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1. Introduction

Over the last two decades there has been a significant improvement in automotive design,
technology and comfort standards along with safety regulations and requirements. At the
same time, growth in population and a steady increase in the number of road users has
resulted in a rise in the number of accidents involving both automotive users as well as
pedestrians. According to World Health Organization, road traffic accidents, including auto
accidents and personal injury collisions account for the deaths of an estimated 1.2 million
people worldwide each year, with 50 million or more suffering injuries (Organization, 2009).
These figures are expected to grow by 20% within the next 20 years (Peden et al., 2004). In
the European Union alone the imperative need for Advanced Driver Assistance Systems
(ADAS) sensors can be gauged from the fact that every day the total number of people
killed on Europe’s roads are almost the same as the number of people killed in a single
medium-haul plane crash (Commission, 2001) with 3rd party road users (pedestrian, cyclist,
etc) comprising the bulk of these fatalities (see Figure 1 for proportion of road injuries) (Sethi,
2008). This transforms into a direct and indirect cost on society, including physical and
psychological damage to families and victims, with an economic cost of 160 billion euros
annually (Commission, 2008). These statistics provide a strong motivation to improve the
ADAS ability of automobiles for the safety of both passengers and pedestrians.
The techniques to develop vision based ADAS depend heavily on the imaging device
technology that provides continuous updates of the surroundings of the vehicle and aid
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Fig. 1. Proportion of road traffic injury deaths in Europe (2002-2004).
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2 Trends and Developments in Automotive Engineering

drivers in safe driving. In general these sensors are either spatial devices like monocular
CCD cameras, stereo cameras or other sensor devices such as infrared, laser and time-of-flight
sensors. The fusion of multiple sensor modalities has also been actively pursued in
the automotive domain (Gern et al., 2000). A recent autonomous vehicle navigation
competition DARPA (US Defense Advanced Research Projects Agency) URBAN Challenge
(Baker & Dolan, 2008) has demonstrated a significant surge in efforts by major automotive
companies and research centres in their ability to produce ADAS that are capable of driving
autonomously in an urban terrain.
Range image devices based on the principle of time-of-flight (TOF) (Xu et al., 1998) are robust
against shadow, brightness and poor visibility making them ideal for use in automotive
applications. Unlike laser scanners (such as LIDAR or LADAR) that traditionally require
multiple scans, 3D TOF cameras are suitable for video data gathering and processing systems
especially in automotive that often require 3D data at video frame rate. 3D TOF cameras are
becoming popular for automotive applications such as parking assistance (Scheunert et al.,
2007), collision avoidance (Vacek et al., 2007), obstacle detection (Bostelman et al., 2005) as
well as the key task of ground plane estimation for on-road obstacle and obstruction avoidance
algorithms (Meier & Ade, 1998; Fardi et al., 2006).
The task of obstacle avoidance has normally been approached as by either (a) directly
detecting obstacles (or vehicles) and pedestrian or (b) estimating ground plane and locating
obstacles from the road geometry. Ground plane estimation has been tackled using methods
such as least squares (Meier & Ade, 1998), partial weighted eigen methods (Wang et al.,
2001), Hough Transforms (Kim & Medioni, 2007), and Expectation Maximization (Liu et al.,
2001), amongst others. Computationally expensive semantic or scene constraint approaches
(Cantzler et al., 2002; Nüchter et al., 2003) have also been used for segmenting planar features.
However, these methods work well for dense 3D point clouds and are appropriate for
laser range data. A statistical framework of RANdom SAmple Concensus (RANSAC)
for segmentation and robust model fitting using range data is also discussed in literature
(Bolles & Fischler, 1981). Existing work in applying RANSAC to 3D data for plane fitting
uses single frame of data (Bartoli, 2001; Hongsheng & Negahdaripour, 2004) or tracking of
data points (Yang et al., 2006), and does not exploit the temporal aspect of 3D video data.
In this work, we have formulated a spatio-temporal RANSAC algorithm for ground plane
estimation using 3D video data. The TOF camera/sensor provides 3D spatial data at video
frame rate and is recorded as a video stream. We model a planar 3D feature comprising two
spatial directions and one temporal direction in 4D. We consider a linear motion model for the
camera. In order that the resulting feature is planar in the full spatio-temporal representation,
we require that the camera rotation lies in the normal to the ground plane, an assumption
that is naturally satisfied for the automotive application considered. A minimal set of data
consisting of four points is chosen randomly amongst the spatio-temporal data points. From
these points, three independent vector directions, lying in the spatio-temporal planar feature
are computed. A model for the 3D planar feature is obtained by computing the 4D cross
product of the vector directions. The resulting model is scored in the standard manner of
RANSAC algorithm and the best model is used to identify inlier and outlier points. The final
planar model is obtained as a Maximum likelihood (ML) estimation derived from inlier data
where the noise is assumed to be Gaussian. By utilizing data from a sequence of temporally
separated image frames, the algorithm robustly identifies the ground plane even when the
ground plane is mostly obscured by passing pedestrians or cars and in the presence of walls
(hazardous planar surfaces) and other obstructions. The fast segmentation of the obstacles
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Fig. 2. Basic principle of TOF 3D imaging system.

is achieved using the statistical distribution of the feature and then employing a statistical
threshold. The proposed algorithm is simple as no spatio-temporal tracking of data points
is required. It is computationally inexpensive without the need of image/feature selection,
calibration or scene constraint and is easy to implement in fewest possible steps.
This chapter is organized as follows: Section 2 describes the time-of-flight camera/sensor
technology, Section 3 presents the structure and motion model constraints for planar feature,
Section 4 describes formulation of spatio-temporal RANSAC algorithm, Section 5 describes
application of the framework and Section 6 presents experimental results and discussion,
followed by conclusion in Section 7.

2. Time-of-flight camera

Time-of-Flight (TOF) sensors estimate distance to a target using the time of flight of a
modulated infrared (IR) wave between the sender and the receiver (see Fig. 2). The
sensor illuminates the scene with a modulated infrared waveform that is reflected back by
the objects and a CMOS (Complementary metal-oxide- semiconductor) based lock in CCD
(charge-coupled device) sensor samples four times per period. With the precise knowledge of
speed of light c, each of these (64×48) smart pixels, known as Photonic Mixer Devices (PMD)
(Xu et al., 1998), measure four samples a0, a1, a2, a3 at quarter wavelength intervals. The phase
ϕ of the reflected wave is computed by (Spirig et al., 1995)

ϕ = arctan
a0 − a2
a1 − a3

.

The amplitude A (of reflected IR light) and the intensity B representing the gray scale image
returned by the sensor are respectively given by

A=

√
(a0 − a2)2 + (a1 − a3)2

2
, B =

a0 + a1 + a2 + a3
4

.

With measured phase ϕ, known modulation frequency fmod and precise knowledge of speed
of light c it is possible to measure the un-ambiguous distance r from the camera,

r =
c.ϕ

4π fmod
. (1)
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Fig. 3. Time-of-Flight sensor geometry

With amodulationwavelength of λmod, this leads to amaximumpossible unambiguous range
of (λmod/2). For a typical camera such as PMD 3k-S (PMD, 2002), fmod=20Mhz and with a
speed of light c given by 3× 108 m/s, the non-ambiguous range rmax of the TOF camera is
given as

rmax =
c

2 fmod
=

3× 108

2 · 20× 106
= 7.5meters.

The sensor returns a range r value for each pixel as a function of pixel coordinates (x,y) as
shown in Fig. 3.
The range values are used to compute 3D position XXX(X,Y,Z) of the point

Z = r(x,y).
f√

f 2 + x2 + y2
; X = Z

x

f
; Y = Z

y

f
, (2)

where f is the focal length of the camera.

3. Structure and motion constraints

In the following section we will discuss the motion model and the planar feature parameters
essential to derive the spatio-temporal RANSAC formulation for a planar feature.

3.1 Motion model

Consider a TOF camera moving in space. Let {i} denote the frame of reference at time stamp
i, 1≤ i≤ n, attached to the camera. Let {W} denote the fixed world reference frame. The rigid
body transformation

W
i M : R

3 → R
3; XXXi �→ XXXW := W

i RXXXi +
WTi (3)

is defined as the coordinate mapping from frame {i} to world frame {W} with rotation (Wi R)

and translation (WTi) respectively. Let X̄XX ∈ R
4 denote the homogenous coordinates of XXX ∈ R

3,
then the transformation (3) in matrix form is given by

W
i M̄ : R

4 → R
4; (4)

X̄XXW =

[
XXXW

1

]
=

[
W
i R WTi
0 1

][
XXXi

1

]
= W

i M̄X̄XXi. (5)

Let ijM̄ be the rigid body mapping from frame {j} to frame {i} then,

i
jM̄ = i

WM̄ W
j M̄ = (Wi M̄)−1W

j M̄.

Hence

i
jM̄ =

[
(Wi R⊤)(Wj R) (Wi R⊤)(WTj −

WTi)

0 1

]
. (6)

436 New Trends and Developments in Automotive System Engineering

www.intechopen.com



4D Ground Plane Estimation Algorithm for Advanced Driver Assistance Systems 5

3.2 Equation of planar feature with linear motion

Let P be a 2D planar feature that is stationary during the video sequence considered. Let
ηi ∈ {i} be the normal vector to P in frame {i}, then ηi is a direction that transforms between
frames of reference as

ηi =
j
iR

⊤ηj =
i
jRηj. (7)

The homogenous coordinates of a direction (free vector) such as ηi are given by

η̄i =

[
ηi
0

]
∈ R

4,
j
iM̄η̄i =

j
iM̄

[
ηi
0

]
=

[
j
iRηi
0

]
= η̄j. (8)

Let XXXi,XXX j ∈ P be different elements of the planar feature P observed in different frames {i}

and {j}. Note that XXXi �=
i
jMXXX j in general as the points do not correspond to the same physical

point in the plane, however, (XXXi,
i
jMXXX j) must both lie in P in {i}. Since ηi is a normal to P in

{i}, one has
〈(X̄XXi −

i
jMX̄XX j), η̄i〉 = 0. (9)

Thus
〈[

XXXi

1

]
−

[
(Wi R⊤)(Wj R)XXX j + (Wi R⊤)(WTj −

WTi)

1

]
,

[
ηi
0

]〉
= 0

〈
XXXi − (Wi R⊤)(Wj R)XXX j − (Wi R⊤)(WTj −

WTi),ηi

〉
= 0

〈
XXXi − (Wi R⊤)(Wj R)XXX j,ηi

〉
−

〈
(Wi R⊤)(WTj −

WTi),ηi

〉
= 0

〈
XXXi − XXX j, (

W
j R)(Wi R⊤)ηi

〉
−

〈
(WTj −

WTi), (
W
i R)ηi

〉
= 0. (10)

Let V ∈ {W} denote the linear velocity then the rigid body dynamics for a moving body (an
automotive) is modelled by

Ṫ = V; T(0) = T1

Ṙ = ω̂R; R(0) = R1, (11)

where ω ∈ {W} is the angular velocity and ω̂ ∈ R
3×3 denote the skew symmetric matrix that

corresponds to vector cross product operation in 3D.
Assumption: We assume that the angular velocity ω of the camera is parallel to η ∈ {W}, the
normal to the ground plane at all times and the translation velocity V in the direction normal
to the ground plane is constant such that

η × ω = 0 and 〈V,η〉 = constant, (12)

where × represents a cross product between two vectors. For normal motion of a vehicle, roll
and pitch rotations are negligible compared to yawmotion associated with angular velocity of
the turning vehicle Gracia et al. (2006) and corresponds to common ground-plane constraint
(GPC) Sullivan (1994) (see Figure 4).
In real environments for motion captured at nearly video frame rate, the piecewise linear
velocity along the normal direction can be assumed constant as evident from the experiments

4374D Ground Plane Estimation Algorithm for Advanced Driver Assistance Systems
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Fig. 4. Vehicle with roll, pitch and dominant yaw motion

in Section 4. This is to be expected in the case where the camera is attached to a vehicle that
moves on a plane P, precisely the case for the automotive example considered. In practice, this
degree of motion is important to model situations where the car suspension is active and is
also used to identify non-ground features that the vehicle may be approaching with constant
velocity.
As a consequence of (12)

ω = s(t)η ∈ {W}; s : R → R in time t. (13)

Following (13) one can re-write (11) as

Ṙ = s(t)η̂R; R(0) = R1.

Therefore the continuous rotation motion R(t) : R → SO(3) for the automobile trajectory is
expressed as

R(t) = exp(θ(ti)η̂)R1; θ(ti) =
∫ ti

0
s(τ)dτ (14)

where ti time is at frame {i} and
W
i R = R(ti).

By definition W
i Rηi = η and hence,

ηi = W
i R⊤η

= R⊤
1 exp(θ(ti)η̂)

⊤η

= R⊤
1 η = η1 (15)

Using (15), we can re-write (10) as

〈
XXXi − XXX j,η1

〉
−

〈
WTj −

WTi,η1

〉
= 0. (16)

We assume the frames are taken at constant time interval δt and hence ti = δt(i− 1) + t1. Since
〈V,η〉 is constant and t1 = 0, the linear translation motion WTi satisfies

〈
WTi,ηi

〉
= 〈V,η〉 δt(i− 1) + 〈T1,η1〉 . (17)

Using assumption (12), define α ∈ R to be

α = 〈V,η〉 δt= constant. (18)

438 New Trends and Developments in Automotive System Engineering
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Thus, from (16) and (17), the structure and motion constraint that XXXi,XXX j lie in the plane P can
be expressed as 〈

XXXi − XXX j,η1

〉
− α(j− i) = 0. (19)

This is an equation for a plane P parameterized by η1 ∈ S2 (‖η1‖= 1) and motion parameter
α ∈ R. An additional parameter, the distance h ∈ R of the plane P from the origin in frame
{1} in the direction η1, completes the structure and motion constraints of planar feature. Note
that α is the component of translational camera velocity in the direction normal to the planar
feature P. The component α will be the defining parameter for the temporal component of the
3D planar feature that is identified in the RANSAC algorithm (see Section 4).

Let ¯̄XXXi be a 4D spatio-temporal coordinate that incorporates both spatial coordinates XXXi and a
reference to the frame index or time coordinates i

¯̄XXXi =

[
XXXi

i

]
. (20)

Associated with this we define a normal vector that incorporates the spatial normal direction
η1 and the motion parameter α

¯̄η =

[
η1
α

]
. (21)

Using these definitions (19) may be re-written as
〈
¯̄XXXi −

¯̄XXX j, ¯̄η
〉
= 0. (22)

4. Spatio-temporal RANSAC algorithm

In this section we present the spatio-temporal RANSAC algorithm and compute a 3D
spatio-temporal planar hypothesis based on the structure and motion model derived in
Section 3.2 and a minimal data set.

4.1 Computing a spatio-temporal planar hypothesis

Equation (19) provides a constraint that ( ¯̄XXXi −
¯̄XXX j) ∈ R

4 lies in the 3D spatio-temporal planar

feature P in R
4 with parameters η1 ∈ S2, α ∈ R and h ∈ R. Given a sample of four points

{ ¯̄XXXi1 ,
¯̄XXXi2 ,

¯̄XXXi3 ,
¯̄XXXi4}, one can construct a normal vector ¯̄η to P by taking the 4D cross product

(see Appendix A)

¯̄ηo = cross4(
¯̄XXXi1 −

¯̄XXXi2 ,
¯̄XXXi1 −

¯̄XXXi3 ,
¯̄XXXi1 −

¯̄XXXi4) ∈ R
4, (23)

where ¯̄XXXi ∈ {{1}, . . . ,{n}}. To apply the constraint η1 ∈ S2 we normalize ¯̄ηo = ( ¯̄ηx
o , ¯̄η

y
o , ¯̄η

z
o , ¯̄η

t
o)

by

¯̄η =
1

β
¯̄ηo; β =

√
( ¯̄ηx

o )2 + ( ¯̄η
y
o )2 + ( ¯̄ηz

o)2. (24)

The resulting estimate ¯̄η = (η1,α) is an estimate of the normal η1 ∈ S2 and α, the normal vector
component of translation velocity (18).
Note that the depth parameter h can be determined by

h1 = 〈XXXi,η1〉 − α(i − 1). (25)

However, the parameter h is not required for the robust estimation phase of the RANSAC
algorithm and is evaluated in the second phase where a refined model is estimated.

4394D Ground Plane Estimation Algorithm for Advanced Driver Assistance Systems
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Fig. 5. Statistical distribution of planar feature data points derived from experimental data
documented in Section 6.

4.2 Statistical distribution of 4D data points

The spatio-temporal data points that have a probability p of lying in the planar feature are
defined as inliers. Due to Gaussian noise in range measurements of TOF camera, the distance
of these inliers from the model (planar feature) have a Gaussian distribution with N (0,σ) as
shown in Fig. 5.
As a consequence, the point square distance a2⊥,

a2⊥ = (〈( ¯̄XXX − ¯̄XXXi1), ¯̄η〉)
2; ¯̄XXX ∈ all spatio-temporal data points,

of the inliers (Hartley & Zisserman, 2003) from the planar feature associated with the data

point ¯̄XXXi, have a chi-squared distribution χ2. Since we consider a spatio-temporal planar
feature, there are three degrees of freedom in the chi-squared distribution. Let Fχ2

3
denote the

cumulative frequency of three degree of freedom of chi-squared distribution χ2
3 then one can

define the threshold coefficient q2 by

q2 = F−1
χ2
3
(p)σ2. (26)

Thus, the statistical test for inliers is defined by

{
inliers a2⊥ < q2

outliers a2⊥ ≥ q2.
(27)

In the experiments documented in Section 6, we use a value of p = 0.95. In
this case the threshold is q2 = 7.81σ2 where σ is determined empirically. Spatial
ground plane estimation algorithms using single 3D images (Cantzler et al., 2002; Bartoli,
2001; Hongsheng & Negahdaripour, 2004) are associated with two degree of chi-squared
distribution since they lack temporal dimension. As a result the same analysis leads to a
threshold of q2 = 5.99σ2 (for p = 0.95). The additional threshold margin for the proposed
spatio-temporal algorithm quantifies the added robustness that comes from incorporating the
temporal dimension along with the data available by incorporating multiple images from the

440 New Trends and Developments in Automotive System Engineering
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4D Ground Plane Estimation Algorithm for Advanced Driver Assistance Systems 9

video stream. This leads to significant improvement in robustness and performance of the
proposed algorithm over single image techniques. The resulting spatio-temporal RANSAC
algorithm is outlined in Algorithm 1.

5. Application

The planar feature estimation algorithm in 4D is an approach that can be utilized in multiple
scenarios with reference to automotive domain. Since the dominating planar feature for an
automotive is a road, we have presented an application of the proposed algorithm for robust
ground plane estimation and detection.
A constant normal velocity component α (18) helps to detect ground plane due to the fact
that piecewise linear velocity in the normal direction of the automotive motion is small and
constant over the number of frames recorded at frame rate. Detection of ground plane in
spatio-temporal domain provides an added advantage for cases where there is occlusion and
single frame detection is not possible. Section 6 presents number of examples for ground
plane.

Algorithm 1: Pseudo code Spatio-temporal RANSAC algorithm

Initialization: Choose a probability p of inliers. Initialize a sample count m = 0 and the trial
process N = ∞.

repeat

a. Select at random, 4 spatio-temporal points ( ¯̄XXXi1 ,
¯̄XXXi2 ,

¯̄XXXi3 ,
¯̄XXXi4).

b. Compute the temporal normal vector ¯̄η according to (23) and (24).

c. Evaluate the spatio-temporal constraint (22) to develop a consensus set Cm

consisting of all data points classified as inliers according to (27).

d. Update N to estimate the number of trials required to have a probability p
so that the selected random sample of 4 points is free from outliers
as (Fischler & Bolles, 1981),

N = log(1− p)/log
(
1−

number of inliers

number of points

)4
.

until at least N trials are complete
Select the consensus set C∗

m that has the most inliers.
Optimize the solution by re-estimating from all spatio-temporal data points in C∗

m by
maximizing the likelihood of the function φ

φ( ¯̄η,h) = ∑
¯̄XXX∈C∗

m

(〈 ¯̄η, ¯̄XXX〉 − h)2 (28)

L(φ) = ∏
¯̄XXX∈C∗

m

φ( ¯̄XXX| ¯̄η,h); ( ˆ̄̄η, ĥ) = argmax
¯̄η,h

(L),

where we assume a normal distribution in observed depth.

4414D Ground Plane Estimation Algorithm for Advanced Driver Assistance Systems
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An obstacle detection algorithm can be applied once a robust estimation of planar ground
surface is available. In the proposed framework, the algorithm evaluates each spatio-temporal
data point and categorizes traversable and non-traversable objects or obstacles. Traversable
objects are the points that can be comfortably driven over in a vehicle. We are inspired by a
similar method proposed in (Fornland, 1995). The estimated Euclidean distance d̂ to the plane

for an arbitrary data point ¯̄XXX is defined as

d̂= 〈 ¯̄XXX, ˆ̄̄η〉 − ĥ. (29)

Objects (in each frame) are segmented from the ground plane by a threshold τ as

¯̄XXX =

{
Obstacle |d̂| ≥ τo
Traversable object |d̂| < τo,

(30)

where τo is set by the user for the application under consideration. This threshold
segmentation helps in reliable segregation of potential obstacles. The allowance of larger
threshold in inliers for plane estimation makes obstacle detection phase robust for various
applications especially for on road obstacle detection.

6. Experimental results and discussions

Experiments were performed using real video data recorded from PMD 3k-S TOF camera
mounted on a vehicle with an angle varying between 2◦ to 20◦ to the ground. The camera
records at approx 20 fps and provides both gray scale and range images in real time. The
sensor has a field of view of 33.4◦ × 43.6◦. The video sequences depict scenarios in an
under cover car park. In particular, we consider cases with pedestrians, close by vehicles,
obstacles, curbs/foothpaths and walls etc. Five experimental scenarios have been presented
to evaluate the robustness of the algorithm against real objects and also compared with
standard 3D RANSAC algorithm. The gray scale images shown represent the first and
the last frame of video data. It is not possible to have a 4D visualization environment,
therefore a 3D multi-frame representation (each data frame represented in different color)
provides a spatio-temporal video range data. The estimated spatio-temporal planar feature is
represented in frame {1}. The final solution is rotated for better visualisation.
In the first set of experiments shown in Fig. 6 and Table. 1( sequence 1-4), four different
scenarios are presented. The first scenario shows multiple walls at varying level of depth
and a ground plane. The algorithm correctly picks the ground plane rejecting other planar
features. In the next scenario, a truck in close vicinity is obstructing the clear view but the
ground plane has been identified by exploiting the full video sequence of the data. A number
of obstacles including cars, wall and a person are visible while the car is manoeuvring a turn in
the third scenario. The algorithm clearly estimates actual ground plane. In the fourth scenario
the result is not perturbed by passing pedestrians and the algorithm robustly identifies the
ground plane. In a typical sequence a 8-10 frame data is enough to resolve a ground plane
even in the presence of some kind of occlusion.
In another experiment shown in Fig. 7a (sequence 5 with single frame data), the standard
RANSAC algorithm is applied using a single frame data for comparison.
The obvious failure of a standard RANSAC algorithm is due to the bias of planar data points
towards the wall. On the other hand, the proposed algorithm has correctly identified the
ground surface in Fig. 7b by simply incorporating more frames (10 frames and |α| = 0.0018)
due to the availability of temporal data without imposing any scene constraint.

442 New Trends and Developments in Automotive System Engineering
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frame 1

(a)

frame 8

(b) (c)

frame 1

(d)

frame 10

(e) (f)

frame 1

(g)

frame 10

(h) (i)

frame 1

(j)

frame 10

(k) (l)

Fig. 6. Experimental data shown in a three column format. First two columns show gray
scale image of first and last video frame and third column shows spatio-temporal fit on 4D
data. Each frame of 3D data is represented by a different color. (a-b) Gray scale images of a
double wall and ground plane at turning (c) Spatio-temporal ground plane fitting of 8 frames
at t=1. (d-e) A truck in close vicinity (f) Corresponding spatio-temporal ground plane fit of 10
frames. (g-h) Cars, wall and a person as obstacles at turning. (i) Corresponding
spatio-temporal ground plane fit. (j-k) Pedestrians. (l) Ground plane fit.
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(a) (b)

Fig. 7. Using data from sequence 5, (a) Standard RANSAC plane fitting algorithm picks the
wall with a single frame data. (b) Spatio-temporal RANSAC algorithm picks the correct
ground plane (10 frames).

Obstacle detection algorithm is effectively applied after robust estimation of ground plane.
In the experiment shown in Fig. 8, pedestrians are segmented with τo = 0.1 by the obstacle
detection algorithm after correct identification of ground plane. This threshold implies that
objects with a height greater than 10 cm (shown in red color) are considered as obstacle where
data points close to ground plane are ignored (traversable objects) with this threshold.
The experimental results are straightforward and show excellent performance. The proposed
4D spatio-temporal RANSAC algorithm’s computation cost is associated with picking the
normal vector to the 3D planar feature by random sampling (please note that this is the only
computation cost associated with 4D spatio-temporal RANSAC algorithm). This eliminates
any computation cost associated with pre-processing images unlike conventional algorithms.
The experiments were performed on a PCmachine with Intel Core 2 Duo 3GHz processor and
2 GB RAM. The algorithm is implemented in MATLAB. The computation cost varies with the
number of inliers and the planar surface occlusion in the range data as shown in Fig. 9.

7. Conclusion

Many vision based applications use some kind of segmentation and planar surface detection
as a preliminary step. In this paper we have presented a robust spatio-temporal RANSAC
framework for ground plane detection for use in ADAS of automotive industry. Experimental

Sequence no Sequence No of frames used |α| (m/frame)

1 Double Wall 8 0.0016
2 Moving truck 10 0.0017
3 Multiple objects 10 0.0021
4 Pedestrian 10 0.0020
5 Front wall 10 0.0018

Table 1. Experimental data for ground plane estimation
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Fig. 8. (a) Potential obstacles and Pedestrians are shown in red color. (b) Histogram of
ground plane and obstacles.

results validate the structure and motion model of a 3D spatio-temporal planar feature in
4D. Since the algorithm does not involve any tracking or feature selection, it is highly robust,
simple and practical to implement. The algorithm is suitable not only for automotive industry
but also in general computer vision applications that satisfy the particular motion constraint
(η × ω = 0). This constraint ensures that a spatial planar feature generates a planar feature
in spatio-temporal domain. The spatio-temporal constraints increases reliability in planar
surface estimation that is otherwise susceptible to noisy data in any algorithm developing
a single frame data. Further improvement in computation cost can be achieved through
dedicated hardware implementation.
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Fig. 9. Performance plots for Spatio-temporal RANSAC for all the sequences.

8. Appendix A

Given an orthonormal basis {e1, . . . ,en} ∈ R
n the ‘Levi-Civita’ (ε) antisymmetric tensor is

defined as (Shaw, 1987)

ε i,j,...,n =

⎧
⎨


+1 if (i, j, . . . ,n) an even permutation of (1,2, . . . ,n)
−1 if (i, j, . . . ,n) an odd permutation of (1,2, . . . ,n)
0 if (i, j, . . . ,n) not a permutation of (1,2, . . . ,n)

The cross product of three vectors a,b,c ∈ R
4 is defined as

cross4(a,b,c) = (a× b× c) =
n=4

∑
i,j,k,l=1

ε ijklajbkclei (31)

The vector cross product of the three vectors in R
4 has the following properties (amongst

others).

1. Trilinearity: For α,β,γ ∈ R, αa× βb× γc= αβγ(a× b× c).

2. Linear dependence: cross4(a,b,c) = 0 iff 〈a,b,c〉 are linearly dependent.

3. Orthogonality: Let d = a× b× c⇒ 〈d,a〉= 〈d,b〉= 〈d,c〉= 0
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