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1. Introduction

There is not enough genetic information to specify the connectivity of the brain in detail
(Miikkulainen et al., 2005). The total number of neurons in the neocortex of an adult human
brain is estimated to be about 28 billion and the number of connections (synapses) between
them and to other cells in the brain to more than 100 trillion (Mountcastle, 1997). In
comparison, the human genome only contains about 3 billion base pairs (Consortium, 2004).
Thus a reasonable view is that the cortex is not directly specified genetically but constructed
by input-driven self-organization (Miikkulainen et al., 2005).
The self-organizing process works by using sensory input to adjust the networks organization
instead of specifying all connections in advance. The form of self-organization that seems to
be active in the cortex gives rise to a special property called topological mapping. This means
that the neurons that are activated for similar sensory inputs are found close to each other.
The properties self-organization and topology preservation are caught in the Self-Organizing
Map (SOM) (Kohonen, 1988), which shares many features with brain maps (Kohonen, 1990).
However, the cortex consists of many brain maps and different parts of the cortex obviously
interact. For example, different sensory modalities interact with each other. A dramatic
illustration of this can be seen in the McGurk-MacDonald effect. If you hear a person making
the sound /ba/ but the sound is superimposed on a video recording on which you do not
see the lips closing, you may hear the sound /da/ instead (McGurk & MacDonald, 1976). The
neural mechanisms underlying such interaction between different sensory modalities are not
known but recent evidence suggests that different primary sensory cortical areas can influence
each other.
Interaction between sensory modalities may also be important for internal simulation of
perceptions. An idea that has been gaining popularity in cognitive science in recent years
is that higher organisms are capable of simulating perception. In essence, this means that
the perceptual processes normally elicited by some ancillary input can be mimicked by the
brain (Hesslow, 2002). There is now a large body of evidence supporting this contention. For
instance, several neuroimaging experiments have demonstrated that activity in visual cortex
when a subject imagines a visual stimulus resembles the activity elicited by a corresponding
ancillary stimulus (for a review of this evidence see e.g. (Kosslyn et al., 2001); for a somewhat
different interpretation, see (Bartolomeo, 2002).
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2 Self Organising Maps, New Achievements

A critical question here is how simulated perceptual activity might be elicited. One possibility
is that signals arising in the frontal lobe in anticipation of consequences of incipient actions
are sent back to sensory areas (Hesslow, 2002). Another possibility is that perceptual activity
in one sensory area can influence activity in another.
Inspired by these findings we suggest that in a multimodal perceptual model, the subsystems
of different sensory modalities should co-develop and be associated with each other. This
means that suitable activity in some modalities that for the moment receive input should,
at least to some degree, elicit appropriate activity in other sensory modalities as well. This
provides an ability to activate the subsystem for a modality even when its sensory input is
limited or nonexistent as long as there is activity in subsystems for other modalities.
Another probable ability of the brain is to elicit continued and reasonable activity in different
perceptual subsystems in the absence of input, i.e. an ability to internally simulate sequences
of perceptions as proposed in the neuroscientific simulation hypothesis (Hesslow, 2002).
This means an ability to elicit activity patterns that are normally subsequent to the present
activity pattern in a subsystem even when sensory input is absent. It would also imply an
ability to anticipate future sequences of perceptions that normally follows a certain perception
within a modality, but also over different modalities if the modalities have co-developed and
are associated. For example, a gun seen to be fired from a long distance, would yield an
anticipation of a bang to follow soon.
This chapter presents a novel variant of the SOM. This variant of the SOM is called the
Associative Self-Organizing Map (A-SOM) and we think it would be suitable in models that
catch phenomena like those sketched above.
The A-SOM is similar to the SOM and develops a representation of its input space, but in
addition it also learns to associate its activity with the (possibly time delayed) activities of an
arbitrary number of other neural networks, or its own earlier activity (which makes it into an
unsupervised recurrent neural network).
The A-SOM differs from earlier attempts to build associated maps such as the Adaptive
Resonance Associative Map (Tan, 1995) and Fusion ART (Nguyen et al., 2008) in that all
layers (or individual networks) share the same structure and uses topologically arranged
representations. Unlike ARTMAP, the A-SOM also allows associations to be formed in both
directions (Carpenter et al., 1992).
The most similar existing unsupervised recurrent neural network is the Recursive SOM that
feeds back its activity together with the input for the next iteration (Voegtlin, 2002). The
Recursive SOM is similar but not equivalent to the A-SOM and lacks ability to associate with
the activity of other neural networks. Other less similar examples are the Temporal Kohonen
Map (Chappell & Taylor, 1993), the Recurrent Self-Organizing Map (Varsta et al., 1997) and
the Merge SOM (Strickert & Hammer, 2005).
The chapter both summarizes our previouswork (Johnsson & Balkenius, 2008; Johnsson et al.,
2009a;b) with the A-SOM and adds new results and insights. It describes the A-SOM in detail
and its use in the modelling of cross-modal expectations and in the modelling of internal
simulation.

2. Associative self-organizing map

The A-SOM is based on the ordinary SOM and thus finds a representation of its input space.
In addition it also learns to associate its activity with (possibly delayed) additional ancillary
inputs. These ancillary inputs could be the activities of a number of external SOMs or
A-SOMs, or the earlier activity of the A-SOM itself. It consists of a grid of neurons with
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Associative Self-Organizing Map 3

a fixed number of neurons. Each neuron has multiple sets of weights, one for main input
(which is similar to the input of an ordinary SOM) and one for each ancillary input. All
neurons receive both main input (e.g. from a sensor), and ancillary inputs (e.g. the activity in
associated representations of other sensory modalities or the A-SOMs activity from previous
iterations). Each neuron calculates activities for its main input and for each ancillary input.
The main input activity is calculated in a way similar to the ordinary SOM, with dot product
as the similarity measure. Also the adaptation of the weights corresponding to the main input
are calculated as in an ordinary SOM, i.e. so that the neuron with the highest main activity
and the neurons in its vicinity are adjusted. The ancillary activities of a neuron are calculated
using dot product and are adjusted by the delta rule to approach the main activity. The total
activity of a neuron is calculated by averaging the main activity and the ancillary activities.
By connecting the total activity of the A-SOM back to itself as an ancillary input with a time
delay the A-SOM is turned into a recurrent A-SOM able to learn sequences. This is so because
then the ancillary weights will have learned to evoke activity based on the previous activity
in the A-SOM.
Formally the A-SOM consists of an I × J grid of neurons with a fixed number of neurons
and a fixed topology. Each neuron nij is associated with r + 1 weight vectors wa

ij ∈ Rn and

w1
ij ∈ Rm1 ,w2

ij ∈ Rm2 , . . . ,wr
ij ∈ Rmr . All the elements of all the weight vectors are initialized by

real numbers randomly selected from a uniform distribution between 0 and 1, after which all
the weight vectors are normalized, i.e. turned into unit vectors.

At time t each neuron nij receives r + 1 input vectors xa(t) ∈ Rn and x1(t − d1) ∈

Rm1 ,x2(t − d2) ∈ Rm2 , . . . ,xr(t − dr) ∈ Rmr where dp is the time delay for input vector
xp , p= 1,2, . . . ,r.

The main net input sij is calculated using the standard cosine metric

sij(t) =
xa(t) · wa

ij(t)

||xa(t)||||wa
ij(t)||

, (1)

The activity in the neuron nij is given by

yij(t) =
[

yaij(t) + y1ij(t) + y2ij(t) + . . .+ yrij(t)
]

/(r+ 1) (2)

where the main activity yaij is calculated by using the softmax function Bishop (1995)

yaij(t) =

(

sij(t)
)m

maxij

(

sij(t)
)m (3)

where m is the softmax exponent.
The ancillary activity y

p
ij(t), p = 1,2, . . . ,r is calculated by again using the standard cosine

metric

y
p
ij(t) =

xp(t− dp) · w
p
ij(t)

||xp(t− dp)||||w
p
ij(t)||

. (4)

The neuron c with the strongest main activation is selected:
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4 Self Organising Maps, New Achievements

c = arg maxijy
a
ij(t) (5)

The weights wa
ijk are adapted by

wa
ijk(t+ 1) = wa

ijk(t) + α(t)Gijc(t)
[

xak(t)− wa
ijk(t)

]

(6)

where 0≤ α(t)≤ 1 is the adaptation strength with α(t)→ 0 when t→ ∞. The neighbourhood

function Gijc(t) = e
−

||rc−rij ||

2σ2(t) , where rc ∈ R2 and rij ∈ R2 are location vectors of neurons c and
nij, is a Gaussian function decreasing with time.

The weights w
p
ijl, p = 1,2, . . . ,r, are adapted by

w
p
ijl(t+ 1) = w

p
ijl(t) + βx

p
l (t− dp)

[

yaij(t)− y
p
ij(t)

]

(7)

where β is the adaptation strength.
All weights wa

ijk(t) and w
p
ijl(t) are normalized after each adaptation.

3. Modelling cross-modal expectations

3.1 Associating the A-SOM with two ancillary SOMs

We have tested the A-SOM in a model of cross-modal expectations (Johnsson et al., 2009a). In
this experiment we connected an A-SOM to two ancillary SOMs and trained all three neural
networks with a set of 10 samples, Fig. 1. This set was constructed by randomly generating 10
points with a uniform distribution from a subset s = {(x,y) ∈ R2;0 ≤ x ≤ 1,0 ≤ y ≤ 1} of the
plane, Fig. 2, left. The selected points were then mapped to a subset of R3 by adding a third
constant element of 0.5, yielding a training set of three-dimensional vectors. The reason for
this was that a Voronoi tessellation of the plane was calculated from the generated points to
later aid in the determination of were new points in the plane were expected to invoke activity
in the A-SOM. To make this Voronoi tessellation, which is based on a Euclidian metric, useful
for this purpose with the A-SOM, which uses a metric based on dot product, the set of points
in the plane has to be mapped so that the corresponding position vectors after normalization
are unique. One way to accomplish such a mapping is by adding a constant element to each
vector. The result of this is that each vector will have a unique angle in R3. We chose the value
0.5 for the constant elements to maximize the variance of the angles in R3.
The A-SOM was connected to two SOMs (using the same kind of activation as the main
activation in the A-SOM, i.e. dot product with softmax activation) called SOM 1 and SOM 2,
and thus also received their respective activities as associative input, see Fig. 1. The A-SOM,
SOM 1 and SOM 2 were then simultaneously fed with samples from the training set, during a
training phase consisting of 20000 iterations. The two SOMs and the A-SOM could as well be
fed by samples from three different sets, always receiving the same combinations of samples
from the three sets (otherwise the system could not learn to associate them). This could
be seen as a way of simulating simultaneous input from three different sensory modalities
when an animal or a robot explores a particular object. Each of the three representations,
the A-SOM and the two SOMs, consists of 15× 15 neurons. The softmax exponent for each
of them were set to 1000. Their learning rate α(0) was initialized to 0.1 with a learning rate
decay of 0.9999 (i.e. multiplication of the learning rate with 0.9999 in each iteration), which
means the minimum learning rate, set to 0.01, will be reached at the end of the 20000 training
iterations. The neighbourhood radius, i.e. σ of the neighbourhood function Gijc(t) in eq. (6),
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Associative Self-Organizing Map 5

Fig. 1. Schematic depiction over the connections between the two SOMs and the A-SOM in
the model of cross-modal expectations. The test system consists of three subsystems, which
develop representations of sample sets from three input spaces (for simplicity we use the
same input set for all three representations in this study). One of the representations (the
A-SOM) also learns to associate its activity with the simultaneous activities of the two SOMs.
This means proper activity can be invoked in the A-SOM of the fully trained system even if it
does not receive any ordinary input. This is similar to cross-modal activation in humans, e.g.
a tactile perception of an object that invokes an internal visual imagination of the same object.

was initialized to 15 for all three representations and shrunk to 1 during the 20000 training
iterations by using a neighbourhood decay of 0.9998 (i.e. multiplication of the neighbourhood
radius with 0.9998 in each iteration). All three representations used plane topology when
calculating the neighbourhood. The β for the associative weights in the A-SOM was set to
0.35.
After training the systemwas evaluated by feeding it with samples from the training set again
to one, two or all three representations in all possible combinations. When a representation
did not receive any input it was fed with null vectors instead (thus simulating the input of

1
3

2

4

5

6

10

9

8

7

1
3

2

4

5

6

10

9

8

7

Fig. 2. Left: The Voronoi tessellation of the points used when constructing the training set
used for the A-SOM and the two SOMs. This set was constructed by randomly generating 10
points from a subset of R2 according to a uniform distribution. To make this Voronoi
tessellation, which is based on a Euclidian metric, valid as a measure of proximity the
training set had to be transformed by addition of a constant element to each sample vector.
This is because the A-SOM using a dot product based metric and normalizing its input
would consider all position vectors of a particular angle equal. By adding a constant element
each point in the plane becomes a position vector in R3 with a unique angle. Right: The same
Voronoi tesselation but with the points used in the generalization test depicted. Also this set
was mapped to a new set in R3 by addition of a third constant element to each sample vector,
and for the same reason as for the samples in the training set.
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no signal from sensors of the modality of that representation). The centers of activity in the
A-SOM as well as in the two SOMs were recorded for all these tests.
The result was evaluated by using the training set on the fully trained system. First we
recorded the centers of activation in the A-SOM when fed by main input from the training
set only (i.e. the two SOMs were fed with null vectors) and the centers of activation in
the two SOMs. Then we calculated Voronoi tessellations for the centers of activation in all
three representations (Fig. 3, uppermost row) to see if they could separate the samples and in
particular if the A-SOM could separate the samples when fed by the activity of one or both
of the SOMs only. If the center of activation for a particular sample in the training set were
located in the correct Voronoi cell, this is considered as a successful recognition of the sample,
because this means the center of activation is closer to the center of activation of the same
object than to the center of activation of any other sample in the training set when the A-SOM
is fed by main input only like an ordinary SOM. By comparing the Voronoi tessellations of the
A-SOM and the two SOMs, Fig. 3, and the Voronoi tessellation of the plane for the training
set, Fig. 2, we can see that the ordering of the Voronoi cells for the training set are to a large
extent preserved for the Voronoi cells for the centers of activation in the A-SOM and the two
SOMs. In Fig. 3 we can also see that all, i.e. 100% of the training samples are recognized in
the A-SOM as long as at least one of the three representations receives input.

3.1.1 Generalization

To test if the system was able to generalize to a new set of samples, which it had not been
trained with, we constructed another set of 10 samples with the same method as for the
training set. This generalization test set was used as input to the two SOMs and the A-SOM,
i.e. each of these representations received the same sample simultaneously (or a null vector).
The generalization ability of the system was evaluated by feeding it with samples from the
generalization set to one, two or all three representations in all possible combinations. When
a representation did not receive any input it was fed with null vectors instead. The centers of
activity in the A-SOM as well as in the two SOMs were recorded for all these tests.
The result was evaluated by now using the generalization set on the fully trained system.
We recorded the centers of activation in the A-SOM when each of the SOMs were the only
recipient of input, when both SOMs received input, when each of the SOMs and the A-SOM
received input, when all three representations received input, and when only the A-SOM
received input. As before a representation which did not receive input received null vectors
(signifying the lack of sensory registration for that modality). We then looked at in which
Voronoi cell the centre of activation was located in the A-SOM and in the SOMs for each
sample of the generalization set. When a generalization sample belongs to the Voronoi cell
for sample k = 1,2, . . . ,10 of the training set, see Fig. 2, and its activation in the A-SOM or
one of the SOMs is located in the Voronoi cell for the centre of activation for the same training
sample, see Fig. 3, then we consider the centre of activation for the generalization sample to
be properly located and we consider it to be successfully generalized.
Leftmost in the upper row of Fig. 3 we can see that the centers of activation for all the
generalization samples besides sample 8 is within the correct Voronoi cell in the A-SOMwhen
it receives main input only. However that sample 8 is outside, and barely so, the correct
Voronoi cell is probably not an indication that it is incorrect because the A-SOM consists of
225 neurons and is not a continuous surface but a discretized representation.
In the middle of the upper row of Fig. 3 we can see that all centers of activation for the
generalization samples are correctly located in SOM1 besides 1 and 6 which are on the
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Fig. 3. The center of activation for different constellations of input to the fully trained system
in the A-SOM and in the two SOMs. The centers of activation for the generalization samples
have been written on circles with a contrasting colour to differentiate them from the training
samples. Upper row left: The A-SOM when only main input to the A-SOM is received. The
Voronoi tessellation for these centers of activation has also been drawn. This is also true for
the other images in this figure depicting activations in the A-SOM. Upper row middle: The
SOM1 with the Voronoi tesselation for the training set drawn. Upper row right: The SOM2
with the Voronoi tesselation for the training set drawn. Middle row left: The A-SOM
receiving main input and the activity of SOM1. Middle row middle: The A-SOM when
receiving main input and the activity of SOM2. Middle row right: The A-SOM when
receiving main input and the activities of SOM1 and SOM2. Lower row left: The A-SOM
when receiving the activity of SOM1 only. Lower row middle: The A-SOM when receiving
the activity of SOM2 only. Lower row right: The A-SOM receiving the activities of SOM1 and
SOM2.
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border to the correct Voronoi cell (but this should probably not be considered an indication
of incorrectness for the same reason as mentioned above), and 2 which is located close to the
correct Voronoi cell.
Rightmost of the upper row of Fig. 3 we can see that all centers of activation for the
generalization samples are correctly located in SOM2 besides 2, which is located close to the
correct Voronoi cell.
Leftmost in the middle row of Fig. 3 we can see that the centers of activation for all
the generalization samples besides sample 8 (which should probably not be considered an
indication of incorrectness for the same reason as mentioned above) is within the correct
Voronoi cell in the A-SOM when it receives main input as well as the activity of SOM1 as
input.
In the middle of the middle row of Fig. 3 we can see that the centers of activation for all
the generalization samples besides sample 8 (which should probably not be considered an
indication of incorrectness for the same reason as mentioned above) is within the correct
Voronoi cell in the A-SOM when it receives main input as well as the activity of SOM2 as
input.
Rightmost of the middle row of Fig. 3 we can see that the centers of activation for all
the generalization samples besides sample 8 (which should probably not be considered an
indication of incorrectness for the same reason as mentioned above) is within the correct
Voronoi cell in the A-SOM when it receives main input as well as the activities of both SOM1
and SOM2 as input.
Leftmost of the lower row of Fig. 3 we can see that the centers of activation for all the
generalization samples besides sample 2 and 10, i.e. 80%, is within the correct Voronoi cell
in the A-SOM when it receives the activity of SOM1 as its only input.
In the middle of the lower row of Fig. 3 we can see that the centers of activation for all the
generalization samples besides sample 2, i.e. 90%, is within the correct Voronoi cell in the
A-SOM when it receives the activity of SOM2 as its only input.
Rightmost of the lower row of Fig. 3 we can see that the centers of activation for all the
generalization samples besides sample 2 and 10, i.e. 80%, is within the correct Voronoi cell in
the A-SOM when it receives the activities of SOM1 and SOM2 as its only input.
In Fig. 4 we can see a graphical representation of the activity in the two SOMs as well as total,
main and ancillary activities of the A-SOM while receiving a sample from the generalization
set. The lighter an area is in this depiction, the higher the activity is in that area.

3.1.2 Discussion

The ability of the A-SOM proved to be good in this experiment, with 100% accuracy
with the training set and about 80-90% accuracy in the generalization tests, depending on
which constellation of inputs which was provided to the system. It was also observed
that the generalization in the ordinary SOMs was not perfect. If this had been perfect the
generalization ability would probably be even better. This is probably a matter of optimizing
the parameter settings.
It is interesting to speculate, and later test, whether there are any restrictions on the sets that
are used as input to the different SOMs and A-SOMs in this kind of system. A reasonable
guess would be that to learn to associate the activity arising from the training sets impose no
restrictions on the training sets, but when it comes to generalization there would probably
be one restriction. The restriction is that there should probably need to exist a topological
function between the different input spaces so that the sequences of input samples from the

610 Self Organizing Maps - Applications and Novel Algorithm Design
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Fig. 4. Activations at a moment in the simulation. The lighter an area is in this depiction, the
higher the activity is in that area. Upper row left: The activity in SOM1. Upper row right:
The activity in SOM2. Lower row left: The total activity in the A-SOM. Lower row, the
second image from the left: The main activity in the A-SOM. Lower row, the third image
from the left: The ancillary activity in the A-SOM due to the activity in SOM1. Lower row
right: The ancillary activity in the A-SOM due to the activity in SOM2.

different input spaces will invoke traces of activities over time in their respective SOM or
A-SOM that in principle would be possible to map on each other by using only translations,
rotations, stretching and twisting. Otherwise the generalization would be mixed up at least
partially. The same would be true if the parameter setting implies the development of
fragmentized representations.

3.2 Associating SOM representations of haptic submodalities

We have also tested the A-SOM together with a couple of real sensors
(texture/hardness)(Johnsson & Balkenius, 2008). This system developed representations for
texture as well as hardness and could trigger an activation pattern in the other modality,
which resembled the pattern of activity the object would yield if explored with the sensor for
this other modality.

3.2.1 Sensors in the experiment

The system employs two sensors (Fig. 5) developed at Lund University Cognitive Science
(LUCS). One of these sensors is a texture sensor and the other is a hardness sensor.
The texture sensor consists of a capacitor microphone with a tiny metal edge mounted at the
end of a moveable lever, which in turn is mounted on a servo. When exploring a material the
lever is turned by the servo, which moves the microphone with the attached metal edge along
a curved path in the horizontal plane. This makes the metal edge slide over the explored
material, which creates vibrations in the metal edge with frequencies that depend on the
textural properties of the material. The vibrations are transferred to the microphone since
there is contact between it and the metal edge. The signals are then sampled and digitalized
by a NiDaq 6008 (National Instruments) and conveyed to a computer via a USB-port. The Fast
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10 Self Organising Maps, New Achievements

Fig. 5. The texture and hardness sensors while exploring a piece of foam rubber. The texture
sensor consists of a capacitor microphone (a) with a metal edge (b) mounted at the end of a
moveable lever (c), which in turn is mounted on a servo. The hardness sensor consists of a
stick (d) mounted on a servo. The servo belonging to the hardness sensor contains a variable
resistor that provides a measure of the turning of the servo, and thus the displacement of the
stick, which is proportional to the compression of the explored material. The actuators are
controlled via a SSC-32 controller board (Lynxmotion Inc.). The measure of the resistance of
the variable resistor in the servo for the hardness sensor and the microphone signal of the
texture sensor are digitalized using a NiDaq 6008 (National Instruments) and conveyed to
the computer via a USB-port.

Fourier Transform (FFT) algorithm is then applied to the input, thus yielding a spectrogram
of component frequencies.
The hardness sensor consists of a stick mounted on a servo. During the exploration of a
material the servo tries to move to a certain position, which causes a downward movement
of the connected stick at a constant pressure. In the control circuit inside the servo there is
a variable resistor that provides the control circuit with information whether the servo has
reached the wanted position or not. In our design, we measure the value of this variable
resistor at the end of the exploration of the material and thus get a measure of the end
position of the stick in the exploration. This end position is proportional to the compression
of the explored material. The value of the variable resistor is conveyed to a computer and
represented in binary form.
The actuators for both the sensors are controlled from the computer via a SSC-32 controller
board (Lynxmotion Inc.). The software for the system presented in this paper is developed
in C++ and runs within the Ikaros system (Balkenius et al., 2010). Ikaros provides an
infrastructure for computer simulations of the brain and for robot control.

3.2.2 Exploration of objects

Our system was trained and tested with two sets of samples. One set consists of 40 samples
of texture data and the other set consists of 40 samples of hardness data. These sets have
been constructed by letting both the sensors simultaneously explore each of the eight objects
described in Table 1 five times.
During the hardness exploration of an object the tip of the hardness sensor stick (Fig. 5 d) is
pressed against the object with a constant force and the displacement is measured.
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Label Object Estimated Hardness Estimated Texture
a Foam Rubber Soft Somewhat Fine
b Hardcover Book Hard Shiny
c Bundle of Paper Hard Fine
d Cork Doily Hard Rough
e Wood Doily Hard Fine
f Bundle of Denim Soft Somewhat Fine
g Bundle of Cotton Fabric Soft Somewhat Fine
h Terry Cloth Fabric Soft Rough

Table 1. The eight objects used in the experiment. The objects a-h were used both for training
and testing. The materials of the objects are presented and they are subjectively classified as
either hard or soft by the authors. A rough subjective estimation of their textural properties is
also provided.

The exploration with the texture sensor is done by letting its lever (Fig. 5 c) turn 36 degrees
during one second. During this movement the vibrations from the metal edge (Fig. 5 b) slid
over the object are recorded by the microphone (Fig. 5 a) mounted at the end of the stick.
The output from the texture sensor from all these explorations has then been written to a file
after the application of the FFT. Likewise the output from the hardness sensor has been written
to a file represented as binary numbers. The hardness samples can be considered to be binary
vectors of length 18 whereas the texture samples can be considered to be vectors of length
2049. The eight objects have various kinds of texture and can be divided into two groups, one
with four rather soft objects and one with four rather hard objects. During the exploration,
the objects were fixed in the same location under the sensors.

3.2.3 Experiment

Our system (Fig. 6) is bimodal and consists of two monomodal subsystems (hardness and
texture), which develop monomodal representations (A-SOMs) that are associated with each
other. The subsystem for hardness uses the raw sensor output from the hardness sensor,
represented as a binary number with 18 bits and conveys it to an A-SOMwith 15× 15 neurons.
After training, this A-SOM will represent the hardness property of the explored objects.
In the subsystem for texture, the raw sensor output from the texture sensor is transformed by
a FFT module into a spectrogram containing 2049 frequencies, and the spectrogram which is
represented by a vector, is in turn conveyed to an A-SOMwith 15× 15 neurons. After training,
this A-SOM will represent the textural properties of the explored objects.
The two subsystems are coupled to each other in that their A-SOMs also receive their
respective activities as ancillary input.
Both A-SOMs begun their training with the neighbourhood radius equal to 15. The
neighbourhood radius was decreased at each iteration by multiplication with 0.998 until it
reached the minimum neighbourhood size 1. Both A-SOMs started out with α(0) = 0.1 and
decreased it by multiplication with 0.9999. β where set to 0.35 for both A-SOMs.
The system was trained with samples from the training set, described in the previous section,
by 2000 iterations before evaluation.

3.2.4 Results and discussion

The results of the experiment with the texture/hardness system are depicted in Fig. 7. The
6 images depict the centres of activation in the A-SOMs when the fully trained system was
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Hardness 
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A-SOM 
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A-SOM 
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Texture 
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Fig. 6. Schematic depiction over the architecture of the haptic hardness and texture
perception system. The system consists of two monomodal subsystems, which develop
monomodal representations (A-SOMs) of hardness and texture that learn to associate their
activities. The hardness subsystem uses the raw sensor output from the hardness sensor as
input to an A-SOM, which finds a representation of the hardness property of the explored
objects. The texture subsystem transforms the raw sensory data by the aid of a FFT module
and then forwards it to another A-SOM, which finds a representation of the textural
properties of the explored objects. The two A-SOMs learn to associate their respective
activities.

tested with the test set (described above) constructed with the aid of the objects a-h in Table
1. Images 7 A, 7 B and 7 C correspond to the texture representing A-SOM. Likewise the
images 7 D, 7 E and 7 F correspond to the hardness representingA-SOM. Each cell in an image
represents a neuron in the A-SOM. In the images 7 A, 7 B, 7 D and 7 E there are black circles
in some of the cells. This means that the corresponding neurons in the A-SOM are the centre
of activation for one or several of the samples in the test set. The centres of activation from
the samples in the test set corresponding to each object in Table 1 when only main input was
provided have been encircled in 7 A and 7 D to show where different objects are mapped in
the A-SOMs. Main input should be understood as texture input for the texture representing
A-SOM, and hardness input for the hardness representing A-SOM. The encirclings are also
present in the other four images. This is so because we want to show how the A-SOMs are
activated when there are both main and ancillary input provided to the system (7 B and 7 E),
and when there are only ancillary input provided (7 C and 7 F). Ancillary input should be
understood as hardness input in the case of the texture representing A-SOM, and as texture
input in the case of the hardness representing A-SOM.
Fig. 7 A depicts the texture representing A-SOM in the fully trained system when tested with
the test set (only main texture input). As can be seen, most objects are mapped at separate
sites in the A-SOM (c, d, e, f, h). There are some exceptions though, namely a, b and g. So
the system is able to discriminate between individual objects when provided with main input
only, although not perfectly.
The hardness representing A-SOM in the fully trained system when tested with the test set
(only main hardness input), depicted in Fig. 7 D, also maps different objects at different sites
in the A-SOM but not as good as the texture representing A-SOM. The hardness representing
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A-SOM recognizes b, f and h perfectly and blurs the other more or less. However, the hardness
representing A-SOM perfectly discriminates hard from soft objects.
When the texture representing A-SOM receives main texture input as well as ancillary
hardness input (as can be seen in Fig. 7 B) its activations are very similar to those in Fig.
7 A. Likewise when the hardness representing A-SOM receives main hardness input as well
as ancillary texture input (as can be seen in Fig. 7 E) its activations are very similar to those in
Fig. 7 D.
Fig. 7 C depicts the activations in the texture representing A-SOM when it receives only
ancillary hardness input. As can be seen this ancillary hardness input very often triggers
an activity similar to the activity following main texture input. Likewise Fig. 7 F depicts the
activity in the hardness representing A-SOM when it receives only ancillary texture input.
Even in this case the ancillary input very often triggers an activity similar to the activity
following main input. This means that when just one modality in the system receives input,
this can trigger activation in the other modality similar to the activation in that modality when
receiving main input. Thus an object explored by both sensors during training of the system
can trigger a more or less proper activation in the representations of both modalities even
when it can be explored by just one sensor during testing. However, as can be seen in Fig.
7 C and Fig. 7 F, the activity triggered solely by ancillary input does not map every sample
properly. The worst cases are the objects c, d and g in the texture representing A-SOM (Fig. 7
C) and the objects a, b and g in the hardness representing A-SOM (Fig. 7 D). As can be seen
in Fig. 7 D, the objects c, d and g are not distinguishable in the hardness representing A-SOM,
and the objects a, b and g are not distinguishable in the texture representing A-SOM (Fig.
7 A). Thus the ancillary activity patterns for these objects are overlapping and the receiving
A-SOM cannot be expected to learn to map these patterns correctly even if the objects where
well separated by the A-SOM when it received main input.

4. Modelling internal simulation

In this section we will focus on the use of the A-SOM as a memory for perceptual
sequences. Theses experiments was accomplished by using the total activity of the A-SOM
as time-delayed ancillary input to itself.

4.1 A bimodal system

We have set up a bimodal model consisting of two A-SOMs (Fig. 8) and tested its
ability to continue with reasonable sequences of activity patterns in the two A-SOMs in
the absence of any input. This could be seen as an ability to internally simulate expected
sequences of perceptions within a modality likely to follow the last sensory experience while
simultaneously elicit reasonable perceptual expectations in the other modality.
One of the A-SOMs, the A-SOMA, is a recurrentA-SOM, and one, the A-SOMB, is an ordinary
A-SOM without recurrent connections. A-SOM A is connected to A-SOM B (see Fig. 8). Thus
the activity in A-SOM A will elicit associated activity in A-SOM B.
To test the model a set of 10 training samples were constructed (Fig. 9 left). This was done
in the same way as when testing the model of cross-modal expectations described in section
3.1 above. I.e. by randomly generating 10 points with a uniform distribution from a subset s
of the plane s = {(x,y) ∈ R2;0 ≤ x ≤ 1,0 ≤ y ≤ 1} and map these points to a subset of R3 by
adding a third constant element of 0.5.
The A-SOM A receives its main input from the constructed input set described above. In
addition, its total activity is fed back as ancillary input with a time delay of one iteration.
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Fig. 7. The mapping of the objects used in the experiments. The characters a-h refer to the
objects in Table 1. The images in the uppermost row correspond to the texture representing
A-SOM and the images in the lowermost row correspond to the hardness representing
A-SOM. Each cell in an image represents a neuron in the A-SOM, which consists of
15× 15= 225 neurons. A filled circle in a cell is supposed to mean that that particular neuron
is the centre of activation for one or several explorations. The occurrence of a certain letter in
the rightmost images means that there are one or several centres of activation for that
particular object at that particular place. The centres of activation from the samples in the test
set corresponding to each object in Tabel 1 when only main input was provided have been
encircled in the images. A: The texture representing A-SOM when tested with main texture
input. Most objects are mapped at separate sites so the system is able to discriminate
between individual objects when provided with main input, although not perfectly. B: The
texture representing A-SOM when tested with main texture input together with ancillary
hardness input. Its activations are very similar to those in A. C: The texture representing
A-SOM when it receives only ancillary hardness input. This often triggers an activity similar
to the activity following main texture input. D: The hardness representing A-SOM when
tested with main hardness input maps different objects at different sites and it perfectly
discriminates hard from soft objects. E: The hardness representing A-SOM when tested with
main hardness input together with ancillary texture input. Its activations are very similar to
those in D. F. the hardness representing A-SOM when it receives only ancillary texture input.
This often triggers an activity similar to the activity following main hardness input.

Besides the main input from the constructed input set, the A-SOM B receives the total activity
of the A-SOMA as ancillary input without any time delay. Both A-SOMswere simultaneously
fed with the 10 samples of the training set over and over again, all the time in the same
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A-SOM A A-SOM B

InputInput

delay=1 delay=0

Fig. 8. Schematic depiction of the connections between the two A-SOMs and the recurrent
connections of A-SOM A in the bimodal system. The bimodal system consist of two
subsystems, which develop representations of sample sets from two input spaces (for
simplicity we used the same input set for both representations). The A-SOM B learns to
associate its activity with the activity of A-SOM A. This means proper activity can be elicited
in the A-SOM B of the fully trained system even if it does not receive any main input. This is
similar to cross-modal activation in humans, e.g. a tactile perception of an object invoking an
internal visual imagination of the same object. One of the representations (A-SOM A) also
learns to reproduce the sequence of activity patterns presented during training. Thus the
sequence of activity patterns in A-SOM A elicits an appropriate sequence of activity patterns
also in A-SOM B even when this lacks main input.

sequence, during a training phase consisting of 2000 epochs (i.e. 20000 iterations). The two
A-SOMs could as well have been fed by samples from two different sets, always receiving
the same combinations of samples from the two sets (otherwise the system could not learn
to associate them). This could be seen as a way of simulating simultaneous input from
two different sensory modalities when an animal or a robot explores its environment. Each
of the two A-SOMs consisted of 15 × 15 neurons. The softmax exponent for each of them
were set to 1000. Their learning rate α(0) was initialized to 0.1 with a learning rate decay of
0.9999 (i.e. multiplication of the learning rate with 0.9999 in each iteration), which means the
minimum learning rate, set to 0.01, will be reached at the end of the 20000 training iterations.
The neighbourhood radius, i.e. σ of the neighbourhood function Gijc(t) in eq. (6), was
initialized to 15 for both A-SOMs and shrunk to 1 during the 20000 training iterations by using
a neighbourhood decay of 0.9998 (i.e. multiplication of the neighbourhood radius with 0.9998
in each iteration). Both A-SOMs used plane topology when calculating the neighbourhood. β
for the associative weights in both A-SOMs was set to 0.35.
After training, weight adaptation was turned of and the system was tested by feeding both
A-SOM A and A-SOM B with the 10 samples from the training set once again in the same
sequence as during the training phase, i.e. the system received input for one epoch. The
centres of activity for each sample in both A-SOMs were recorded, and the corresponding
Voronoi tesselations for the A-SOMs were calculated (Fig. 9 middle and right). The centres
of activity, of course, always correspond to the localizations of the neurons in the A-SOMs.
However, if we consider the centres of activity to be points in the plain, then we can calculate
a Voronoi tesselation of the plane according to these points. In this way we will also get a
division of the grid of neurons of each A-SOM. This is because each neuron in an A-SOM will
be localized in a Voronoi cell or on the border between several Voronoi cells (when we see the
localizations of the neurons as points in the plane).
Voronoi tesselations for the activity centres of the A-SOMs are used to assess the performance
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Fig. 9. Left: The Voronoi tessellation of the points used when constructing the training set
used as input to the two A-SOMs in the bimodal system. Middle and Right: The Voronoi
tessellations corresponding to the centres of activity during the first epoch of the test phase
for the two A-SOMs. The image in the middle depicts the Voronoi tesselation of the fully
trained A-SOM A together with the 10 centres of activity corresponding to the 10 first
iterations of the test phase when the system received input from the sample set. The right
image depicts the same but for the fully trained A-SOM B.

of the system. This is done in the following way: During the first epoch after training when
the A-SOMs received main input, we recorded the sequences of Voronoi cells containing the
centres of activity for the sequences of activity patterns in both A-SOMs. After the first epoch
the A-SOMs did not receive main input anymore, i.e. only null vectors were received as main
inputs. Anyway, sequences of activity patterns continued to be elicited in both A-SOMs. This
means the system continued to run with internal states only. This is possible since A-SOM
A received its own total activity as ancillary input with a time delay of one iteration and the
A-SOM B received the total activity of A-SOM A as ancillary input without any time delay.
For each of the following 25 epochs (without any main input to the A-SOMs) we recorded
whether the centres of activity for each iteration in the epoch was in the correct Voronoi cell.
If the centre of activity is in the correct Voronoi cell, then it is considered correct because then
it is sufficiently similar to the centre of activity (from the first test epoch) that corresponds to
that Voronoi cell. This is because then it is closer to the centre of activity (from the first test
epoch) that corresponds to that Voronoi cell than to any other centre of activity from the first
test epoch. This procedure enabled us to calculate the percentage of correct activity patterns
for each of the 25 epochs without main input to the A-SOMs during the test phase. During
these 25 epochs the activity is elicited solely by recurrent connections.
In Fig. 9 (middle and right) we can see that both A-SOMs perfectly discriminate between
the 10 samples in the sample set, and by comparing the Voronoi tessellations of the A-SOMs
(Fig. 9 middle and right) with the Voronoi tessellation of the plane for the training set (Fig. 9
left) we can see that the ordering of the Voronoi cells for the training set are to a large extent
preserved for the Voronoi cells for the centres of activation in the A-SOMs.
Fig. 10 shows the percentages of correct activity patterns in each epoch (i.e. each sequence of
10 iterations) for each of the first 25 epochs when the system did not receive anymore main
input. The diagram to the left in Fig. 10 depicts the result for A-SOM A, whereas the diagram
to the right in Fig. 10 depicts the result for A-SOM B. As can be seen the percentage of correct
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Fig. 10. The percentages of correct activity patterns in each epoch (i.e. sequence of 10
iterations) for each of the first 25 epochs when the system did not receive anymore main
input. The diagram to the left depicts this for A-SOM A, whereas the diagram to the right
depicts it for A-SOM B.

activity patterns is 100% for the first 9 epochs without main input in both A-SOM A and
A-SOM B. The percentage of correct activity patterns then decline gradually in both A-SOMs
and at the 25th iteration it is 60% for A-SOM A and 20% for A-SOM B.
In Fig. 11 we can see a graphical representation of the total, main and ancillary activities of
the two A-SOMs when these receive input from the sample set as well as when they do not.
The lighter an area is in this figure, the higher the activity is in that area.
To summarize, our model has shown ability to continue to produce proper sequences of
activity in both A-SOMs for several epochs even when these have stopped receiving any
main input. These results confirms the models ability of internal simulation as well as of
cross-modal activation.

4.2 More experiments with recurrently connected A-SOMs

We have done three more experiments to investigate the properties, capabilities and
limitations of the A-SOM when its activity is connected recurrently to itself as ancillary input
with a delay of one iteration.
These experiments were inspired by Elman (1990) where a recurrent network is trained with
sequences starting with a consonant and followed by a variable number of vowels. In his
example he used the three sequences ’ba’, ’dii’ and ’guuu’. Each of these six letters (b, a, d, i,
g and u) is coded as a vector of six binary digits. Elman (1990) motivates each of the positions
of the vector as a feature of the letter such as consonant/vowel, if it is interrupted, hard,
articulated in the back of the mouth and if it is voiced. These different features are, however,
irrelevant for the functioning of the neural network. As long as the vectors for each letter is
distinct from each other the network will learn them.
In all three experiments the neighbourhood radius was initialized to the same size as the
network, i.e. in a n × n A-SOM the neighbourhood radius was initialized to n. The
neighbourhood radiuswasmultiplied by 0.9998 in each iteration, thus decaying exponentially.
The learning rate was initialized to 0.1 and also decayed but by a factor of 0.9999. Minimum
values for the neighbourhood radius and the learning rate was set to 1 and 0.01, respectively.
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Fig. 11. Activations at three different occasions in the simulation with the bimodal system.
The lighter an area is in the figure, the higher the activity is in that area. Column 1 (from the
left): The three kinds of activity in A-SOM Awhen receiving the first sample of the sequence
in the test phase. Column 2: The activities in A-SOM B when receiving the first sample of the
sequence in the test phase. Column 3: The activities in A-SOM Awhen simulating the
activity corresponding to sample 1 in the first epoch without input. Notice that there are no
main activity. Column 4: The activities in A-SOM B elicited by the associative connections
from A-SOM A due to the latter A-SOMs activity corresponding to the simulated activity of
sample 1 in the first epoch without input. Column 5: The activities in A-SOM A when
simulating the activity corresponding to sample 1 in the ninth epoch without input. This is
the last epoch with perfect recall in the first cycle (see Fig. 10). Column 6: The activities in
A-SOM B elicited by the associative connections from A-SOM A due to the latter A-SOMs
activity corresponding to the simulated activity of sample 1 in the ninth epoch without input.

In all experiments the training phase lasted for 20 000 iterations.
In our experiments we created the training data in the same way as Elman (1990) i.e by
repeating the sequences above in random order. This results in a semi-random sequence,
i.e the consonants occur randomly but vowels always follow the consonants in a consistent
manner (Elman, 1990). Structuring the input data in this semi-random way has an obvious
advantage in that the network can be taught several sequences of input data. By having
several sequences, the network is forced to be more versatile and generalized. The test data
was produced in the same way as described above, but only leaving the first letter of every
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Fig. 12. Left: An example of an ideal state diagram for three sequences of length 5. Right:
State diagrams for networks with 10× 10, 15× 15, 20× 20 and 25× 25 nodes.

sequence untouched and changing the others to null vectors (thus simulating no input at all).
For every test iteration the coordinates of the winner neuron on the A-SOM surface were
recorded. Then we analysed the sequential order of the winners by generating state diagrams.
A state diagram can visualize a systems behaviour by specifying a number of states that
the system may be in, as well as possible transitions between these states. A state diagram
is generally drawn as a number of boxes, representing states, and arrows, representing
the transitions. We label transitions with a percentage, indicating the probability for that
transition compared to all transitions from the same source state. This means that our state
diagrams are graphical representations of non-deterministic finite state machines, or what is
also referred to as Markov chains.
An example of an ideal state diagram for three sequences of length 5 is shown to the left in
Fig. 12. There will of course also be transitions from the topmost states to the bottom states
(from the last letter of each sequence to the first letter of each following sequence), with, on
average, a transition probability of 33%. However, these have been left out since they only
indicate the start of a new sequence.

4.2.1 Different lengths, same vowels

The first experiment was a replication of one of Elman (1990) experiment where the network
was trained on sequences representing ’ba’, ’dii’ and ’guuu’. That is, three sequences starting
with a unique consonant followed by one, two or three of the same vowel. For these
experiments, validation was made to find out which winner neuron corresponded to which
letter in the sequences. This was done by simply giving the letters as input and registering
which neuron was the winner for each letter. The A-SOM was then tested with test data
constructed in the same way as the training data but with the vowels substituted with null
vectors, as described above. The state diagrams for this experiment is shown to the right in
Fig. 12 for four different sizes of the A-SOM; 10× 10, 15× 15, 20× 20 and 25× 25. To make
the diagrams more readable, only the correct connections have been included. As an example
of the activity in this experiment, Fig. 13 (left) shows the activity of the network one iteration
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Fig. 13. Left: Activity pattern one iteration after presenting a ’B’ in the first experiment with
same vowels, different lengths. Right: Activity patterns for sequences in the experiment with
same length and same vowels.

after presenting it with the letter B. The validated areas are shown with arrows. The letter ’u’
is represented in two places (they both are activated when validating), as is ’i’, but ’i’ elicit
maximum activity in different areas based on its position in the sequence, as indicated by i1
and i2.
In Fig. 13 (left) we can also see that there is a black spot in the lower left corner where there
is no activity at all. One interpretation of this is that the network has learnt that a ’B’ never
follows an ’a’. One can also see that there is a little bit of activity in the rest of the network,
even in parts that do not seem to represent any letter at all. The reason for this could be that
for the lower left ’B’ to be entirely void of activity, there need to be activity elsewhere to make
that part have relatively lower activity, i.e. activity must be relative to all other activity.

4.2.2 Same length, same vowels

Having run Elman’s original test, the experiment was modified so that the sequences were of
equal length. They were all set to be three letters long; one consonant and two equal letters
(’baa’, ’dii’ and ’guu’). The analysis of this experiment was different. Pictures were taken of
the total activity of the network and assembled into a composite image so that the sequences of
activity could be visualized easily. This was done to make a qualitative analysis of interesting
ways in which the network represent different relations between states.
Fig. 13 (right) shows the activity of the network in the test of this experiment. In Fig 13a,
the activity patterns of the network are grouped by sequence, to enable comparisons within
sequences, whereas Fig 13b enables comparisons between sequences. One can see that activity
patterns are distinct from each other for different positions even though the letter is the same
(horizontally compare the first ’a’ and second ’a’ following a ’B’ in Fig 13a.), though very
similar for the same position between different trials (vertically compare the first ’a’s in Fig
13a).

4.2.3 Same length, unique vowels

In the third experiment all sequences had the same length and all vowels were different, even
within sequences. Note that we use the word vowel here to mean an element in the sequence,
there is no connection to alphabetical vowels. The length of the sequences ranged from 2 to
19 elements. The aim here was to find the smallest network that could represent sequences of
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Fig. 14. Graph plotted for the number of nodes in smallest network with regard to the total
number of letters in the sequences.

each length with 100% correctness or very close to it. To speed up this process we made the
assumption that theminimum network size would not decreasewhen increasing the sequence
length. That is, for a new sequence length the initial network size tested was the network size
of the previously run test. It has turned out that this assumption does not hold strictly. In
one training trial it was discovered that a network of 9× 9 nodes was able to represent the
sequences, while a network of 10× 10 nodes performed worse. So even though the required
network size seemed to increase with increased sequence length overall, there are minor local
variations to this rule. This may simply be the effect of random variations in training data or
the initial connection weights.
No validation was made for whether the sequence of winners from the testing was in the
correct order. Only the pattern of states and their transitions percentages were used and it
was manually tested whether the state diagram fitted with an ideal diagram, as shown in Fig.
12 (left). This should not be a problem since it would be extremely unlikely that an incorrect
state transition would have a probability of 100%.
When running the trial where the sequence length was nine, no network seemed to be able to
represent the sequences fully. Sizes up to 25× 25 nodes were tried without success. It is worth
mentioning that sequences of length eight only required 9× 9 nodes. But, regenerating the
test and training data and running the trial again relieved the matter and a 9× 9 network was
found that performed 100%. This could indicate that the network is sensitive to the training
and test data, but to be certain further research should be done on the difference between
these two training/test-sets.
Running the experiment with every trial having three sequences of the same length and all
unique letters, and then plotting the smallest network size that could represent the sequences,
produced the graph seen in Fig. 14. The graph shows that the number of nodes in the smallest
network is exponential with regard to the number of total letters of the sequences in the trial.

4.2.4 Discussion

A simplification that has been made in these experiments to make analysis faster as well as
more straightforward, has been to use only the sequence of winner neurons. Other activity of
the network has thus been ignored. As one can see in Fig. 13 (left), the top area of the network
(the ’a’) is the winner here, but there is still much activity in other parts of the network. This
can also be seen in the activity sequence series, Fig. 13 (right), where the same letter in different
positions of the sequence exhibit different activity patterns. These same letter patterns have
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distinct winners. This means that it is not completely satisfying to only record the winner
neurons.
What one would want, rather, is to use the entire activity pattern instead of only the winner
neuron. This would require somemethod to classify similar activity patterns, while separating
not too similar patterns. Incidentally, this is a very suitable task for a regular SOM and we
could thus use the activity of the A-SOM as input to a separate SOM, an analysis SOM, that
would classify the activity of the A-SOM. Then the winner neurons of the analysis SOM, rather
than the A-SOM, could be used to determine whether the sequences had been learnt.

5. Conclusion

We have presented a novel variant of the Self-Organizing Map called the Associative
Self-Organizing Map (A-SOM), which develops a representation of its input space but also
learns to associate its activity with the activities of an arbitrary number of (possibly time
delayed) ancillary inputs. The A-SOM has been explored in several experiments.
In one experiment we connected an A-SOM to two ancillary SOMs and tested with randomly
generated points from a subset of the plane. The system in this experiment could be seen as
a model of a neural system with two monomodal representations (the two SOMs) and one
multimodal representation (the A-SOM) constituting a neural area that merges three sensory
modalities into one representation.
In another experiment we used the A-SOM in a bimodal self-organizing system for object
recognition which used real sensors for the haptic submodalities hardness and texture. The
results from this experiment are encouraging. The system turned out to be able to discriminate
individual objects based on input from each submodality as well as to discriminate hard from
soft objects. More importantly, the input to one submodality has shown to be sufficient to
trigger an activation pattern in the other submodality, which resembles the pattern of activity
the object would yield if explored with the sensor for this other submodality.
In other experiments we explored the ability of the A-SOM to learn sequences and we
presented an A-SOM based bimodal model of internal simulation, and tested its ability to
continue with reasonable sequences of activity patterns in its two A-SOMs in the absence of
any input.
It is worth noting that although so far it has not been tested the authors can see no
impediments to why it should not be possible to have several sets of connections that feed
back the total activity of the A-SOM to itself as ancillary input but with varying lengths of
the time delays. This would probably yield an enhanced ability for internal simulation and to
remember perceptual sequences (at the cost of more computations).
Among other unsupervised recurrent architectures the Recursive SOM (Voegtlin, 2002) is
probably the most similar to an A-SOM with recurrent connections. It is worth commenting
on some similarities and differences. The two architectures mainly differ in the way a winner
neuron is selected. The selection of a winner in the Recursive SOM depends on both the input
vector and the time delayed feedback activity. This is not the case for the A-SOM, where the
winner selection depends only on the input vector. Because of this, a reasonable guess would
be that the A-SOM with recurrent connections would perform better than the Recursive SOM
in classification of single inputs when not considering where in the sequence it comes. This is
so because the organization of the A-SOM is completely independent of the recurrent input.
The recurrent connections in the A-SOM are ancillary connections, which means there is a
separate set of weights that during learning are adjusted to produce ancillary activity that
is similar to the main activity. There might of course also be some disadvantages with the
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A-SOM with recurrent connections when compared to the Recursive SOM. This would need
further investigation.
The A-SOM actually develops several representations, namely one representation for its main
input (the main activity) and one representation for each of the ancillary neural networks it is
connected to (the ancillary activities), and one representation which merges these individual
representations (the total activity). One could speculate whether something similar could be
found in cortex, perhaps these different representations could correspond to different cortical
layers.
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