ,N− 1, find a function Tn+1 such that

∫

ΩT

1

∆t
en+1Zrdrdz +

∫

ΩT

ke f f (r,z,T
n+1) gradTn+1 · gradZrdrdz

=
∫

ΓC

α(Tw − Tn+1)ZrdΓ +
∫

ΓR

(α(Tc − Tn+1) + γ(T4
r − (Tn+1)4))ZrdΓ

+
∫

ΩT

1

∆t
(en ◦ χn)Zrdrdz +

∫

ΩT

1

2σ(r,z,Tn+1)
|Jn+1

θ |2Zrdrdz,

for all test function Z.

Remark 4.1 Note that, from equations (6), (17) and the expression for functions ηk, we can infer that

Jθ = −iωσAθ in Ω0 ,

Jθ = −iωσAθ −
Vk

2πr
in Ωk , k = 1, . . . ,m ,

Jθ = 0 in Ωm+1 .

Hence, to determine the heat source we need to compute an approximation of field Aθ at time tn+1.
This is determined as the solution of the weak formulation WEPI with the physical parameters µ and
σ being evaluated at temperature Tn+1.

5. Space discretization and iterative algorithm

Problem WTP has been spatially discretized by a piecewise linear finite element method
defined in a triangular mesh of the domain ΩT. For the spatial discretization of problemWEPI
we have used a BEM/FEM method (see (Bermúdez et al., 2007b) for further details). Finally,
problemWHP has been spatially discretized by the finite element couple P1-bubble/P1, which
is known to satisfy the inf-sup condition (Brezzi, 1991); this last problem only takes place in
the time-dependent liquid domain Ωl(t), which must be computed at each time step.
It is important to notice that, at each time step, there are several terms coupling the three
problems. However, since we are neglecting the velocity in Ohm’s law, and the method of
characteristics is used with the velocity at the previous time step, the hydrodynamic problem
can be solved uncoupled from the two others. Nevertheless, the coupling between the thermal
and the electromagnetic models cannot be avoided: the heat source in the thermal equation
is the Joule effect and the solution of the electromagnetic problem depends on the electrical
conductivity and the magnetic permeability, which may vary with temperature.
Moreover, the thermal problemWTP contains several nonlinearities:

– The thermal conductivity k depends on temperature.

– The external convective temperature Tw also varies with the heat flux of the inner
boundaries of the coil.
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– The enthalpy e depends on temperature and it is a multivalued function.

– The radiation boundary condition depends on T4.

To treat the nonlinear terms we are going to introduce several iterative algorithms. The
dependence of the thermal conductivity k can be easily treated, just by taking in the heat
equation the thermal conductivity evaluated at the temperature of the previous time step (or
of the previous iteration of an outer loop). This can be done because the thermal conductivity
is a smooth function. Nevertheless, as wewill show in the next section, the other nonlinearities
need other more sophisticated iterative algorithms to be introduced.

5.1 Iterative algorithm for the temperature of cooling water

As we said before, the induction coil of the furnace is water-cooled to avoid overheating; this
fact is modeled by means of boundary condition (24), where the temperature of the cooling
water, Tw, depends on the solution of our problem which introduces a nonlinearity in the
equations.
To deal with this nonlinearity we will seek the convergence of the heat flux from the coil to
the cooling water. From the solution of the thermal problem this heat flux is computed as

H = 2π
∫

ΓC

k
∂T

∂n
r dΓ , (52)

where the integral is multiplied by 2π because ΓC is only a radial section of the boundary.
Using (52) the outlet water temperature can be computed as

To = Ti +
H

ρwcwQ
, (53)

with ρw and cw the density and specific heat of water, respectively, Ti the inlet temperature of
the cooling water, and Q the water flow rate.
To solve the problem, we assume that water temperature Tw is constant along the coil which
is actually a reasonable assumption, since the difference between the inlet and the outlet
temperature is seldom higher than 10 ◦C.
The temperature of the cooling water is then computed using an iterative algorithm. Let us
suppose Tw,j is known. Then, at iteration j + 1, we compute Tj+1 as the solution of thermal
problemWTPwith Tw = Tw,j. Then, we compute the heat flux H from equation (52) and set

Tw,j+1 = Ti +
H

2ρwcwQ
,

i.e., Tw,j+1 is the mean value of the given inlet temperature and the computed outlet
temperature.
It is worth noting that an implicit algorithm is needed to avoid instabilities. The iterations of
the implicit method can bemergedwith the iterations of the thermoelectrical coupling leading
to a low computational cost.

5.2 Iterative algorithms for the enthalpy and the radiation boundary condition

In order to solve the non-linearities due to the multi-valued character of the enthalpy and
to the exterior radiation boundary condition, we propose a fixed point algorithm which is
described in detail in references (Bermúdez et al., 2003; 2007; Vázquez, 2008). It is summarized
here for the reader’s convenience.
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At time step (n+ 1) and for a positive β we introduce the new function

qn+1 = en+1 − βTn+1.

Using (21) and the fact that H is a maximal monotone operator, we get

qn+1(r,z) =H
β
λ((r,z),T

n+1(r,z) + λqn+1(r,z)) for 0< λ ≤
1

2β
, (54)

H
β
λ being the Yosida approximation of the operator Hβ =H− βI (Bermúdez-Moreno, 1994).

The same idea is introduced to deal with the nonlinearity associated to the fourth power of
the boundary temperature in (25): we consider the maximal monotone operator G(T) = |T|T3,
which coincides with T4 for T > 0, and we define the new function

sn+1 = G(Tn+1)− κTn+1.

Then using Gκ
δ , the Yosida approximation of operator Gκ = G − κI , we get

sn+1(r,z) = Gκ
δ (T

n+1(r,z) + δsn+1(r,z)) for 0< δ ≤
1

2κ
. (55)

Now, in order to solve problemWTP, the idea is to replace en+1 by qn+1+ βTn+1 and G(Tn+1)
by sn+1 + κTn+1. Finally, to determine Tn+1, qn+1 and sn+1 we introduce an iterative process
using (54) and (55).
We notice that the performance of the proposed algorithm is known to depend strongly on
the choice of parameters β, λ, δ and κ. In (Vázquez, 2008) an automatic procedure is proposed
to compute these parameters as functions of (r,z), which accelerates the convergence of the
method.

5.3 Iterative algorithm for the whole problem

Now we present the iterative algorithm to solve the three coupled models, along with
the nonlinearities. Basically, it consists of three nested loops: the first one for the time
discretization, the second one for the thermoelectrical coupling, and the third one for
the Bermúdez-Moreno algorithms for the enthalpy and the radiation boundary condition
presented above. As we have said before, the hydrodynamic problem is solved at each time
step, uncoupled from the two others. Moreover, the nonlinearities of the thermal conductivity
k and the cooling water temperature Tw are also treated by iterative algorithms and their
corresponding loops are in fact merged with that of the thermoelectrical coupling. For the
sake of simplicity we present in Fig. 6 a sketch of the algorithm with the three nested loops.

5.3.1 The algorithm

Let us suppose that the initial temperature T0 and velocity u0 are known. From T0 we
determine the initial enthalpy e0 and set the temperature of cooling water T0

w = Ti, being
Ti the inlet temperature. Then, at time step n, with n= 1, . . . ,N we compute An

θ , T
n and un by

doing the following steps:

1. If un−1 �= 0, compute χn−1(x), the solution of (51).

2. Calculate the turbulent viscosity ηn
t = ρ0Ch

2|D(un−1)| and the turbulent thermal
conductivity knt = c0ηn

t /Prt .
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Loop (iterations for
enthalpy and radiation)

Loop (coupled problem
and cooling water)

Time step
loop

Program initialization

Resolution of the
electromagnetic problem

Resolution of the
thermal problem

Computation of the
hydrodynamic domain

Resolution of the
hydrodynamic problem

End

Data reading and
initialization

Method of
characteristics

Update of the
multipliers q and s

Post-processing and
results writing

Test on q, s
Converges?

Test on T,
Converges?

NO

YES

NO

YES

Computation of the
optimal parameters

Update of enthalpy, e
and water temperature, Tw

Tw

Fig. 6. Scheme of the numerical algorithm considering all the nested loops.
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3. Set Tn
0 = Tn−1, en0 = en−1 and Tn

w,0 = Tn−1
w . Then compute An

θ , T
n, en and Tn

w as the limit of
An

θ,j, T
n
j and Tn

w,j, obtained from the following iterative procedure:

1. For j ≥ 1 let us suppose that Tn
j−1 and Tn

w,j−1 are known. Then set An
θ,j = A′

θ/r, with A′
θ ,

λ′ and V ∈ Cm the solution ofWEPI by taking σ = σ(r,z,Tn
j−1) and µ = µ(r,z,Tn

j−1).

(b) Set Jnθ,j = −iωσ(r,z,Tn
j−1)A

n
θ,j −Vk/(2πr) in Ωk, k = 0, . . . ,m (with V0 = 0).

(c) Determine the optimal parameters κnj (r,z) and βn
j (r,z) with the method described in

(Vázquez, 2008).

(d) Set Tn
j,0 = Tn

j−1 and also

qnj,0 = enj−1 − βn
j T

n
j−1 ,

snj,0 = |Tn
j−1|(T

n
j−1)

3 − κnj T
n
j−1 .

Then compute Tn
j , q

n
j and snj as the limit of the following iterative procedure:

1. For k ≥ 1 let us suppose that qnj,k−1 and snj,k−1 are known. Then compute Tn
j,k as the

solution of the linear system

∫

ΩT

1

∆t
βn
j T

n
j,kZrdrdz +

∫

ΩT

(k(Tn
j−1) + knt ) gradT

n
j,k · gradZrdrdz+

∫

ΓC

αTn
j,kZrdΓ

+
∫

ΓR

(α + γκnj )T
n
j,kZrdΓ =

∫

ΓC

αTn
w,j−1ZrdΓ +

∫

ΓR

(αTc + γT4
r − γsnj,k−1)ZrdΓ

+
∫

ΩT

1

∆t
(en−1 ◦ χn−1 − qnj,k−1)Zrdrdz +

∫

ΩT

1

2σ(r,z,Tn
j−1)

|Jnθ,j|
2Zrdrdz ∀Z test function.

ii. Update multipliers qnj,k and snj,k by means of the formulas

qnj,k = H
β
λ

(
Tn
j,k + λqnj,k−1

)
,

snj,k = Gκ
δ (T

n
j,k + δsnj,k−1) .

(e) Update the value of the enthalpy and the value of the cooling water temperature by
computing

enj = qnj + βn
j T

n
j ,

H = 2π
∫

ΓC

k
∂Tn

j

∂n
r dΓ , and Tn

w,j = Ti +
H

2ρwcwQ
.

4. Determine the hydrodynamic domain from the value of enthalpy en.
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5. Find un and pn solution of

1

∆t

∫

Ωl

ρ0u
n ·w r drdz+

∫

Ωl

(η0 + ηn
t ) (gradu

n : gradw) r drdz

+
∫

Ωl

(η0 + ηn
t )

(
(gradun)t : gradw

)
r drdz−

∫

Ωl

pndivw r drdz =

−
∫

Ωl

ρ0β0(T
n − T0)g ·w r drdz+

∫

Ωl

fl(A
n
θ ) ·w r drdz+

1

∆t

∫

Ωl

ρ0(u
n−1 ◦ χn−1) ·w r drdz, ∀ test function w,

∫

Ωl

divun q = 0, ∀ test function q.

6. Numerical simulation of an industrial furnace

In this section we present some numerical results obtained in the simulation of an
industrial furnace used for melting and stirring. The results have been performed with
the computer Fortran code THESIF (http://www.usc.es/∼thesif/) which implements the
algorithm described above.

6.1 Description of the furnace

We briefly describe the geometry and working conditions of the furnace and refer the reader
to Chapter 4 of (Vázquez, 2008) for further details.
The inductor of the furnace is a copper helical coil with 12 turns which contains a pipe
inside carrying cool water for refrigeration. Inside the coil a crucible is placed, containing
the metal to be melted. The crucible is surrounded by an alumina layer to avoid heat losses.
The reason to take alumina for this layer is that it is not only a good refractory but also
a good electrical insulator. Thus the induction process in the crucible and in the metal is
almost unaffected by the presence of alumina. For safety reasons, the induction coil is also
embedded in the alumina layer. Above this alumina layer there is a layer of another refractory
material, called Plibrico. Moreover, for safety reasons there is a metal sheet surrounding the
furnace, which prevents from high magnetic fields outside the furnace. The furnace rests
on a base of concrete, which will be also considered in the computational domain. For the
same purpose of thermal insulation, there is also placed a lid over the load, but it will not be
considered it in the numerical simulation. Otherwise, we should solve an internal radiation
problem, instead of imposing the convection-radiation boundary condition given in (25).
In (Bermúdez et al., 2006; 2011) an improved thermal model including an internal radiation
condition is introduced.
The computational domain for the electromagnetic problem consists of the furnace (load,
crucible and coil) as it is shown in Fig. 7. The computational domain for the thermal problem
is composed by the metal, the crucible, the refractory layers and the coil. The computational
domain for the hydrodynamic problem is the molten metal and it is computed at each time
step.
Concerning the values of the physical properties of the different materials, we show only the
electrical conductivity of the crucible and metal to be melted because it plays a major role
in the results. We notice that the electrical conductivity depends on temperature, being this
dependency really important in the second case, because the load is assumed to be an insulator
when solid and a good conductor when it melts, as can be seen in Fig. 8.

94 Advances in Induction and Microwave Heating of Mineral and Organic Materials

www.intechopen.com



Numerical Modelling of Industrial Induction 21

Concrete

Alumina

Plibrico

Crucible

Metal

Copper

Cooling water

Fig. 7. Distribution of materials in the radial section of the furnace.

In the electromagnetic model that we have presented two working parameters have to be
chosen: the frequency of the alternating current and the corresponding current intensity.
However, when trying to simulate the real furnace, the given data is the power, and the
current intensity is adjusted to obtain that power in the furnace. Moreover, since the electrical
conductivity of the materials varies with temperature, the relationship between power and
intensity also changes, and the intensity is dynamically adjusted during the process. To deal
with this difficulty, the algorithmwas slightly modified (see (Bermúdez et al., 2011) for further
details) to provide the power as the known data and then to compute the intensity to attain
the given power. Thus, for the numerical simulation, we have used the total power of the
system as data.

6.2 Numerical results

We have performed two numerical simulations of the furnace with the same value of the
power and two different values of the frequency, 500 Hz and 2650 Hz, to see how the
frequency affects the heating and stirring of the metal.
In Fig. 9 we represent the temperature in the furnace for each simulation. As it can be seen
the temperatures obtained in the furnace are very similar, but a little higher in the case of the
highest frequency. We notice the strong influence of the refrigeration tubes in the temperature:
the temperature in the copper coil and the surrounding refractory is about 50 ◦C, causing a
very large temperature gradient within the refractory layer. In Fig. 10 we show a detail of
the temperatures in the crucible and in the load. As it can be seen, higher temperatures are
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Fig. 8. Electrical conductivity for the crucible (left) and the load (right).
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Fig. 9. Temperature after three hours for 500 Hz (left) and 2650 Hz (right).

reached when working with high frequency. This fact is explained due to the distribution of
ohmic losses, as we will explain below.
In Fig. 11 we show the Joule effect in the load and the crucible after five minutes, when the
metal is still solid. In Fig. 12, the same field is represented after three hours, when the metal
has been melted. Comparing the results for different frequencies, we can see that the higher
the frequency the higher the maximum values of the Joule effect, but due to the skin effect
they are concentrated on the external wall of the crucible. Decreasing the frequency allows
a better power distribution, at the cost of using higher intensities, thus causing larger power
losses in the coil (see Fig. 14).
Moreover, comparing the results for solid and molten load, we see how the high conductivity
of the molten metal affects the performance of the furnace. At low frequency the ohmic
losses in the load become higher when the material melts, thus heating the load directly
and reducing the crucible temperature (see Fig. 14 for the ohmic losses and Fig. 10 for the
crucible temperature). Moreover, the presence of molten material increases the skin effect on

Fig. 10. Metal temperature after three hours for 500 Hz (left) and 2650 Hz (right).
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Fig. 11. Joule effect after five minutes for 500 Hz (left) and 2650 Hz (right).

the crucible wall. On the contrary, when working with high frequency the power distribution
in the furnace remains almost unaffected in the presence of molten material.
We also present in Fig. 13 the velocity field for both frequencies. When working with low
frequency the depth of penetration is higher, and Lorentz’s force becomes stronger than
buoyancy forces. At high frequency, instead, the low skin depth makes Lorentz’s force almost
negligible and buoyancy forces become dominant. This can be seen in this figure: at high
frequency the molten metal is moving by natural convection, thus it tends to go up near
the hot crucible, except in the upper part, probably due to the boundary condition we are
imposing. At low frequency the electromagnetic stirring enforces the metal to go down close
to the crucible, and a new eddy comes up in the bottom of the furnace.
Finally, in Fig. 14 we represent the variation in time of the Joule effect in each material, along
with the heat losses through the refrigeration tubes. In order to attain the desired power,
higher intensities are neededworking at low frequency, which causes stronger ohmic losses in
the copper coil. Moreover, at low frequency the load begins to melt after 60 minutes, affecting

Fig. 12. Joule effect after three hours for 500 Hz (left) and 2650 Hz (right).
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Fig. 13. Velocity fields after three hours for 500 Hz (left) and 2650 Hz (right).
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Fig. 14. Joule effect and heat losses through the tubes, for 500 Hz (left) and 2650 Hz (right).

the performance of the furnace and enforcing to increase the intensity, consequently increasing
the power losses in the coil. When working at high frequency the performance of the furnace
is almost unaffected by the presence of molten material. It is also remarkable that at the first
time steps the power losses in the coil match the heat losses through the water tubes. When
time increases the heat losses through the tubes become higher due to the heat conduction
from the crucible across the refractory layer.

7. Acknowledgements

This work was supported by Ministerio de Ciencia e Innovación (MICINN), Spain, under
research projects MTM2008-02483 and Consolider MATHEMATICA CSD2006-00032, by
Xunta de Galicia, Spain, under grant number INCITE09-207047-PR (A. Bermúdez, D. Gómez
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Research Council through the FP7 Ideas Starting Grant 205004 (R. Vázquez).

98 Advances in Induction and Microwave Heating of Mineral and Organic Materials

www.intechopen.com



Numerical Modelling of Industrial Induction 25

8. References

Alonso Rodrı́guez, A. M. & Valli, A. (2008). Voltage and current excitation for time-harmonic
eddy-current problems. SIAM J. Appl. Math., Vol. 68, 1477-1494.

Amrouche, C.; Bernardi, C.; Dauge, M. & Girault, V. (1998). Vector potentials in
three-dimensional non-smooth domains,Math. Meth. Appl. Sci., Vol. 21, 823-864.
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Bermúdez, A.; Moreno, C.; (1994). Duality methods for solving variational inequalities,
Comput. Math. Appl., Vol. 7, 43-58.
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