
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



15 

Visual Gene Ontology Based Knowledge 
Discovery in Functional Genomics 

Stefan Götz and Ana Conesa 
Bioinformatics and Genomics Department, 

Centro de Investigaciones Príncipe Felipe 
Spain 

1. Introduction 

The molecular biology and the study of the genome has been transformed in the last decade 
by the avalanche of a conspicuous amount of data produced by high-throughput 
technologies. The accessibility to massive sequencing, microarrays and proteomics methods 
implies that studies on the genome-wide scale has become feasible for a large number of 
laboratories throughout the world. The great challenge in current genome research is to 
transform these data into knowledge, knowledge that will lead to a better understanding of 
the molecular processes underlying the observed biological phenomena. The discipline of 
functional genomics has arisen to integrate genomic sequences, experimental genome 
screening and novel bioinformatics methods to facilitate comprehension of genome-wide 
data. Within this framework, visualization appears as a helpful component to interpret 
results from high-throughput experiments and can be indispensable when working with 
large datasets. Typically, functional genomics makes use of structured functional terms like 
the Gene Ontology (GO) vocabulary (Ashburner M, 2000) and in this case the “natural” 
visualization format is a graph of a group of functionally annotated elements. In this graph, 
nodes represent the functional labels (the GO terms) to which genes or proteins are 
annotated to and arcs represent the relationships among them. Visualization of genomics 
data within the GO graph structure is effective in providing a rapid insight into the 
functional composition of a dataset and for understanding functional information within its 
biological context. This is of outermost importance in functional genomics research where 
both the overview and the detail are essential to create hypothesis over the functioning of 
biological systems. 
However, a problem when visualizing GO functional information is that graphs can become 
extremely large and difficult to navigate if the number of represented elements (genes, 
proteins or simply GO terms) is high. Moreover, not all nodes are equally important and 
different kind of information might be associated to them. Therefore, the goal of a good 
visualization technique is to provide an informative view of the data that is efficient in 
generating new knowledge. 
In this chapter we review current methods to visualize and perform data mining from GO 
contained genomic data. We start with a brief introduction to the Gene Ontology and 
present several third-party approaches for the visualization of GO data. The body of this 
document will focus on visual solutions for GO-based data mining available in the 
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Blast2GO suite. These include tools for zooming, filtering, highlighting, summarizing, 
transforming and exporting GO data. Blast2GO is freely available to the scientific 
community at www.blast2go.org. 

2. Visualization of genomics data through the Gene Ontology 

The Gene Ontology is a controlled vocabulary of terms for describing gene product 
characteristics. It is developed by the GO Consortium (http://www.geneontology.org). The 
project aims at the standardization of gene product attributes and terms are generally 
defined to be valid across species. The GO consists of three independent ontologies that 
describe gene and protein functions from the perspective of the Biological Process in which 
they operate, the Molecular Function or role they have and the Cellular Component they 
localize. The GO Consortium also maintains a database of GO term annotated gene products 
and many laboratories worldwide use this vocabulary to describe their genomic data. 
The GO is a hierarchical vocabulary with a Directed Acyclic Graph (DAG) structure, 
meaning that ancestor (or parent) terms are more general concepts than descendant (or 
children) terms and that connections between node elements can be many to capture 
different relationships between biological concepts. The ontology contains more than 30.000 
terms distributed in about 20 levels. Another characteristic of the GO is the consistency or 
“true path rule”: given the annotation of a gene to a certain GO level and term, all ancestor 
terms up to the root must be true for that gene. The Gene Ontology is not only used to 
annotate gene products with functional labels1, but also to study their activity from a 
functional perspective, i.e. to approach genome research as the working of functionally 
related groups of genes that act coordinately as a System. 
When considering the visualization of GO contained genomics data, different levels of 
complexity can be envisaged. First, we can consider the visualization of a single annotated 
gene or a specific GO term. This typically results in simple graphs that do not pose major 
representation challenges apart from informing on the relationships between terms and 
possibly the annotation event for that gene. A more complex situation arises when the 
annotation of a group of genes has to be displayed. Here large DAGs are produced with 
many levels and connections between nodes, and information enhancing methods are 
highly required to identify and quantify the knowledge potential. Finally, one might want to 
represent a subset of selected GO terms that have been obtained by some data mining or 
statistical methods, for example, from a functional enrichment analysis of some gene 
expression data (see below). This represents normally an intermediate situation between the 
two previous cases with respect to graph size. The visual requirement here would be in the 
representation of the statistical value associated to the selected terms. 
Different GO visualization, browser and query programs can be found that are freely 
available to the scientific community. A significant number of them are listed at the Gene 
Ontology website (http://www.geneontology.org/GO.tools.shtml). A common approach to 
browse the GO is the tree representation, such as provided by the AmiGO (Carbon S, 2009) 
and QuickGO (Binns D, 2009) engines. Tree browsers show the GO as an indented list, 
similar to file browsers, where terms can be expanded by mouse click to view their children 
and navigate down through the hierarchy (see Figure 1). If a term appears in multiple 
 

                                                 
1 the terms ’functional annotation’, ’functional label’ and ’GO term’ will be used exchangeable 
throughout the text 
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(a) AmiGO browser at the Gene Ontology 
site, taken from www.geneontology.org 

(b) Enriched GO graph by GOrilla, taken from 
http://cbl-gorilla.cs.technion. 
ac.il/example.html 

 

(c) TreeMap view of an annotate dataset, 
adapted from 
http://syntheti.cc/ndimensions/ 
zb/treeviz/treemaps.html 

(d) REViGO plot, adapted from (Supek F, 
2010) 

 

Fig. 1. Different visualization engines for Gene Ontology data 
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locations in the tree, all occurrences are displayed. These browsers are indicated for the 
visualization of single gene or term data and to recover rich information on specific 
elements of the GO database, but are limited to represent large annotation datasets. 
A popular data mining application of the Gene Ontology is the identification of functional 
categories that are over or underrepresented in a subset of genes selected or ranked for their 
association to a given phenotype, the so called Pathway Analysis (Al-Shahrour F, 2004). 
Many bioinformatics tools perform these analyzes, such as Babelomics (Medina I, 2010), 
DAVID (Dennis G Jr, 2003) or GOrilla (Eran Eden & Yakhini, 2009), to cite a few. DAG based 
visualization of pathway analysis results typically goes through the display of the subgraph 
corresponding to the set of enriched GO terms together with a coloring scheme of nodes that 
indicate the significant value of the enrichment test (see Figure 1). 
An interesting development for the visualization of GO based genomics data is the treemap 
approach (Baehrecke EH, 2004). Treemaps are a space-filling visualization technique for 
hierarchical structures that show attributes of leaf nodes by size and color-coding. Although, 
similarly to tree browsers, treemaps impose a flattening of DAG structure, the implementing 
software offers versatility to code different gene or GO term attributes into the elements of the 
treemap (see Figure 1). As disadvantage, the compartment-like display of treemaps, far from 
the familiar graph structure of the Gene Ontology, might be dis-appealing for untrained users 
and this may explain the lesser use of this solution. Finally, one of the few tools that offer 
functionalities for reducing the complexity of large GO graphs is REViGO (Supek F, 2010). 
REViGO is a web server that can take long lists of Gene Ontology terms and summarize them 
by removing redundant GO terms. The site provides a visualization engine that represent GO 
graphs by grouping GO terms based on their semantic similarity (see Figure 1). 

3. GO visualization with Blast2GO 

3.1 Blast2GO 

Blast2GO, is a suite of tools and methods for assigning functional labels to novel genome 
sequences and for knowledge discovery in functional genomics research. The application 
has, therefore, two main aspects: (i) the generation of functionally annotated sequences 
according to the Gene Ontology (and other) vocabularies which is based on the similarity 
between the unknown sequences and known labeled genes (ii) the data-mining of genomics 
(experimental) datasets making use of this functional information. Blast2GO has been 
developed to be a user-friendly, biologist-oriented software and employs a large variety of 
graphical resources to present and analyze annotation data (Götz S, 2008). These features 
have granted the application great acceptance in the functional genomics scientific 
community. Blast2GO has been used in hundreds of genomics projects covering a great 
variety of organisms and it is today the most cited software of its kind 
(http://www.blast2go.org/b2g_in_papers). 
The graphical functions of Blast2GO have been implemented to facilitate browsing and 
analysis at different levels of complexity of the functional data. In the following sections we 
will describe in detail all these functionalities and show examples of their application as 
data mining tools. 

3.2 Visualization of one annotated sequence 

In the process of assigning functional labels to sequence data by similarity-based automatic 
procedures a number of steps have to be covered. These typically include: 
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• comparison of un-characterized sequences to known, annotated genes deposited in 
public repositories 

• identification of primary function candidates as the functional labels belonging to the 
similar genes 

• transfer of selected GO terms to the novel sequences 
In Blast2GO this procedure entails the computation of an annotation score (AS) for each 

node of the reconstructed GO sub-graph encompassed by the set of candidate terms. This 

annotation-score is used to select transferred labels and to control the intensity of the 

annotation process. The annotation-score considers the amount of similarity between novel 

and known sequences: greater similarity implies higher annotation-score, and the quality of 

the candidate functional term: those candidate terms that are not themselves the result of an 

automatic procedure are favoured. Additionally, the Blast2GO annotation algorithm takes 

into account the position of the term within the Ontology: a given term will not be 

transferred if a descendant is. The reader is referred to (Conesa A, 2005) for a detail 

explanation of the Blast2GO annotation algorithm. 

Although computational annotation of high-throughput data is normally an unsupervised 

process, it might be sometimes convenient to check the annotation event of specific 

sequences to understand or modify annotation parameters. Blast2GO provides a graphical 

view on a single sequence annotation through the combination of color, shape and labeling 

formats. Given the complete set of potential GO term annotation candidates, the 

corresponding sub-graph is constructed. Primary candidate terms are identified by their GO 

code while each node in the graph is coloured according to its annotation-score. Finally, the 

shape of the node is indicative of the effective transference of the term: octagonal-shaped 

nodes are newly assigned annotations while rectangular nodes are non-transferred terms 

(see Figure 2). This representation has a number of advantages: on one had it permits the 

understanding of the relationships among candidate functions and of the potential 

functional diversity of the novel sequence. On the other hand, it informs on the selection 

procedure for transferred terms. Finally, it shows the level of specificity (ontology depth) of 

the novel annotations. 

3.3 Combined graph 

The major advantage of the GO graph visualization is when representing the information 

contained in a group of sequences. Two basic features are provided by graph structures: 

context -biological concepts are placed within the framework of a general biological sense-, 

and differentiation -by applying different highlighting forms to nodes according to their 

relevance. In Blast2GO, the graphical function to display multiple sequences is called 

“Combined Graph” that creates a joint DAG of a set of annotated genes. It is important to 

mention that Blast2GO supports the true-path consistency rule of the Gene Ontology, 

meaning that when a given sequence is assigned to a GO term, all parent terms become also 

annotated with that sequence. Different parameters are available at the Combined Graph 

function to enhance the visual analysis of a sequences dataset, including coloring schemes, 

filtering and graphical layout. In most cases, enhancing options rely on the computation of a 

node associated value that tells something about the relevance of the term within the 

dataset. These will be described in the following sections together with their use to create 

customized graphs. 
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Fig. 2. A GO graph of the molecular function annotation of a single sequence. It shows to 
possible GO term annotations (oval nodes) for a given sequence and the finally assigned 
term in octagonal shape. Intermediate nodes are rectangular. Nodes are colored according 
the Annotation Score (“AnnotAlgo”). 
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3.3.1 Node relevance and coloring. The Blast2GO Node-Score 

A first, straight-forward approach to estimate node relevance is by counting the number of 
annotated sequences at each GO term and display consequently node color intensity 
proportionally to this value. This approach is available in Blast2GO under the Combined 
Graph menu and creates graphs with a gradual coloring from the bottom to the top of the 
graph, having parent terms darker tints that their children (see Figure 3). This strategy is 
useful to concentrate attention in general, high populated terms. However, due to GO true-
path rule coloring by number of sequences invariably highlights high level nodes and this 
might not be adequate to find interesting specific terms down in the hierarchy.  
 

 

Fig. 3. A GO molecular function DAG of 1000 sequences, representing only terms with at 
least 20 sequences, colored by the amount of sequences for each term. 

Another possibility would be to weight and color nodes by their information content. 
Within the GO, the information content (IC) (Resnik, 1995) of a node is defined by the 
inverse of the logarithm of the frequency of annotations: IC(g) = -log10p(g) where g is an 
element of the GO and GO is the overall set of all GO terms. p(g) is defined as the relative 
frequency of the occurrence of g. The IC of terms decreases as going up in the graph 
reaching its minimum at the top level (root) to which all sequences are indirectly assigned 
(p(root) = 1). In a way, this parameter is the opposite at the number of annotated sequences 
and coloring by this metric results as well in a gradual highlighting scheme. In Blast2GO we 
propose a novel node metric that combines the information content of a given term and its 
position withing the Gene Ontology. The node-score (NS) is a trade off between functional 
assignment and the hierarchical topology of the GO. The node-score is defined as the sum of 
sequences directly or indirectly associated to a given GO term weighted by the distance 
between the term and the term of “direct annotation” i.e. the GO term the sequence is 
originally annotated to. This weighting is achieved by multiplying the sequence number by 

a factor α [0,∞] to the power of the distance between the term and the term of direct 
annotation (see Equation 1 for a mathematical expression). In this way, the node-score is 
accumulative and the information of lower-level GO-terms is considered, but the influence 
of more distant information (i.e. annotations) is suppressed/decreased depending on the 
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value of α. This compensates for the drawback of the earlier described method of simply 

counting the number of different sequences assigned to each GO-term. The α parameter 
allows this behaviour to be further adjusted. A value of zero means no propagation of 

information and can be increased by rising α. Figure 4 displays the graph shown in Figure 3 
colored according to the node-score metric. Note the difference in the highlighting at the 
different levels of the DAG.  

 ( , )

( )

( ) ( ) a

a

dist g g
a

g desc g

node score g gp g α
∈

− = ⋅∑  (1) 

where: 

• desc(g) represents all the descendant terms for a given GO term g 

• dist(g,ga) is the number of edges between the GO term g and the GO term ga 

• g is an element of the GO where GO is the overall set of all GO terms 

• gp(g) is the number of gene products assigned to a given GO term g 
 

 

 

Fig. 4. A GO molecular function DAG of 1000 sequences, representing only terms with at 
least 20 sequences, colored by node score. 

3.3.2 Trimming and pruning 

Graph coloring, though very helpful to enhance visualization, might not be sufficient to 

provide handy views of the GO information when many terms have to be displayed. In 

these cases large and populated graphs are generated and navigation turns tedious or color 

gradients become too flat to provide clear differences between nodes. In such scenarios it 

seems more indicated to reduce the size of the graph in a way that relevant information is 

retained and unimportant terms are hidden. Blast2GO introduces two possibilities for 

decreasing graph size by using the two node metrics computed in combined graphs. Users 

can set a filter on the number of sequences annotated to a given node so that only nodes 

bearing more than a given threshold will be displayed. This results in a “trimming” effect on 
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the GO DAG. The tree is reduced from the tips and only functional terms at the higher levels 

of the Ontology are retained. This option can be interesting to summary information and 

only show functionalities with a sufficient number of members, but at the cost of loosing 

specific, informativerich terms. Moreover, since different areas of the Gene Ontology are 

differently developed, trimmed graphs are often uneven in the depth of their different 

branches. The other option is to filter on the basis of the Blast2GO node-score hiding nodes 

that do not surpass a specified value. The result here is a pruning effect: the graph is 

diminished from intermediate nodes that carry redundant information and the resulting tree 

is enriched in highly informative nodes. Pruning has, however, one potential drawback: 

since many connecting nodes may get hidden the biological context of the ontology might 

be affected, having the selected terms a harder task in facilitating the biological 

interpretability of the genomic dataset. In practice, a balance between the two filtering 

options has to be achieved to obtain compact and informative graphs which are easy to 

interpret. 

3.3.3 Summarizing, GO slims 

Another widely adopted approach for making large GO graph easier to handle is 

summarizing by a GO slim. GO slims are cut-down versions of the GO ontologies 

containing a subset of the terms of the whole GO. They provide a broad overview of the 

functional content of a large dataset without the detail of the specific fine grained terms. The 

process of summarizing a set of GO terms by GO slim implies that terms have to be mapped 

to their corresponding GO slim counterparts and, logically, several GO terms map to the 

same GO slim term. The result is that a DAG of thousands of nodes can be condensed or 

slimmed to a few dozen of key terms, which makes the graph navigable and easy to evaluate. 

Different GO slim mappings are available that offer different specifications to summarize 

GO information. Usually these GO slim mappings are specified for organisms or biological 

domains, such as ’yeast’, ’plant’ or ’oryzae’. A list of GO slims and a Perl script for mapping 

can be found at the Gene Ontology site (http://www.geneontology.org/GO.slims.shtml). 

The Blast2GO software offers the functionality to map and represent GO slim summaries of 

an annotation dataset. Up to 8 different slims are supported and once mapping is completed 

the regular Blast2GO graphical and enhancing functions (Combined Graph, coloring, 

filtering, etc) can be applied to the new annotation dataset. 

In comparison to the previous graph modification functions, GO slims represent a more 

static summary of the functional data, since the terms that get displayed are fixed for a 

giving mapping version. This, which is generally not the most desired option for data 

mining purposes can be handy when different datasets need to be compared or when a 

standard summary of the functional content of a dataset needs to be reported. 

Figure 5, presents three DAGs of the Molecular Function Ontology of the same 1000 

sequences. The first graph is unfiltered to show complexity of the information, the second 

graph shows the functional information after having applied a GO slim reduction. The third 

graph is filtered and thinned depending on the number of sequences belonging to each GO-

term and the node-score. All GO terms with less than 10 sequences were removed (tip 

nodes) and all the nodes with a node-score smaller than 12 applying an alpha of 0.4 were 

removed (intermediate nodes). 
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Fig. 5. The molecular functions of 1000 sequences visualized in 3 different ways: The first 
graph is unfiltered, the second graph shows the functional information after having applied 
a GO slim reduction and the third graph is filtered and thinned according to the number of 
sequences belonging to each GO-term and the node-score. All GO terms with less than 10 
sequences (tip nodes) and all intermediate terms with a node-score smaller than 12 (with 
a=0.4) were removed. 
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3.3.4 Pie charts 

Although the GO graph is the most suitable layout for analyzing the functional meaning of 
an annotated dataset, scientists find some times convenient other kind of representations 
when presenting and publishing their results. Pie- and less frequently bar-charts are 
commonly used. Translation of the Combined Graph of a group of sequences into a pie 
chart, is however, not trivial. As DAGs have multiple hierarchy levels and pies are “flat” 
representations, some kind of projection or term selection has to be made before creating a 
pie. One common option is to “cut” the DAG at a selected level and represent terms at this 
position as a pie chart. The size of the slides will be proportional to the number of annotated 
genes at each term belonging to the chosen level. This approach poses two main problems. 
Firstly, it generates size inconsistent diagrams: since one given sequence can be annotated to 
multiple terms, the sum to the sizes of the different pie slides might be different from the 
total number of genes in the dataset. This is in slight contradiction with the notion of pie 
chart (as the distribution of a whole among several classes) and therefore GO-derived pies 
much be considered as radial flat representations of a graph structure rather than “proper” 
pie charts. Secondly, the different slides of the pie may not represent terms semantically or 
informationally equivalent. This is due to the fact that different areas of the GO has different 
intensity of development. For example, on some branches third level terms may represent 
very specific notions since in other areas could refer to highly generic concepts. A way to 
circumvent this problem is to cut different branches of the GO at different levels depending 
on some value that is indicative of the information content of the node (see Figure 6). 
Blast2GO offer both options to generate pie charts from Combined Graphs: one-level pie 
(see Figure 7.a) where the chart contains terms of only one level of the GO and multi-level 
pie (Figure 7.b). For this last case two different metrics can be use in Blast2GO to indicate the  
 

 

Fig. 6. The multi-level pie function allows instead of a fixed/lowest level of abstraction 
(dashed line/dash-and-dot line) a custom level of abstraction with different depths in 
various sub-trees of the GO (continuous line) depending on a user-specified weight criteria 
(Figure taken from: Khatri & Draghici (2005)) 
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envelope (56)

organelle subcompartment (25)

membrane-bounded vesicle (91)

intracellular organelle part (276)

membrane part (174)

intracellular part (1,025)

endomembrane system (57)

intracellular (1,044)

(a) cellular component GO pie at level 4

Sequence distribution: cellular_component(Filtered by Score: cutoff=15.0)

cytosolic small ribosomal 
subunit (18)

photosystem II (26.2)

plasma membrane (32.5)

chloroplast stroma (18.2)

mitochondrion (157.26)

large ribosomal subunit (19.48)

Golgi apparatus (16.17)

photosystem I (16.8)

endoplasmic reticulum (37.68)

intracellular organelle lumen 
(16.17)

endomembrane system (45.59)

mitochondrial inner membrane 
(21.46)

cytoplasmic membrane-bounded 
vesicle (87.95)

extracellular region (28.76)

vacuole (32.24)

integral to membrane (89.99)

chloroplast thylakoid membrane 
(18.6)

nuclear part (18.1)

(b) multi-level pie at node-score 15  

Fig. 7. Two different pie charts generated with Blast2GO. (a) shows the functional 
information of a given annotation set at GO level 4 while (b) shows all the GO terms which 
surpassed the node-score filter (cutoff=15). 

“node-importance” and in this way the point of sectioning: the pie will contain the most 
specific node of each branch that surpass a user specified cut-off level for the number of 
sequences or the node-score. So generated pies show a greater diversity of functions that 
have more similar weights withing the dataset. 

3.3.5 Visualization of statistical data 

A last scenario where visualization on the DAG has gained popularity is for the display of 
statistical results of functional genomic data-mining approaches. In this case the relevance of 
a node is not in the number of annotated sequences, but because some additional 
experimental data has indicated the association of functions to a certain phenotype. The 
most popular test is the enrichment analysis of gene expression data. Functional enrichment 
has been made available at Blast2GO by the integration in the application of the Gossip 
algorithm (Blüthgen et al., 2005). Gossip computes a Fisher’s Exact Test (Fisher, 1922) 
applying robust FDR (False Discovery Rate) correction for multiple testing and returns a list 
of significant GO terms ranked by their adjusted p-values. Results are represented in 
Blast2GO in tabular format or are directly visualized on the DAG, colouring by significance 
value (see 16 for an example). This kind of “enriched graphs” typically displays highlighted 
branches of terms semantically related. Analysis of the colored terms within branches 
permits to identify the level of functional specificity that associated to the phenotype, as well 
as the level of abstraction where this association is lost. In addition of the Fisher’s Exact Test, 
Blast2GO supports the visualization on the DAG of any kind of statistical result or numeric 
value directly associated to GO functions. GO terms can be uploaded in a tab-separated 
format with a column containing the numerical statistical value scaled between 0 and 1. The 
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color scale is set form dark red (0) to dark blue (1) passing through white (0.5). A good 
example of such a use can be found in Conesa et al. (2008). Biological functions related to 
several clinical measurements were identified through multivariate projection strategies and 
visualized by a DAG colouring the significant GO terms on a scale from red to blue 
depending on their significance (see Figure 8). 
 

 

Fig. 8. GO DAG (part) of the pool of significant terms (biological processes) detected for 
functional variables by the statistical model. Term color intensity is proportional to the 
importance of the functional class in the model. Hexagonal nodes are the actual selected GO 
terms. 
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Fig. 9. Enriched graph of the subset of genes expressed in membrane in Soybean. Node filter 
has been set at FDR ≤ 1· 10-6. Nodes are colored accordingly to their FDR value in the 
Fisher’s Exact Test against the whole Soybean genome array. Figure taken from (Conesa &  
Götz, 2008). 
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4. Concluding remarks 

Visualization under the frame of the Gene Ontology Graph is an effective data mining 
approach for analyzing large functional genomics datasets as it provides functional 
information within a broad biological context. The different enhancing, summarizing and 
exploring functionalities described in this chapter are valuable for granting easy access to 
the most relevant functional information and facilitating the process of knowledge 
discovery. These options are readily available in the Blast2GO application, an up-to-date 
bioinformatics tool for advanced GO graph exploring. As the Gene Ontology further 
expands to include new relationships between terms, links among branches or richer 
annotation data, and novel metrics become available for assessing and comparing functional 
datasets, additional graphical features will need to be developed. 
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