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1. Introduction  

Data Mining intersects database technology, modelling techniques, statistical analysis, 
pattern recognition, and machine learning. It makes use of advanced tools for large 
databases management and automatic/semiautomatic analyses in order to identify 
significant trends and associations deemed informative because novel, implicit to the data, 
and of potential support in prediction and decision making. 
Methodological relevance and application in healthcare and biomedicine are increasing, 
with implications in fields as different as information management in healthcare 
organisation, public health, epidemiology, patient monitoring and management, signals and 
images analyses. It essentially represents an effective and efficient solution providing new 
predictive criteria for early diagnosis and prognosis, or supporting medical staffs in patient 
management such as in therapy planning and personalization. Knowledge extracted from 
pertinent clinical databases through data mining techniques may be new or suitable of 
integration with consolidated knowledge and improve reliability while reducing 
subjectivity in decision making processes. 
In this chapter we discuss about the general rationale underlying Data Mining and its 
peculiarities of application in the medical field, notably in the neurological domain. 
Relevant decision making problems, proposed solutions and open issues are summarized 
and the state-of-the-art of Data Mining in medicine and neurology is discussed in 
perspective. This review cannot and is not meant to be exhaustive, but should outline the 
potential use of Data Mining for supporting clinicians in their decision making. 

2. Rationale and background 

Data Mining was introduced in 1989 by Fayaad as a non-trivial process to identify reliable, 
novel, and potentially useful patterns in large data sets (Fayaad, 1996) though an iterative 
and multidisciplinary approach based on interaction with the application domain expert, 
data pre-processing, acquisition of consolidated knowledge, selection and use of the most 
suitable Data Mining methods, and evaluation and post-processing of the results. In this 
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regard, Data Mining is regarded as a step in a wider process known as Knowledge 
Discovery in Databases (KDD), or simply Knowledge Discovery. 
Novel knowledge implicit to the dataset and of potential use can be extracted through 

several approaches following five different tasks or learning processes: Classification and 

Regression (Supervised Learning), Clustering (Unsupervised Learning), Association Rule 

Learning and Feature Selection. In Classification and Regression, a set of cases (instances) is 

available, where each case is represented by a set of variables (attributes) of varying size. 

One of these variables is the “target” attribute of the learning process: in classification tasks 

(i.e. diagnosis, good or poor prognosis, any rating at the outcome scales, etc.) it is a nominal 

variable and represents the “class” (group) to which each instance belongs. In Regression 

tasks the target attribute is a numeric variable (i.e. systolic/diastolic blood pressure, heart 

rate, glucose concentration, etc.). If a target (either nominal or numeric) variable exists, the 

learning task is “supervised” because the learning strategies try to find a reliable 

relationship of other attributes with the target. In this regard, supervised learning 

techniques may be used e.g. to find diagnostic/prognostic criteria or predict trends in 

clinical or vital factors depending on the subjects’ profile (e.g. glucose concentrations to be 

expected based on genetic information, familiarity, life style, etc.). 

Unlike Classification and Regression, Clustering is known as an “unsupervised” learning 

task, in which no target variable is identified: instances are essentially clustered at different 

levels, according to a predefined similarity or distance measure. Instances which are “near” 

may be considered similar and belonging to the same “class” or cluster according to the 

distance measures. Clustering algorithms may be also adopted in Classification tasks: the 

target attribute is in this case excluded from the analysis and instances are clustered 

according to a predetermined distance measure; if instances belonging to the same cluster 

are also attributable to the same class (target variable preliminary excluded), the adopted 

distance measure may be considered a reliable relationship among all the other attributes 

value and the target one. 

Association Rule Learning is meant to identify relationship among attributes, with no 

reference to any particular target variable: in this procedure, the relevant relationships are 

ranked and presented to the analysts for their evaluation (e.g., correlations among numeric 

variables are ranked according to their significance level). 

Feature Selection approaches are adopted to identify the attributes that are more relevant for 

the learning goals. The selection of the most relevant attributes allows to 1) provide the 

analyst with a first “return of knowledge” about the main involved factors, and 2) reduce 

the computation time of learning tasks while improving reliability. 

Several methodologies and implementations are today available for each Data Mining task; 
each one presents at least one parameter to be set to modify the “structure” and reliability of 
the extracted pattern (knowledge representation). The a priori identification of the most 
useful methodology and parameter(s) configuration is usually difficult; to test different 
methodologies/implementations and different parameter(s) values is a weaker, yet 
practicable approach. 
A crucial issue in the use of any Data Mining task is the reliability evaluation of the 
extracted knowledge on data not used for analyses. This is more relevant in the medical 
field, when reliability is a predictive criterion for new individual patients. 
The exploratory and confirmatory process in science provides a useful perspective on the 
problem of circular analysis. Hypotheses generated by exploring the dataset require 
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confirmation by means of independent data, because any relationship observed in a dataset 
will be consistent with it irrespective of a true relationship. An independent dataset for 
selective analyses would serve to ensure independence of the results under the null 
hypothesis and thus prevent circularity. 
Data Mining methodologies may suffer from circularity and need independent datasets for 
validation. This use of the same dataset for selection and selective analysis, also known as 
“double-dipping” (Kriegeskorte et al., 2009) is crucial. Independent data may be 
unavailable, but suitable validation techniques to estimate the reliability of the predictive 
model “mined” from data are at hand. Cross-validation essentially works by repeatedly 
splitting the dataset into K smaller, independent subsets and to take advantage of a split-
data analysis. A single subsample is adopted as test set and the remaining K-1 subsamples 
are used for training. The selection process (training) and test must be performed 
independently for each cross validation fold, and the procedure increases the computational 
demands as the independence each split-off subset needs to be guaranteed when 
implementing a correct cross-validation scheme. 

3. Data mining in medicine  

In recent years, computer technology is increasingly implemented in healthcare to meet the 
needs of solutions supporting clinicians in their daily decision making activities. In this 
regard, Data Mining tools may be useful to control for human limitations such as  
subjectivity or errors due to the fatigue and to provide ready indications for the decision 
processes (early diagnosis and prognosis, improvement or worsening, etc.). 
Predictive models provide the best support to the clinicians’ knowledge and experience. In 
order to reduce subjectivity, several (expert) systems have been proposed to codify and 
provide consolidated medical knowledge. Data Mining can be integrated into these systems 
to reduce subjectivity while providing potentially useful new medical knowledge (evidence-
based medicine). For instance, Bratko and co-workers have developed a system to interpret 
ECGs through models extracted by Data Mining techniques (KARDIO; Bratko et al, 1989). 
Several techniques to analyze biomedical data from tissues or body fluids have been 
developed to obtain predictive models and identify small sets of relevant variables 
(biomarkers) to be used for validation. Schummer and colleagues, have applied cluster 
analysis to compare breast cancer and healthy tissues and identify markers for early 
diagnosis and prognosis (Schummer et al., 2010). In particular, authors identified 43 
differentially expressed genes and compared them on two sets of data from breast cancer 
patients with good or poor outcome and from healthy women undergoing reduction 
surgery, respectively. The study identified three genes with high expression only in cancer 
with poor outcome and further research on their reliability as markers in the early detection 
of cancer with poor outcome is in progress. These authors also found that some 
histologically normal breast tissues removed from distant site in a breast with cancer 
displayed a cancer-like expression profile, suggesting that these regions may be predisposed 
to malignancy despite apparent histological normality. These findings might help in the 
early diagnosis and treatment.  
Another relevant application is in the processing of biomedical signals expressive of internal 
regulation and responses to stimulus conditions, whenever detailed knowledge about 
interactions among different subsystems is lacking and standard analysis techniques may be 
ineffective, as it is often the case with non-linear associations. In this regard, Data Mining 

www.intechopen.com



 Knowledge-Oriented Applications in Data Mining 

 

264 

allows identify relationships explaining continuous data, such as biomedical signals 
acquired on patients in the Intensive Care Units, and develop intelligent monitoring systems 
also sending reminders, alerts and alarms for preselected critical conditions. 
A paradigmatic medical field benefitting from this approach is cardiology, where the 

analysis of monitored vital parameters signals the patient’s worsening or alarming events. 

Candelieri and colleagues have proposed Data Mining in the early detection of criticalities 

in chronic heart failure patients monitored in remote at home, to be compensated for by 

prompt action avoiding hospitalization (Candelieri et al., 2008 and 2009; Candelieri & 

Conforti, 2010); in this project, a Classification task was performed on a limited number of  

vital parameters (systolic blood pressure, heart rate, body temperature, body weight) easy to 

be acquired in semi-automatic/automatic way. Approach proved able to reliably predict a 

patient’s risk of  heart criticality in two weeks, with reduced healthcare costs and improved 

quality of life. Some extracted criteria also provided the medical staff with a return of 

knowledge “easy-to-understand” because obtained through methodologies using 

understandable codification patterns such as Decision Trees and Rule Learners (Candelieri 

et al., 2008). 

Data Mining techniques also assist clinicians in the diagnosis through computer-based 
systems for the interpretation of images with medical relevance (endoscopy, ecography, 
radiology, tomography, ultrasonography, magnetic resonance, etc.). These systems aim is 
usually to reproduce the specialists’ expertise in the pre-identification of the affected regions 
(Innocent et al., 1997; Zhu and Yan, 1997; Phee et al., 1998; Veropoulos et al., 1998; Karkanis 
et al., 1999). 
Data Mining also offers a support to identify reliable relationship between the patients’ 

profiling or therapy and outcome. Madigan and Curet used Data Mining to predict the 

length of hospitalization and destination after discharge of patients with obstructive 

pulmonary disease, heart failure and hip replacement (Madigan & Curet, 2006) at variance 

with the limits and poor suitability of traditional statistical approaches (Iezzoni, 2004). Data 

from 580 patients living in the US were obtained though the 2000 National Home and 

Hospice Care Survey (NHHCS) and the survey which was conducted by the National 

Center for Health statistics (NCHS). CART (Classification and Regression Trees) were 

applied with two purposes, namely to identify the parameters predictive of the destination 

at discharge and length of hospitalization (home healthcare service outcome), and 

investigate the applicability of Data Mining in the analysis of home healthcare data. The 

patient’s age (especially when 85 or older) was a relevant factor both in destination and 

length of stay, irrespectively of the disorder. Other contributions were from type of agency 

and payment, and ethnicity; in particular, hospitalization was shorter for hospital-based 

agencies. 

Some caution was expressed about the relations identified by CART, which were suggested 

to explain the dataset without any cause-and-effect relationship been implicated; in 

particular, the type of agency was associated with outcome, but ranking the agencies 

standard on this basis would be wrong. Despite the appropriate cautions, however, the 

study confirmed the potentialities of Data Mining in home healthcare monitoring. 

Lu and colleagues (Lu et al., 2006) ran a Data Mining study to detect impaired motility in 
elderly subjects and provide information about risk factors to be used when planning 
interventions for outcome improvement. Authors started from the prevision that by the 2030 
more than 70 million of people in the US will be elderly (65 or older) and mobility will play 
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a key role in health management (Center and Disease Control and Prevention, and Merck 
Institute of Aging & Health in American, 2004). The study was performed on a dataset of 
8259 patients with eight demographic and patients’ care attributes (age, gender, race, 
service, primary insurance, marital status, religion, and disease code) by means of a 
Decision Tree algorithm (J48) able to predict impaired mobility and a ten-fold cross 
validation. Feature Selection methods (Wrapper Subset Evaluator and Naïve Bayes 
classifier) were also applied to pre-identify relevant attributes and therefore ameliorate the 
Decision Tree performance. J48 provided an initial accuracy of 69.5% (specificity: 70%; 
sensitivity: 69%) when using all variables and a 68,5% accuracy after a Feature Selection 
reduction to five variables (specificity: 72%; sensitivity: 65%). (The three attributes proving 
useless were race, primary insurance and religion).  

4. Data mining in neurology 

Herskovitz and Gerring (Herskovitz & Gerring, 2003) suggested that Data Mining 
techniques may be applied for a better understanding of the existing relationships among 
variables obtained from lesion-deficit analysis (LDA). Bayesian methods proved 
computationally tractable, effective in representing non-linear associations among LDA 
variables and more sensitive and specific than methods based on Chi-square and Fisher 
exact statistics. LDA provides extensive information about associations between the brain 
structure and function, but usually generates large cohorts of variables, thus making the 
modelling of data relations by traditional statistical approaches difficult.  

4.1 Neurological diagnosis and prognosis  

Decision in the management of traumatic brain injury patients may be crucial. In 
particular, neurologists and neurosurgeons usually have to make decisions in a short time 
and on the basis of several patient’s data. Several studies analyzed genomic data, clinical 
parameters at admission, and laboratory tests while comparing different Data Mining 
techniques. 
Ji and colleagues proposed a Data Mining procedure to provide the clinician with useful 
guidelines supporting the decision making processes in the management of traumatic brain 
injury patients (Ji et al, 2009). They proposed a multi-level system able to give suggestions 
congruent to the condition in which data were acquired: on-site (data acquired at the side of 
accident), off-site (information acquired at admission to the hospital, such as co-morbidities 
and complications), and helicopter (data acquired during transportation to the hospital). The 
on-site and off-site dataset were used to obtain predictive models about the patients’ 
outcomes (survival, clinical outcome with rehabilitation or at home), while the helicopter 
dataset was used to work out a model able to predict the length of hospitalization in 
intensive care unit (ICU). The days in ICU ranged between 0 and 49, but data was clustered 
in two groups of non-severe and severe patients’ with cut-off stay in ICU at two days. The 
decision problems (survival and outcome predictions and estimation of ICU length of stay) 
were defined as classification tasks and were approached by AdaBoost, C4.5 (Decision Tree 
algorithm), CART, Artificial Neural Network with Radial Basis Functions (RBF-ANN), and 
Support Vector Machine (SVM). Authors also adopted the Feature Selection methods 
(specifically the Logistic Regression identifying the most significant variables prior to the 
training process) in order to improve the classifiers performance. All classifiers were 
evaluated through ten-folds cross validation techniques. A combined C4.5-CART approach 
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using the significant variables proved the best solution for the three decision problems, with 
accuracy of 84% and 89.7% for survival and clinical outcome prediction, respectively. The 
C4.5-CART combination attained an accuracy of 93.1% in predicting ICU permanence of 
patients transported to hospital by helicopter. 
The system proposed by Ji and colleagues can be regarded as an effective support tool 
improving the clinician diagnostic and prognostic accuracy of traumatic brain injury; it will 
be tested in all the 17 hospitals of the Carolina Healthcare system (CHS), improved and 
made available to the research community (as a web-based or stand-alone application) in 
order to receive useful feedbacks. 
Important previous studies aimed at optimizing management of traumatic brain injuries by 
using data mining methodologies were performed by Choi and colleagues (Choi et al., 1991) 
used decision trees procedures to predict outcome after severe brain injuries and achieved 
77.7% correct predictions. Nissen and colleagues (Nissen et al., 1999) used Bayesian 
networks to predict poor or good outcome (death, survival in a vegetative state or with 
disabilities) with 75.8% overall accuracy. 
More recently, Yin and colleagues (Yin et al., 2006) carried on a pilot study on the 
effectiveness of different analysis strategies in the prediction of outcome after severe brain 
injury; they used Bayesian Networks, Decision Trees, Logistic Regression, Support Vector 
Machines and Artificial Neural Networks on a dataset of over seven hundred patients with 
severe brain injury and estimated the model performance through ten-folds cross validation. 
The rating at the Glasgow Outcome Scale (GOS) (Jennet and Bond, 1975) was assessed for 
each patient and represented the target attribute of the Data Mining analysis. Class labels 
were defined in six different ways and all the related classification definitions were 
investigated: a- five different classes corresponding to the five GOS classes (1=death; 
2=vegetative state; 3=severe disability; 4=moderate disability; 5=full recovery or recovery 
with minor disabilities); b- three classes (obtained by clustering GOS classes 2, 3 and 4); c- 
two classes (obtained by clustering GOS classes 1 with 2 and classes 3, 4 and 5); d- two 
classes (clusering GOS classes 2, 3, 4 and 5; e- two classes clustering GOS classes 1, 2, 3 and 
4; f- two classes, clustering GOS classes 5 with 4 and GOS classes 1, 2 and 3. 
A reliable model predicting the outcome proved not practicable, but several aspects to be 
taken into account for this kind of studies were outlined. In particular, the validation 
techniques for evaluating the realistic prediction reliability of extracted models and then the 
significant influence of outcome classes aggregation on prediction performance proved 
crucial. No individual algorithm outperformed the others, and authors suggested to apply 
multiple algorithms in parallel to reduce errors. 
Grzymala-Busse and colleagues confirmed these findings in a study (Grzymala-Busse et al., 
2008) in which they compared the classification methods LEM2 (a rule-based learner) and 
BeliefSEEKER (a Bayesian network-based approach) on 42 clinical variables. Nets obtained 
through BeliefSEEKER were successively converted into set of rules to be compared with 
those obtained through LEM2 in order to discover a set of rules predicting the most 
probable outcome after severe brain injury. BeliefSEEKER produced simpler rules than 
LEM2 and proved most performing at the ten-folds cross validation. Weak rules could be 
removed from the LEM2 set therefore improving its performance to the same level of 
BeliefSEEKER. It was concluded that these Data Mining approaches are comparable, 
without any indication as to clinical usefulness being given. 
Early prognosis is necessary for subjects in a vegetative state (a condition of severe 
impairment of consciousness requiring continuous care); the issue was approached via 
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Decision Tree (Dolce et al., 2008a) and Artificial Neural Networks (Pignolo et al., 2009) in 
studies analyzing the appearance/disappearance of twenty-two relevant clinical signs with 
respect to outcome in three hundred and thirty-three subjects in a vegetative state, whose 
outcome was rated according to the Glasgow Outcome Scale. Aim of studies was to identify 
the clinical signs observed by the medical staff at the admission and after 50, 100, and 180 
days to be used as markers of good or poor outcome. 
A model (Figure 1) based on CART algorithm proved reliable in predicting the outcome 
after identifying a limited set of significant clinical signs and the timing of observation 
(Dolce et al., 2008a). Performance as evaluated through cross-validation techniques ranged 
from 74% to 83% depending on the follow-up time point. Outcome was good (GOS classes 4 
and 5; accuracy: 89-91%) when visual pursuit (or eye tracking) and spontaneous motility re-
appeared and oral automatisms disappeared early during the follow-up. Absence of eye 
tracking and spontaneous motility at any time point and appearance of oral automatisms at 
100 days after the admission indicated poor outcome (GOS classes 1 and 2) with 80-100% 
accuracy. Aetiology proved a relevant variable particularly at the initial phases of follow-up, 
with better outcome for traumatic brain injuries. 
The relationship between clinical signs appearance/disappearance and outcome was 
investigated by same research group with Artificial Neural Networks (Pignolo et al., 2009) 
in a model equating a neural network to a “black box” with no return of easy-to-understand 
knowledge. The results were comparable, but the decision tree-based model (Dolce et al., 
2008a) performed better and proved more understandable.  

4.2 Therapy planning and rehabilitation 

Catalano and colleagues used Data Mining analysis to investigate the interaction of 
demographics and parameters such as work disincentives and vocational rehabilitation 
services patterns with the employment outcome of traumatic brain injury patients (Catalano et 
al, 2007). Traumatic brain injury patients could be clustered in 29 homogeneous subgroups 
with different employment rates ranging from 11% to 82%, where differences were essentially 
explained by work disincentives, race and rehabilitation service variables. In particular, 
European Americans showed a higher employment rate (53%) than others ethnic groups: 
Native, Asian, African, and Hispanic/Latino Americans with employment rate of 50%, 44%, 
42%, and 41% respectively. Furthermore, subjects without psychiatric disabilities and work 
disincentives had a higher employment rate than those with such characteristics (51% versus 
41% and 58% versus 45%, respectively). Vocational rehabilitation service features (notably, job 
search and placement assistance and on-the-job support services) were relevant in predicting 
employment outcomes for traumatic brain injury patients. 
More recently, Gibert and colleagues proposed an approach integrating Data Mining 
techniques, traditional statistics, and tools for interpretation to predict the evolution of life 
quality among patients with spinal cord injury (Gibert et al., 2009) with a life expectancy 
comparable to the healthy, but persistent disability.  
Differing psychological responses to similar physical impairments were observed, 
suggesting that factors generating negative psycho-emotional responses (i.e. depression) and 
worse  quality of life should be promptly identified to provide the subjects with appropriate 
assistance. 
All studied patients were in follow-up after discharge and were periodically evaluated by 
the Periodic Integral Evaluation (PIE), with procedures taking into account aspects of 
medical, functional, neuropsychological, social, health education and health risk prevention 
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Fig. 1. Eexample of application of a CART model in the prediction of outcome of patients in 
vegetative state. Four major clinical signs and the timing of their observation provided the 
significant information accounting for the model. The overall cross-validated accuracy of 
prediction ranged 74-83% for each time point during the follow-up. Recovery of 
spontaneous motility, eye tracking and oculo-cephalic reflex not observed at admission or in 
early phase of clinical monitoring and the disappearance of oral automatisms correlated 
with a positive outcome (i.e. in classes 4 or 5 of the Glasgow Outcome Scale; correct 
prediction was in 89-91% of patients). Absence of eye tracking and mobility at any time 
point and the appearance of oral automatisms at T100 or later were indicative of poor 
prognosis (classes 1 or 2 of the Glasgow Outcome Scale; 80-100% accuracy depending on 
time of observation). Aetiology proved crucial at T0 and T50, when reappearing eye tracking 
and spontaneous motility allowed a favourable prediction of outcome in 89-90% of patients 
in VS due to traumatic head injury, to become irrelevant at T100. A retrospective cohort 
study in about 400 subjects in a vegetative state (Dolce et al., personal communication) 
confirmed the predictive power of eye tracking as indicated by the CART model. The 
patients’ rating at the Glasgow Outcome scale after a 250-day follow-up was better in those 
subjects with recovered visual tracking and inversely correlated with the time of re-
appearance (i.e. early recovery reliably predicted better outcome), although subjects with 
late recovery of eye tracking (after 230 days or more) had better outcome than those without 
it. 
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to predict asymptomatic pathologies and prevent complications, long hospitalization and 
survival risks. As result, PIE ratings were mainly characterized by the interaction among the 
patients’ functionality and psychological variables, whereas demographic and social 
features appeared irrelevant with the exception of time from injury (that had negative 
effects on the quality of life), academic degree and living in couple. Psycho-emotional 
responses were not correlated to the severity of brain lesion, although patients with more 
severe impairment have a worse quality of life. 
With the identification of targeted therapies remaining a critical goal, application of data 
mining techniques is increasing. Saatman and colleagues have outlined the needs of a new 
classification system for therapeutic interventions in traumatic brain injury, suggesting to 
adopt tools for intelligent data analysis such as Knowledge Discovery and Data Mining 
methods (Saatman et al., 2008). 
The clinical classification systems in use can be subdivided into etiological, symptom, 
prognostic and pathoanatomic classification systems. Traumatic brain injuries are usually 
classified by one of three main systems: clinical indexes of severity, pathoanatomic 
classifiers, and physical mechanism evaluation schemes. Clinical indexes of severity belong 
to symptom classification systems and remain the major inclusion/exclusion criteria in 
clinical trials for traumatic brain injury. The Glasgow Coma Scale (GCS) severity scale is 
commonly used because of its high inter-observer and prognostic reliability (Teasdale and 
Bennet, 1974); it assesses the consciousness level after brain damage, is of help for early 
prognosis (e.g. at admission), has allowed develop three prognostic models of increasing 
complexity, and proved informative for clinical management and prognosis, but offers no 
information about physiopathology mechanisms of neurological deficits (Murray et al., 
2007). 
Several schemes were proposed and adopted to characterize the pathoanatomy of brain 
injury, including the Marshall score for Computerized-Tomography (CT) images (Marshall 
et al., 1992) and the Rotterdam score (Maas et al., 2005). The first one proved to be reliable in 
predicting both the risk of increased intracranial pressure and outcome in early severe and 
moderate traumatic brain injury adults, but presents many limitations in classifying patients 
with multiple brain damage types and standardization of certain CT features. On the other 
hand, the second score system is well standardized and able to predict outcome, but is too 
recent and not fully validated. 
About traumatic brain injury classification by physical mechanism there is a considerable, 
but not perfect, correlation with pathoanatomic damage type. Under this respect, 
mechanistic classification may be really useful in modelling injuries and prevention, but not 
in clinical practice because the usually incomplete details of the traumatic event. In 
traumatic brain injury classification, physiopathologic mechanisms may be adopted to 
characterize targets for treatment. One widely accepted and used schema consists in 
differentiating “primary” versus “secondary” damage. The first refers to the unavoidable 
damage occurring at time of injury, and the second to secondary insults, such as hypoxia, 
hypertension, etc. However these systems are not commonly used in treatment trials 
because limited availability and usage of sophisticated monitoring parameters. 
Saatman and colleagues suggested that improved procedures for classification would help 
understand pathological mechanisms in greater detail, while supporting the clinician’s 
titration of treatment and improving outcome. Advances in diagnostic tools, technical 
solutions and intelligent methods for data analyses would promote the development of 
multidimensional classification systems for traumatic brain injury based on diagnostic, 
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prognostic, anatomic, and pathophysiological parameters and able to select patients 
potentially benefitting of medical interventions and the best treatment (Saatman et al., 2008). 
An ad hoc committee would develop the multidimensional database and provide solutions 
for data sharing and data mining in order to facilitate collaboration and knowledge 
discovery (Saatman et al., 2008). 

4.3 Image and signal analysis 

Computer-assisted systems for images and signals interpretation support prompt decisions 
and reduce subjectivity of the assessment. Liao and colleagues proposed a novel method 
based on a combination of machine vision with Data Mining to automatically detect 
intracranial hematomas through the analysis of CT brain scans (Liao et al., 2007). 
CT is usually preferred in the emergency room when intracranial hematomas are suspected 

and type, location and shape (e.g. epidural, subdural or intracerebral) are to be defined. 

However, identification following the current guidelines remains essentially qualitative. The 

model proposed by Liao and colleagues was able to a- identify hematomas on digital CT 

slices by a machine vision technique; b- assess severity by automatic labelling of pixels by 

depth and affected regions; and c- apply a decision tree-based algorithm to provide 

hematomas diagnosis independent of, and to support clinical diagnosis. Data Mining 

techniques (C4.5 decision tree) identified a reliable relationship between the features 

measured by machine vision and the clinician’s diagnosis. The approach was evaluated on 

48 pathological images and provided two decision rules similar to those used by medical 

experts and able to make correct diagnosis. The method resulted faster, less expensive and 

safely applicable also to patients with unstable vital signs than the magnetic resonance 

imaging (RMI) and was congruent with the development of a good clinical decision support 

system.  

Application of data mining to the functional magnetic resonance imaging (fMRI) is aimed at 

developing paradigms for functional investigation in the absence of a priori hypotheses. 

Several approaches, such as Support Vector Machines and Fisher discriminant analysis were 

applied, mostly for patter recognition (Haxby et al., 2001; Haynes and Rees, 2006; Ku et al., 

2008; and Hardoon et al., 2007). 

Blaschko and colleagues proposed a semi-supervised regression analysis using data at rest 

(Blaschko et al., 2009). Resting state activity is defined as the background level of brain 

activation in the absence of functional tasks and is generally measured in the awake subjects 

by long fMRI scanning sessions where the only instructions given to subjects are to close the 

eyes and do nothing. The spontaneous fluctuations of neural activity in these conditions are 

thought to provide relevant information on brain structural and functional aspects. For 

example, some brain regions resulted more active at rest than while performing a task, 

therefore suggesting a sort of (homeostatic) default brain state (Biswal et al., 1997; Raichle et 

al., 2001; Raichle and Snyder, 2007), whereas spontaneous fluctuations were usually found 

directly correlated to metabolic activity and behavior (Biswal et al., 1997; Bianciardi et al., 

2009). 

However, fMRI analyses at rest are limited by the absence of time-locking to events, and 
traditional statistics may become useless due to noise. Blaschko and colleagues adopted 
semi-supervised learning techniques to improve the accuracy of a regression model based 
on fMRI changes in response to stimuli (viewing a movie), making use of instances with and 
without the related class labels in order to obtain a reliable relationship among the input 
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and output variables. They noted that brain activity at rest is similar to that induced by 
stimulus conditions, allowing to augment functional data by using resting state data 
acquired for completely different purposes (e.g., baseline recording).  
The processing of biomedical signals related to internal regulation and response to stimuli 
may benefit of data mining techniques whenever knowledge about (non-linear) interactions 
among different subsystems is lacking, a priori hypotheses are difficult to formulate and 
traditional statistics are not practicable. Signals are usually less expensive to acquire than 
images and can be recorded over time with negligible discomfort (as in the case of 
monitoring). Recording procedures are non-invasive and Data Mining techniques are 
powerful solutions when useful knowledge of the regulation and response mechanisms are 
to be investigated. 
Riganello and coworkers applied several classification algorithms to detect in healthy 
controls, posttraumatic patients and subjects in vegetative or minimally conscious states a 
reliable relationship between the emotional status induced by complex sensory stimuli 
(symphonic music). The emotional responses were independently classified by the controls 
and posttraumatic patients’ report and by the heart rate variability (HRV) parameters in all 
subjects (Riganello et al., 2008). A model based on one HRV parameter (nominally the 
normalized unit of low frequency band power, nu_LF, with low frequency band power 
ranging from 0.04 to 0.15 Hz) could classify the emotional responses in all subjects 
(including those in vegetative or minimally conscious state) with accuracy (evaluated via 
suitable cross-validation techniques) of about 70% for both healthy subjects (training set) 
and posttraumatic patients (independent test set). 
The applicability of the knowledge acquired on healthy and traumatic subjects to investigate 
brain processing in patients in a vegetative state was tested (Riganello et al., 2010a; 
Riganello & Candelieri, 2010). A comparative analysis and validation on different data 
mining methods is reported elsewhere (Riganello et al., 2009). 
Following a comparable approach, Dolce and coworkers identified by HRV spectral 
analyses the emotional response of subjects in a vegetative state patients to the presence or 
voice of a relative (the mom’s effect) (Dolce et al., 2008b). Although preliminary, these 
findings suggest that autonomic concomitants of emotional changes can be induced by 
complex stimuli also in vegetative state, with implications on the residual responsiveness of 
these subjects. 
The model used to classify the emotional response to symphonic music (Riganello et al., 
2010a) was applied retrospectively, without retraining, to analyze the emotional response of 
12 subjects in a vegetative state to a relative (the “mom’s effect”) (Dolce et al., 2008b). The 
emotional condition was classified as being “positive” or “negative” in an experimental 
paradigm including baseline, the mother’s presence or voice (test condition), and the 
presence/voice of persons unfamiliar to the subject (control or sham condition). Data 
mining classified the emotional response as being “positive” in 8 subjects in the test 
condition  and  as “negative” in 11 subjects in the control condition (Riganello et al., 2010b). 

5. Conclusions and discussions 

Data Mining - the non-trivial process of identifying valid, novel, and potentially useful 
patterns in data (Fayaad, 1996) - has been applied with success to different fields, such as 
engineering, banking, marketing and customer relationship management, and various areas 
of science. 
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To date, application in the analyses of datasets with medical/neurological relevance is still 
limited. However, several approaches are suitable of use in the investigation of practical 
problems in medicine and the expectations are that efficient and practicable solutions will be 
made available in increasing number and variety of application. 
The potentialities of Data Mining in clinical medicine is mainly in the identification of 
relations, patterns and models supporting prediction and the clinician’s decision making 
processes, e.g. for diagnosis, prognosis, and treatment planning. When validated, these 
predictive models could be embedded in the clinical information systems as clinical decision 
support modules, reducing both subjectivity and time in making decisions. 
Application in the medical field differs from the Data Mining use in business, marketing and 
economy. For instance, medical datasets and decisions are usually biased to some extent by 
measurement errors, missing data or miscoding the information in textual reports. In 
addition, some major issues concern the processes of knowledge extraction and 
representation: decision making should be supported by conceptually user-friendly models 
(e.g. decision tree and rule sets) rather than by “black-box” models (e.g. artificial neural 
networks and support vector machines). The reliability and wide application in fields such 
as images and signals interpretation notwithstanding, research on Data Mining should focus 
in greater detail also on the extraction of understandable rules from trained black-boxes 
(such as neural networks); theoretical research should provide mathematical justifications 
for the properties of Data Mining algorithms (Magoulas & Prentza, 2001).  
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