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1. Introduction 

Many commercial agrochemicals in current use contain chiral structures and thus consist of 

enantiomers. Here chiral herbicide is one of the most important agrochemicals which are 

widely used. Enantiomers of a chiral compound have identical physical-chemical properties 

and appear as a single compound in standard analysis. However, the biological effects of 

enantiomers such as toxicity, mutagenicity, carcinogencity, and endocrine disruption 

activity, are generally different, due to the inherent enantioselectivity of biological 

interactions. 

According to the chemical structure, the familiar chiral herbicides have been classified with 

amide herbicides, phenoxy herbicides, imidazolinone herbicides, organophosphorus 

herbicides and so on. The analysis and preparation of pure enantiomer herbicides have been 

summarized with HPLC, GC, CE and SFC methods. Finally, information concerning the 

stereoselective toxicity and degradation of chiral herbicides in environmental behavior has 

been offered. 
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2. Classification of chiral herbicides 

2.1 Amide herbicides 
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2.2 Phenoxy herbicides 
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2.3 Imidazolinone herbicides 

 

∗
N

N

H

O

O OH

∗
N

N

H

O

O OH

imazamethabenz

∗
N

N

H

O

N

O OH

O

imazamox

∗
N

N

H

O

N

O OH

imazapic

∗
N

N

H

O

N

O OH
∗

N

N

H

O

N

O OH

imazapyr imazaquin

∗
N

N

H

O

N

O OH

imazethapyr
 

www.intechopen.com



Enantioseparation and Enantioselective Analysis of Chiral Herbicides   

 

285 

2.4 Organophosphorus herbicides 
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2.5 Diphenyl ether herbicides 
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2.6 Other herbicides 
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3. Chromatographic methods for chiral herbicides 

3.1 Separation of chiral herbicides by HPLC 

HPLC combined with kinds of CSPs is one of the most common and easily obtained 

approaches for enantiomer analysis and preparation. Today, CSPs have been developed at 

least seven classes, including Pirkle-type CSPs, polysaccharides CSPs, cyclodextrins CSPs, 

macrocyclic glycopeptide antibiotics CSPs, proteins CSPs, crown ethers CSPs and ligand 

exchange CSPs, etc. Profiting from the development of CSPs, chiral HPLC methods have 

held the balance both for determining optical purity of enantiomers and for preparing 

enantiopure standards. 

A group of herbicides, diclofop-methyl, quizalofop-ethyl, lactofen, fluroxypyr-meptyl, 

acetochlor, ethofumesate, clethodim, napropamide, fenoxaprop-ethyl and carfentrazone-

ethyl, were partial or near-baseline separated on self-prepared amylose tris-(S)-1-

phenylethylcarbamate CSP by HPLC with η-hexane/isopropanol as mobile phase (Wang et 

al., 2006). 
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Chiral pyrazole phenyl ethers (PPE) are highly active herbicides which were resolved by 
direct HPLC on commercially available CSPs derived from N-3,5-dinitrobenzoyl derivatives 
of ǂ-amino acids or amines (Whelk-O 1). Chromatographic resolution obtained was suitable 
for determination of enantiomeric purities and, in some cases, for preparative resolution of 
the enantiomers with ee>99% (Hamper et al., 1994). (+)- and (–)-enantiomers of thiobencarb 
sulfoxide were collected with purities more than 99.0% ee and 99.8% ee on a Chiralcel OB 
column at 25 °C, 1 mL/min 95/2.5/2.5 hexane/EtOH/MeOH as a mobile phase (Kodama et 
al., 2002). 

3.1.1 Enantioseparation of amide herbicides by HPLC 

Amide herbicides are a group of important chiral herbicides, and metolachlor, which 
contains two chiral elements (an asymmetrically substituted carbon and a chiral axis), 
consists of four stereoisomers stable at ambient temperature with aSS-, aRS-, aSR-, and aRR-
configurations. Two of the four metolachlor isomers were isolated from rac-metolachlor in 
enantio- (ee>98%) and diastereomerically pure forms by a combination of achiral Hypercarb 
PH and chiral chiralcel OD-H HPLC with 98/2 n-hexane/IPA. The enantiomer elution 
sequence is aS prior to aR (retention times, aSS<aRS and aSR<aRR) and 1’S prior to 1’R 
(retention times, aSS<aSR and aRS<aRR) (Muller et al., 2001). Baseline separation of four 
metolachlor isomers by HPLC was achieved on Chiralcel OD-H using 91/9 Hex/diethyl 
ether as the mobile phase by Polcaro et al. (Polcaro et al., 2004). Enantiomers and 
diastereomers of some acetamide pesticides, alachlor, acetochlor, metolachlor, and 
dimethenamid, were separated using achiral and chiral high-resolution GC/MS 
(HRGC/MS) and chiral HPLC. Chiral HPLC using modified cellulose and phenylglycine 
columns also showed some isomer resolution. A novel thermal equilibration procedure 
allowed distinction among axial-chiral and C-chiral enantiomers (Buser et al., 1995). 
Additionally, acetochlor enantiomers were partial identified with a cellulose derivative 
fixed phase CDMPC by HPLC with n-hexane or petroleum ether with different percents 
alcohol (Peng et al., 2005). And dimethenamid-P was completely resolved on a normal phase 
Chiralpak AD-H column (Saito et al., 2008). 
Another typical amide herbicide, napropamide, was separated both by normal phase HPLC 

and by reverse phase HPLC by Liu et al. (Chen et al., 2006, Zhou et al., 2006). In the former 

research, a method for the chiral separation and micro-determination of napropamide in 

water was established on a Chiralcel OJ-H column. The linearity of calibration curve for 

racemic mixture was 10-100 ng/mL and the correlation coefficient was 0.99 (Chen et al., 

2006). In the latter, the enantiomers were resolved using Chiralcel AD-RH and Chiralcel OD-

RH with MeCN/H2O as mobile phase. The stereoselectivity of Chiralcel AD-RH was better 

than Chiralcel OD-RH for napropamide (Zhou et al., 2006). In a report by Zhou et al. (Tian et 

al., 2010), napropamide was partially separated (Rs 1.05) under 40/60 MeCN/water reverse 

phase HPLC on amylose tris(3,5-dimethylphenylcarbamate) CSP (ADMPC). 

Flamprop was resolved on 150×4.6 mm I.D. terguride-based CSP (selectivity factor ǂ 1.09) 
by using 45% 0.02 M potassium acetate buffer (pH 3.5) and 55% MeCN as the elution solvent 
by HPLC (Padiglioni et al., 1996). 

3.1.2 Enantioseparation of phenoxy herbicides by HPLC 

Phenoxy herbicides are a large group of chiral herbicides with widespread application in 
agriculture. The most representative herbicides are diclofop, mecoprop (MCPP), 
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dichlorprop (DCPP) and their derivatives as classified with phenoxypropionic acids 
herbicides, which are widely applied to control broad-leaf weeds. In Padiglioni’s study 
(Padiglioni et al., 1996), MCPP, DCPP, diclofop, fenoxaprop, fenoprop, fluazifop, haloxyfop, 
quizalofop-ethyl ester and quizalofop were well resolved on 150×4.6 mm I.D. terguride-
based CSP by using 0.02 M potassium acetate buffer (pH 3.5)-MeCN as the mobile phase by 
HPLC. Furthermore, a semipreparative-scale separation of fenoprop enantiomers was 
carried out on a 250×7.8 mm I.D. column, yielding approximately 1.0 mg of each enantiomer 
in a single chromatographic run, with a recovery of 88% and optical purity greater than 
99%. 
Several phenoxypropionic acid herbicides were separated on two CD-derivatived CSPs, 

Nucleodex ǂ-PM and Nucleodex ǃ-PM. Phenoxypropionic acids can be divided into three 

different groups. The first one has one or two small substituents such as methyl, chlorine or 

hydroxyl at the aromatic ring (e.g. MCPP, DCPP). The separation of MCPP and DCPP was 

possibly conducted using NUCLEODEX ǂ-PM CSP, whereas the methyl ester of these 

compounds was resolved by both Nucleodex ǂ-PM and Nucleodex ǃ-PM. A further 

substitution (e.g. fenoprop R1, R2. R3=C1, R4=H) leads to the second group and results in 

the failure of the permethylated ǂ-CD to achieve separation, but fenoprop can be sufficiently 

resolved by Nucleodex ǃ-PM. The third group contains compounds like fenoxaprop or 

diclotop with large substituents at the aromatic ring. In this case only the methyl or ethyl 

esters can be separated by permethylated ǃ-CD. No resolution can be obtained with 

Nucleodex ǂ-PM (Riering et al., 1996). Resolution of MCPP and DCPP and 2,4-D were 

proved to be obtained on Nucleodex-ǂ-PM-CD CSP with 70% MeOH and 30% 50 mM 

NaH2PO4 as elutent by Kohler et al. (Zipper et al., 1999) and Bjerg et al. (Rugge et al., 2002). 

MCPP and DCPP, and bromacil with a pyrimidinedione ring were better resolved on the 

native teicoplanin CSPs than the aglycone teicoplanin CSPs with 100% MeOH containing 

0.1% TEA and 0.1% acetic acid (v/v) and 20/80 MeOH/water buffered at pH 4.1 by 1% 

TEAA for bromacil by HPLC (Berthod et al., 2000a). Furthermore, MCPPM and DCPPM 

were better resolved on the native teicoplanin CSPs with 20% MeOH/80% aqueous buffer 

(pH 4.1 by TEAA, 1%). However, the resolution for bromacil with a pyrimidinedione ring 

was higher on teicoplanin structurally related A-40926 CSP than on teicoplanin CSP (Rs 2.8 

vs. Rs 2.5) (Berthod et al., 2000b). Rac-diclofop methyl and rac-diclofop acid were baseline 

separated on a chiralcel OJ-H column using chiral HPLC coupled with fluorescence 

detection with a mobile phase of Hex/IPA/HAc (90:10:0.2, v/v) at a flow rate of 0.5 

mL/min under 20 °C (Lin et al., 2006) while in a report by Zhou et al. (Gu et al., 2010), they 

were completely resolved on CDMPC CSP with Hex/IPA(98:2) containing 0.1% TFA as 

mobile phase by HPLC-DAD. 

A group of 2-aryloxypropionic acids (TR-1 to 13) and their esters (TR-19 to 20) were used to 

evaluated four new brush-type CSPs (CSP I-IV) comprising N-3,5,6-trichloro-2,4-

dicyanophenyl-L-ǂ-amino acids by HPLC. The best separation of these herbicides was 

obtained with CSP I, and the -(–)-S enantiomer were regularly eluted first. The mechanism 

of chiral recognition implies a synergistic interaction of carboxylic acid analyte with the 

chiral selector and achiral free Ǆ-aminopropyl units on silica. (Vinkovic et al., 2001) In a 

study by Badjah-Hadj-Ahmed (Tazerouti et al., 2002), eleven 2-aryloxypropionic acids and 

esters herbicides were partially separated on the prepared phenylated ǃ-CD CSP when 

using heptane and either IPA or chloroform as organic mobile phase modifier. 
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Enantioseparation of 2,4-DP and MCPP was obtained completely using enantioselective 
HPLC on a chirobiotic T column with 5:95 MeOH and 1% TEAA as mobile phase 
(Schneiderheinze et al., 1999). 
Fenoxaprop-ethyl could obtain baseline separation on ADMPC CSP by reversed phase 

HPLC with MeOH/water or MeCN/water at a flow rate of 0.5 mL/min, while the 

enantiomers of quizalofop-ethyl, fluroxypyr-meptyl and 2,4-D-ethylhexyl got partial 

separation (Tian et al., 2010). 

A group of chlorophenoxypropionic acid herbicides 2,2-CPPA, 2,3-CPPA and 2,4-CPPA 

were separated in capillary LC, while with 0.1 mM teicoplanin in the mobile phase was 

sufficient for the baseline enantioresolution of 2,2-CPPA and 2,4-CPPA (Kafkova et al., 2005). 

Eight commercially available herbicides, dimethenamid-P, dichlorprop-P, fluazifop-P butyl, 
mecoprop-P, quizalofop-P ethyl, were completely resolved by HPLC combined with a 
photodiode-array (PDA) detector and a circular dichroism (CD) detector on a normal phase 
Chiralpak AD-H column (Saito et al., 2008). Optical purity measurement was developed. The 
enantiomeric excess (ee) of some herbicides investigated was approximately over 95%, while 
of quizalofop-P ethyl and fluazifop-P butyl was in the range 34.1-94.5%. 

3.1.3 Enantioseparation of imidazolinone herbicides by HPLC 

Imidazolinones are a class of chiral herbicides that are widely used. They inhibit branched-

chain amino acid biosynthesis in plants by targeting acetolactate synthase (ALS). Five 

imidazolinone herbicides imazapyr, imazapic, imazethapyr, imazamox and imazaquin and 

their methyl derivatives were separated using reversed phase HPLC on Chiralcel OD-R and 

normal phase HPLC on Chiralcel OJ (Lao et al., 2006a). Enantiomers of imazethapyr, 

imazaquin, and imazamox were separated on a Chiralcel OD-R column using 50 mM 

phosphate buffer-MeCN as mobile phase. Enantiomers of imazethapyr, imazaquin, and 

imazamox were separated on a Chiralcel OD-R column using 50 mM phosphate buffer-

MeCN as mobile phase. Enantiomers of imazapyr, imazapic, imazethapyr, imazamox, 

imazaquin and their five methyl derivatives were resolved on a Chiralcel OJ column using 

Hex (0.1% TFAA)-alcohol as mobile phase. The described normal phase method was 

successfully applied for chiral analysis of two imidazolinone herbicides (imazapyr and 

imazaquin) in spiked soil samples. In a further report (Lao et al., 2006b), temperature affects 

on enantioseparation of these five imidazolinone herbicides and conformation of CSP were 

conducted on Chiralcel OJ. The van't Hoff plots of retention factor (k’), distribution constant 

(K) and separation factor (ǂ) for imazapyr, imazapic, imazethapyr, and imazamox were 

linear within 15-50 °C. Nonlinear van't Hoff plots of ǂ were observed for imazaquin with 

mobile phase of Hex (0.1% TFA)-IPA at 70/30 or 60/40 (v/v). Chiralcel OJ column may 

yield satisfactory results at 15-50 °C but not at ≤ 15 °C. 

Recently, Lin et al. (Lin et al., 2007) also investigated the enantiomeric separation of 

imazethapyr, imazapyr, and imazaquin on Chiralpak AS, Chiralpak AD, Chiralcel OD, and 

Chiralcel OJ columns. Chiralcel OJ column showed the best chiral resolving capacity among 

the test columns. The optimal chromatographic conditions for complete separation of 

imidazolinone enantiomers were a mobile phase of Hex/EtOH/HAc (77/23/0.1, v/v/v), 

flow rate of 0.8 mL/min, and a column temperature in the range of 10–30 °C. It was showed 

that small amounts of enantiopure imidazolinones may be prepared by using the analytical 

chiral HPLC approach. 
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Enantiomers of imazethapyr were separated by HPLC on Chiralcel OJ with a 
Hex/EtOH/HAc solution (75/25/0.5 by volume) (Zhou et al., 2009, Zhou et al., 2010), and 
their absolute configurations were confirmed as S-(+)-IM and R-(–)-IM by the octant rule as 
shown in Fig. 3-1. 
 

 

Fig. 3-1 HPLC chromatogram for the enantiomeric separation of imazethapyr on Chiralcel 
OJ. (Zhou et al., 2009) 

3.1.4 Enantioseparation of organophosphorus herbicides by HPLC 

Five chiral O-aryl O-alkyl N-alkylphosphoramidothioates herbicides were nearly baseline 
separated on a pirkle-type column OA-4700 (Chirex(S)-LEU & (R)-NEA) by HPLC. The 
chromatographic elution order is S>R, and the S-enantiomer showed higher herbicidal 
activity than R-enantimer and/or racemates (Gao et al., 2000). 
In another report by our group (Li et al., 2008), enantioselective separation and biological 
toxicity of a series of 1-(substituted phenoxyacetoxy)alkylphosphonates organophosphorous 
compounds (OPs compounds 1-5) were investigated on Chiralpak AD, Chiralpak AS, 
Chiralcel OD, and Chiralcel OJ. All the analytes investigated obtained baseline resolution 
(Rs>1.5) on Chiralpak AD, which showed best chiral separation capacity. The acute aquatic 
toxicity of enantiomers and racemate to Daphnia magna (D. magna) were assessed. The in 
vivo assays showed that compound 3 was about 2-148.5 times more toxic than the other four 
analogues to D. magna. The racemates of compounds 3 and 5 showed intermediate toxicity 
compare to their enantiomers, while those of compounds 1, 2, and 4 showed synergistic or 
antagonistic effect. These results suggest that the biological toxicity of chiral OPs to 
nontarget organisms is enantioselective and therefore should be evaluated with their pure 
enantiomers. 

3.1.5 Enantioseparation of diphenyl ether herbicides by HPLC 

Ethoxyfen-ethyl and lactofen were separated using HPLC on polysaccharide CSPs by Zhou 
et al. (Wang et al., 2006, Tian et al., 2010, Hou et al., 2002, Diao et al., 2009). Enantioseparation 
of a novel herbicide ethoxyfen-ethyl was conducted on self-prepared CDMPC, and with the 
content of IPA in hexane in mobile phase decreased to 1%, the resolution factors increased to 
3.95 (Hou et al., 2002). The two enantiomers of the herbicide lactofen in soils were baseline 
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separated and semiprepared on CDMPC using a normal phase HPLC (n-Hex/IPA 95/5). 
However, the baselined separation was not obtained on a self-prepared tris-(S)-1-
phenylethylcarbamate CSP (Wang et al., 2006). And lactofen also could be completely 
resolved (Rs 2.07) by a reserved phase HPLC using 80/20 MeOH/H2O as mobile phase on 
ADMPC (Tian et al., 2010). 

3.2 Separation of chiral herbicides by GC 

GC is more suitable in analyzing because of its higher sensitivity, higher precision and less 
injection volume than HPLC system. Besides, contaminants and impurities usually can be 
separated from the analytes facilely by GC. 
The most common chiral selectors used for GC are a group of CD and CD-derivatives. 
Enantiomers and diastereomers of some acetamide pesticides, alachlor, acetochlor, 
metolachlor, and dimethenamid, were separated using achiral and chiral high-resolution 
GC/MS (HRGC/MS) and chiral HPLC. Whereas alachlor is achiral, all other compounds are 
axial- and/or C-chiral and consist of two or four stereoisomers (enantiomers and 
diastereomers). Chiral HRGC using a ǃ-CD derivative showed varied resolution of 
diastereomers and/or enantiomers; achiral HRGC showed no resolution of diastereomers. 
Resolution of C-chiral enantiomers was easier than resolution of axial-chiral enantiomers 
(atropisomers) (Buser et al., 1995). And all four metolachlor isomers were identified by 
HRGC (Muller et al., 2001). 
Leachate samples from a waste disposal site in Switzerland and groundwater samples 

downstream of the landfill were analyzed for residues of MCPP, DCPP, and 2,4-D esterified 

with 2,3,4,5,6-Pentafluorobenzyl (PFB) by means of enantiomer-specific GC-MS (Zipper et 

al., 1999, Zipper et al., 1998). The PFB esters of MCPP and DCPP were nearly baseline 

separated (Rs=0.9) on a 15 m glass column (0.25 mm i.d.) with an OV1701 polysiloxane 

phase containing 35% heptakis(2,3-dimethyl-6-tert-butyldimethylsilyl)-ǃ-CD (TBDM-ǃ-CD) 

as the chiral selector. 

A capillary column BGB-172 (20% tert-butyldimethylsilyl-ǃ-CD dissolved in 15% diphenyl-

polysiloxane and 85% dimethylpolysiloxane, GBG Analytik, Adliswil, Switzerland) was 

used for chiral GC separation of some herbicides by Liu et al. (Wen et al., 2004, Ma et al., 

2006, Ma et al., 2009). DCPP methylated by diazomethane in water was separated and 

determined with a recovery about 90% (Wen et al., 2004). They also separated rac-

metolachlor and S-metolachlor in soil. However, the baseline separation was not achieved 

because of the presence of two chiral elements (asymmetrically substituted carbon and 

chiral axis nitrogen) (Ma et al., 2006). Furthermore, the enantiomeric separation of DCPPM 

was investigated by GC on BGB-172 and HPLC on Chiralcel OJ-H by this group. Baseline 

separation by both GC and HPLC was achieved (Ma et al., 2009). 

3.3 Separation of chiral herbicides by SFC 

As complementary analytical techniques for HPLC, packed-column SFC with sub- and/or 
supercritical fluid contains kinds of organic polar solvents is becoming a very popular 
chromatographic technique, for both analysis and small-scale preparation of optically pure 
chemicals and enantiomers identification, especially as CSPs are becoming easily available 
and widely applied. Nearly all the conventional HPLC CSPs could be applied in SFC mode 
except the chiral crown ester CSPs and the protein-based CSPs. Sub- and supercritical 
carbon dioxide (CO2) remains the most commonly used fluid for SFC. Mechanistically, SFC 
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plays a unique role acting as a bridge between GC and LC. Owing to the good diffusibility 
and low viscosity of supercritical fluids, column equilibration is accomplished more rapidly 
and enables faster flow rates in SFC than in HPLC. Besides, the higher diffusivity between 
mobile phase and CSPs yields greater efficiency (smaller plate heights) in resolving a 
sample. 
Generally, SFC shows notable advantages and superior developmental potential on 
enantiomer separation. The advantages contain environmental friendly with low organic 
solvent consumption of mobile phase, simple method development, high efficiency on 
enantioseparation, low column pressure drop besides ease of coupling with chiral columns 
or MS. However, the high investment of SFC apparatus restricts its widespread application 
in enantioseparation. To date, the research about chiral herbicides separation by SFC is very 
limited. One herbicide example that can be resolved by SFC is the diasteriomeric compound 
metolachlor. The ability to quickly detect and identify metolachlor and its isomeric ratios in 
low concentration samples is possible, via SFC (Cole et al., 2007). 

3.4 Separation of chiral herbicides by CE 

CE is shown to be a simple, efficient, and inexpensive way with unique versatility to chiral 
separation because it can be applied to a wide variety of analytes flexibly with various 
modes. Hitherto, six separation modes of CE has been successfully used in chiral separation, 
including capillary zone electrophoresis (CZE), capillary electrochromatography (CEC), 
micellar electrokinetic chromatography (MECC or MEKC), capillary gel electrophoresis 
(CGE), capillary isoelectric focusing (CIEF), capillary isotachophoresis (CITP) (Li et al., 2010), 
where CZE, CEC and MEKC are the most successful CE modes. For the enantioseparation of 
chiral herbicides by CE, CD and its derivatives are often added to the electrophoresis buffer 
as the chiral selectors. 
Some chlorophenoxy acid herbicides and their enantiomers, 2,4-dichlorophenoxy-acetic acid 
(2,4-D), 2-(2,4-dichlorophenoxy)propionic acid (2,4-DP), 4-(2,4-dichlorophenoxy)butyric acid 
(2,4-DB), 4-chloro-2-methylphenoxyacetic acid (MCPA), were successfully swparated within 
7 min by adding 4 mM ǂ-CD and 1 mM ǃ-CD in the buffer in CE (Hsieh et al., 1996). 
Analyzing the herbicides by CE posed the advantages of a high resolution, high separation 
efficiency and good reproducibility. 
A novel, selective precolumn derivatization reaction was introduced and evaluated in the 
fluorescence labeling of phenoxy acid herbicides including 2,4-D, (2,4,5-trichlorophenoxy)-
acetic acid (2,4,5-T), 2-phenoxypropionic acid (2-PPA), MCPP, 2-(2-chlorophenoxy)propionic 
acid (2,2-CPPA), 2-(3-chlorophenoxy)propionic acid (2,3-CPPA), 2-(4-
chlorophenoxy)propionic acid (2,4-CPPA), DCPP and silvex with 7-aminonaphthalene-1,3-
disulfonic acid (ANDSA) by CE (Mechref et al., 1996a). The ANDSA-phenoxy acid herbicide 
enantiomers exhibited higher chiral resolution than their underivatized counterparts in the 
presence of CD in the running electrolyte. The best enantioselectivity was achieved when 
2,3,6-tri-O-methyl-ǃ-CD (TM-ǃ-CD) was used as the chiral selector. Mixed CDs based on ǃ-
CD and TM-ǃ-CD proved to be the most effective as far as the enantiomeric resolution of the 
chiral analytes is concerned. 
A novel chiral nonionic surfactant, namely octyl-b-D-maltopyranoside (OM), was evaluated 
in chiral CE of fluorescently labeled phenoxy acid herbicides (Mechref et al., 1997a). The 
labeling of the analytes with 7-aminonaphthalene-1,3-disulfonic acid (ANDSA) permitted a 
concentration detection limit of 5×10-10 M using laser-induced fluorescence detection. The 
tagging of the phenoxy acid herbicides with ANDSA increased the hydrophobicity of the 
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analytes, thus favoring an enhanced solubilization of the derivatized herbicides in the OM 
micellar phase. The net results of this effect were a much shorter analysis time and an 
improved enantiomeric resolution of the derivatives when compared to underivatized 
phenoxy acid herbicides. Baseline enantiomeric resolution of phenoxy acid herbicides 
including silvex, DCPP, MCPP, 2,4-CPPA, 2,3-CPPA, 2,2-CPPA and 2-PPA was attained 
without 30 min by CE using 200 mM sodium phosphate buffer, pH 6.5, containing 60 mM n-
octyl-ǃ-D-maltopyranoside (OM) (Mechref et al., 1996b). Silvex, DCPP, MCPP, 2,4-CPPA, 
2,3-CPPA, 2,2-CPPA and 2-PPA were baseline separated except silvex by performing the 
separation at 10 °C and using 250 mM sodium phosphate buffer, pH 6.5, containing 50 mM 
n-nonyl-ǃ-glucopyranoside (NG) or 70 mM n-octyl-ǃ-glucopyranoside (OG) in CE. (Mechref 
et al., 1997b) 
Vancomycin was used as chiral selector for the enantiomeric separation of several free acid 

herbicides including MCPP, fenoprop, DCPP, flamprop, haloxyfop, fluazifop, diclofop and 

fenoxaprop in CE (Desiderio et al., 1997a). The increase of vancomycin concentration caused 

a general increase of migration time, resolution and selectivity. Baseline resolution was 

achieved when a 6 mM vancomycin was used. The CE separation of some herbicidal 

enantiomers was conducted applying 1-allylterguride as chiral selector (Ingelse et al., 1997). 

Baseline separation was shown for the enantiomers of fluazifop, halossifop and fenoxaprop, 

whereas the optical isomers of flamprop could be partially resolved using 100 mM ǃ-

alanine-acetate, 50 mM TEA in 100% MeOH supported with 100 mM allyl-TER. Separation 

times are short compared to similar analyses, applying HPLC and a terguride CSP. 

The enantiomers of a number of 2-aryloxypropionic acids and their ester and amide 

counterparts are readily separated on the commercially available ǃ-GEM 1 and Whelk-O 1 

CSPs. Of the analytes studied, the N,N-diethylamides typically show the greatest 

enantioselectivity. The enantiomers of several commercial herbicides from this family, 

including diclofop ethyl, devrinol, and MCPP were separated using the Whelk-O 1 CSP. ǃ-

Gem1 is a π-acceptor chiral stationary phase and is prepared by covalently bonding N-3,5-

dinitrobenzoyl-3-amino-3-phenyl-2-(1,1-dimethylethyl)-propanoate, to 5 µm silica through 

an ester linkage. (Pirkle et al., 1997) 

Baseline enantiomeric separation of a mixture of six pairs of phenoxypropionic acid 

herbicides (PPAHs) including 2,3-CPPA, 2,2-CPPA, 2,4-CPPA, 2(2,4-DCPPA), 2(2,4,5-

TCPPA) and 2-PPA was achieved in less than 30 min by CE with heptakis(6-

methoxyethylamine-6-deoxy)-ǃ-CD [ǃ-CD-OMe (VII)] as chiral selector. The two most 

substituted herbicides [2(2,4-DCPPA) and 2(2,4,5-TCPPA)] were best resolved. One of the 

faster migrating antipodes of 2(2,4,5-TCPPA) co-eluted with one slower antipode of 2(2,4-

DCPPA) while both baseline separation was obtained run separately (Fig. 3-2) (Haynes et al., 

1998). 

DCPP and imazaquin was analyzed by CE as an anion (Jarman et al., 2005). DCPP was 

separated using 25 mM sodium tetraborate (Na-TB), pH 8.5, with 25 mM trimethyl-ǃ-CD as 

the chiral selector, while imazaquin was analyzed with 15 mM dimethyl-ǃ-CD in 50 mM 

acetate, pH 4.5. Furthermore, sodium hydrogen phosphate (50 mM) at pH 10.1 containing 30 

mM hydroxypropyl-ǃ-CD (HP-ǃ-CD) was found to be the suitable BGE to separate 

imazaquin enantiomers in field soils (Yi et al., 2007). In another report (Han et al., 2008), the 

two imazethapyr enantiomers were separated using 6% hydroxypropyl-ǃ-CD as chiral 

selector in buffer at pH 11.0. 
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Fig. 3-2.  Enantiomeric separation of a standard mixture of 12 (±) PPAH enantiomers. The 
BGE contains 50 mM NaH2PO4 adjusted to pH 6; 3 mM ǃ-CD-OMe (VII); applied voltage 
was -15 kV, -25 μA; pressure injection 85 kPa·s; sample concentration 0.1 mg/mL in 
methanol–water (1:1, v/v). 1,1’=2-PPA, 2,2’=2,4-CPPA, 3,3’=2(2,4-DCPPA), 4,4’=2,2-CPPA, 
5,5’=2,3-CPPA, 6,6’=2(2,4,5-TCPPA). (Haynes et al., 1998) 

3.4.1 Separation of chiral herbicides by CZE 

The separation mechanism for CZE is based on the differences about the charge/mass 
ratios. Uncoated fused-silica capillary is filled with some type of electrolyte solution 
(running buffer or BGE). An electric field is applied to the capillary, and then cations go to 
the cathode, whereas anions migrate to the anode (Pico et al., 2003). 
CD-CZE was applied successfully to the enantiomeric and isomeric separation of chiral 
herbicides. 
Chiral separations of phenoxypropionic acid herbicides were achieved by adding a suitable 
CD-type chiral selector to the electrophoresis buffer (Nielen, 1993, Otsuka et al., 1998, 
Zerbinati et al., 2000). DCPP, fenoprop and MCPP, were baseline separated by the coupling 
of CE-MS with 20 mM TM-ǃ-CD in 50 mM ammonium acetate (pH 4.6) (Otsukaet al., 1998). 
Separation of the four enantiomers of MCPP and DCPP was conducted on an ethylcarbonate 
derivative of ǃ-CD with three substituents per molecule, hydroxypropyl-ǃ-CD and native ǂ-
CD as chiral selectors in CZE. Complete resolution of the four optical isomers was obtained 
with10 mM ethylcarbonate-ǃ-CD in the running buffer of 45 mM NaH2PO4, pH 5.6 
(Zerbinati et al., 2000). 
The separation and detection of 2,4-dichlorophenoxyacetic acid and three optically active 
phenoxy acid herbicides (DCPP, MCPP and fenoprop) was investigated in CZE (Garrison et 
al., 1994). A 50 mM acetate buffer at pH 4.5 gave the best separation. Baseline separation of 
the two enantiomers of each three optically active herbicides, separately and in mixtures of 
the three, was accomplished by the addition of 25 mM tri-O-methyl-ǃ-CD to the acetate 
separation buffer. Di-O-methyl-ǃ-CD or ǂ-CD separated enantiomers of DCPP and MCPP, 
but not those of fenoprop; ǃ-CD provided very little separation and Ǆ-CD gave no 
separation. 
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Several chiral herbicides, bromacil, chlorbufam, ethofumesate, imazapyr, flamprop-

isopropyl, flamprop-free acid, fluazifop-free acid, haloxyfop-free acid, and napropamide, 

were separated in CZE (Desiderio et al., 1997b). Different ǃ-CD derivatives were 

investigated for chiral separations and among them the negatively charged sulfobutyl ether 

ǃ-CD (SBE-ǃ-CD) proved to be effective for the stereoselective resolutions of the 

investigated herbicides. Addition of SBE-ǃ-CD (5-50 mg/mL) to the buffer at pH 9 resulted 

in a general increase of migration times as well as resolution. A CD concentration as low as 5 

mg/mL was effective to completely resolve napropamide and ethofumesate enantiomers. 

The enantiomeric and isomeric separation of imazaquin, diclofop and imazamethabenz was 

investigated in CD-CZE (DM-ǃ-CD, TM-ǃ-CD and HP-Ǆ-CD) (Penmetsa et al., 1997). The 

enantiomers of imazaquin and diclofop, and the isomers of imazamethabenz could be 

resolved with Rs≥1.5 (Fig. 3-3). By employing mixed CDs in the running buffer, the three 

herbicides were simultaneously separated in a single run (Fig. 3-4). 

The separation of DCPP was reported in CZE with ǂ-, ǃ- and Ǆ-CDs as well as their chemical 

derivatives C6-capped-ǃ-CD, ethylcarbonate-ǃ-CD, ethylcarbonate-Ǆ-CD, methyl-ǃ-CD and 

hydroxypropyl-ǃ-CD as chiral selectors. Several of the investigated CDs allowed DCPP 

enantiomer resolution. In particular, a newly synthesised ethylcarbonate derivative of ǃ-CD 

showed the best enantiomer resolution properties among the tested compounds. (Zerbinati 

et al., 1998) 

Biological degradation of acetanilide herbicides in soil results in the formation of the 

ethanesulfonic acid (ESA) and oxanilic acid (OXA) derivatives. These molecules exist in two 

(alachlor), four (acetochlor), and eight (metolachlor) stereoisomeric forms. Using Ǆ-CD as 

chiral selector in CZE, complete separation of all four isomers of enantiomerically enriched 

(5S)-metolachlor OXA was achieved. The enantiomers of acetochlor ESA, acetochlor OXA, 

and racemic metolachlor OXA were partially separated. (Aga et al., 1999) 

CZE was used for the chiral and mutual separation of four phenoxy acid herbicides, 

fenoprop, dicloprop, MCPP and 2,4-DB, using highly sulphated CD (HSCD) in the buffer. 

The CE runs were performed with reverse polarity (anode in the outlet vial) using the acidic 

ammonium formate buffer (20 mmol, pH 3.0). The chiral separation of dicloprop and MCPP 

were achieved with ǂ-HSCD but it was not able to resolve fenoprop. With ǃ-HSCD the 

required base line separation was achieved. The limit of detection (S/N= 3) achieved in 

present case is 0.15 ppm for fenoprop, 0.14 ppm for dicloprop and MCPP and 0.11 ppm for 

2,4-DB. (Malik et al., 2009) 

Soil samples taken from a field plot at increasing time intervals after application of Foxtril, a 

commercial herbicide formulation, were solvent-extracted and analyzed for total DCPP by 

CZE, using an acetate buffer at pH 4.7. TM-ǃ-CD, was then added to the buffer as chiral 

reagent to effect separation of the (+)- and (–)-enantiomers of DCPP. Baseline resolution 

allowed calculation of relative concentrations (enantiomer ratios) of the two isomers.  

The hydrolysis product [methyl 2-nitro-5-(2,4-dichlorophenoxy) benzoic acid] of bifenox 

methyl ester, another herbicide component of Foxtril, was detected in the soil samples taken 

at 17 and 31 d. The acetate separation buffer was 50 mM at pH 4.65 and was composed as 

follows: 0.05 M glacial acetic acid: 0.05 M sodium acetate, 1:1, v:v. The cyclodextrin-

containing buffer for enantiomeric separation was prepared by dissolving TM-ǃ-CD in the 

acetate separation buffer to a final concentration of 25 mM cyclodextrin. (Garrison et al., 

1996) 
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Fig. 3-3. Separation of (A) imazaquin enantiomers, (B) diclofop enantiomers and (C) 
imazamethabenz isomers (9.49 min, para and 9.65 min, meta isomers). Analysis conditions: 
57 cm (50 cm to detector) × 50 μm I.D. capillary column; pressure injection (2 s=2.4 nl); 25 kV 
(35 μA); 214 nm UV absorbance. Buffer: (A) 50 mM sodium acetate + 10 mM DM-ǃ-CD 
buffer, pH 4.6, (B) 50 mM sodium acetate + 10 mM TM-ǃ-CD buffer, pH 3.6 and (C) 50 mM 
sodium acetate + 10 mM TM-ǃ-CD buffer, pH 4.6. 
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Fig. 3-4. Simultaneous separation of herbicides using mixed cyclodextrins. (1) 
Imazamethabenz isomers, (2) diclofop enantiomers and (3) imazaquin enantiomers. 
Analysis conditions: 57 cm (50 cm to detector) × 50 μm I.D. capillary column; pressure 
injection (2 s=2.4 nl); 50 mM sodium acetate + 10 mM DM-ǃ-CD + 10 mM TM-ǃ-CD buffer, 
pH 3.6; 25 kV (35 μA); 214 nm UV absorbance. (Penmetsa et al., 1997) 

3.4.2 Separation of chiral herbicides by CEC 

CEC utilises a stationary phase rather than a micellar pseudo-stationary one. CEC is a 
hybrid technique that couples the selectivity of LC and the separation efficiency of CE. Both 
charged and uncharged compounds can be separated effectively using CEC. 
A series of herbicide molecules (haloxyfop, fluazifop, fenoxaprop, and flamprop free acids, 
diclofop, MCPP, DCPP, fenoprop, 2-PPA) were separated using a CSP derived from an L-
RNA aptamer by CEC after binding to biotin and grafting upon streptavidin-modified 
porous glass beads. (Andre et al., 2006) 
A porous monolithic chiral column was prepared by in situ copolymerization of glycidyl 
methacrylate, methyl methacrylate and ethylene glycol dimethacrylate in the presence of 
formamide and 1-propanol as the porogen solvents to analyze the DCPP enantiomers. 
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Subsequently, the epoxide groups at the surface of the monolith were reacted with (+)-1-(4-
aminobutyl)-(5R,8S,10R)-terguride as the chiral selector. Optimum conditions for the 
herbicide resolution by CEC were found using mobile phases consisting of HAc/TEA 
mixtures in MeCN:MeOH (9:1 v/v). Under these conditions fully separation of DCPP 
enantiomers in the presence of clofibric acid (internal standard) was achieved in about 5 
min. (Messina et al., 2007) 
A silica based monolithic capillary column derivatized with O-9-(tert-butylcarbamoyl) 
quinidine was prepared for CEC enantiomer separation of chiral 2-aryloxypropionic acid 
herbicides including inter alia DCPP, MCPP and fenoprop. Reasonable baseline separations 
of enantiomers were accomplished for all analytes after optimization of relevant mobile 
phase parameters in the anion-exchange CEC system, and the separations were comparable 
to such obtained on an optimized high density quinidine-carbamate modified organic 
polymer monolith column. (Buchinger et al., 2009) 

3.4.3 Separation of chiral herbicides by MEKC 

MEKC separation mechanism is based on the differences between interactions of analytes 

with micelles present in the separation buffer, which can easily separate both charged and 

neutral solutes with either hydrophobic or hydrophilic properties. 

Silvex was separated partially with 50.0 mM N,N-bis-(3-D-

gluconamidopropyl)deoxycholamide as chiral selector, 400.0 mM borate treated fused-silica 

capillaries at pH 10.0, 15 °C, voltage 20.0 kv in MEKC. (Mechref et al., 1996c) 

Enantiomeric ratios of methyl esters of phenoxy acids herbicides and an acetamide herbicide 

metolachlor were being measured. Each of six CD, ǂ-CD, ǃ-CD, Ǆ-CD, hydroxypropyl-ǃ-CD, 

dimethyl-ǃ-CD and trimethyl-ǃ-CD, were then added to the borate-SDS buffer, with and 

without the organic modifier, to test for separation of the non-chiral compounds and the 

enantiomers of the chiral racemates by CD-MEKC. Ǆ-CD with MeOH modifier allowed 

baseline separation of the three phenoxy acid methyl esters and of fenoprop methyl ester, 

but none of the CDs separated the enantiomers of MCPP and DCPPM. Finally, attempts 

were made to separate the four enantiomers of the herbicide metolachlor; three of the 

enantiomers were separated by Ǆ-CD with methanol. (Schmitt et al., 1997) 

The enantiomeric resolution of chiral phenoxy acid herbicides was performed by MEKC 

using several neutral and charged CD as chiral pseudophase (CD-MEKC). Among the CDs 

tested, HP-ǃ-CD was found to be the most appropriate for the enantioseparation of phenoxy 

acids. The use of a 50 mM electrolyte solution in ammonium formate at pH 5 containing 15 

mM HP-ǃ-CD and a temperature of 40 °C enabled the enantiomeric resolution of four of the 

six phenoxy acids investigated (2-PPA, 2,3-PPA, 2,4-CPPA, and 2-(2,4-DCPPA)) obtaining 

migration times ranging from 9 to 15 min. Mixtures of the two phenoxy acids not 

enantiomerically resolved (2-(4-chlorophenoxy)-2-methylpropionic acid and 2-(2,4,5-

trichlorophenoxy)propionic acid) and up to three of the phenoxy acids enantiomerically 

resolved were separated in about 15 min. (Martin-Biosca et al., 2001) 

CD-MEKC was applied to the enantioseparation of thiobencarb sulfoxide, which is 

produced by S-oxygenation of thiobencarb, using Ǆ-CD together with sodium dodecyl 

sulfate. The optimum running conditions were found to be 20 mM phosphate-5 mM borate 

buffer (pH 8.5) containing 60 mM hydroxypropyl-Ǆ-CD and 100 mM sodium dodecyl sulfate 

with an effective voltage of +20 kV at 20 °C using direct detection at 220 nm with resolution 

(Rs) approximately 1.7. (Kodama et al., 2002) 
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3.5 Separation of chiral herbicides by other chromatographic methods 

A preparative enantiomer separation method of DCPP was developed utilizing a 
purposefully designed, highly enantioselective chiral stationary phase additive (CSPA) 
cinchona-derived chiral seleector derived from bis-1,4-(dihydroquinidinyl)phthalazine in 
centrifugal partition chromatography (CPC). A solvent system consisting of 10 mM CSPA in 
methyl tert-butyl ether and 100 mM sodium phosphate buffer (pH 8.0) was identified as a 
suitable stationary/mobile-phase combination. Complete enantiomer separations of up to 
366 mg of racemic DCPP could be achieved, corresponding to a sample load being 
equivalent to the molar amount of CSPA employed. Comparison of the preparative 
performance characteristics of the CPC protocol with that of a HPLC separation using a 
silica-supported bis-1,4-(dihydroquinidinyl)phthalazine CSP revealed comparable loading 
capacities for both techniques but a significantly lower solvent consumption for CPC. Given 
that further progress in instrumental design and engineering of dedicated, highly 
enantioselective CSPAs can be achieved, CPC may offer a viable alternative to CSP-based 
HPLC for preparative-scale enantiomer separation. (Gavioli et al., 2004) 

4. Enantioselective herbicidal activity and toxicity of herbicide enantiomers 

For the amide herbicides, the product enantiomerically enriched with the herbicidally active 
1’S-metolachlor (aSS, aRS) has replaced the racimate worldwide after 2004 (Muller et al., 
2001). S-metolachlor was more toxic to C pyrenoidosa than rac-metolachlor, and the catalase 
activity of C pyrenoidosa treated by S-metolachlor was higher than that exposed to rac-
metolachlor (Liu et al., 2009). And enantioselective degradation and/or interconversion for 
metolachlor was determined, S-metolachlor degraded faster in soil than rac-metolachlor (Ma 
et al., 2006, Kurt-Karakus et al., 2010). After 42-day incubation, 73.4% of rac-metolachlor and 
90.0% of S-metolachlor were degraded. However, due to the absence of biological processes 
the degradation process in sterilized soil showed no enantioselectivity. The results indicated 
that enantioselective degradations could greatly affect the environmental fate of metolachlor 
and should be considered when the environmental behavior of these compounds was 
assessed. Napropamide is a highly active preemergence herbicide whose R-enantiomer has 
high phytocidal activity to unifacial-leaf and broad-leaf weeds. It was found that R-
napropamide was about eight fold more active than S-napropamide, and two more active 
than rac-napropamide (Chan et al., 1975). The green alga Scenedesmus acutus growth was 
strongly inhibited and fatty acid was desaturated by S-alachlor and S-dimethenamid while 
the R isomer had no effect (Couderchet et al., 1997). Furthermore, the comparable biological 
activities of dimethenamid and alachlor indicate that this target is common to both N-
phenyl and N-thienyl chloroacetamide herbicides. 
Enantioselective herbicidal activity and toxicity of the phenoxy herbicides has been reported 
profoundly and roundly. The in vivo inhibition of R-(+)- and S-(–)-diclofop-methyl affected 
on root growth was hardly enantioselective (Shimabukuro et al., 1995), while in a report by 
Liu et al. (Ye et al., 2009), the S-diclofop acid was more toxic to leaves and the R-diclofop acid 
was more toxic to roots of rice Xiushui 63 seedlings. Furthermore, absorption and 
translocation to the leaf axil of the two-leaf stage plants of diclofop-methyl enantiomers 
were similar in both susceptible and resistant biotypes, while the rate of metabolism was 
increased 1.5-fold in this resistant biotype compared to the susceptible (Maneechote et al., 
1997). More, the herbicidally inactive S-(–)-enantiorners of both diclofop-methyl and 
diclofop were similar to or higher than the corresponding R-(+)-forms in toxicity to algae, 
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depending on specific species. Although no enantiomeric conversion occurred for diclofop-
methyl and diclofop, the difference in the enantioselective degradation of these herbicides 
observed in algae cultures suggested that their application forms were an important factor 
determining their enantioselective environmental behavior. It was concluded that the 
enantioselective degradation of diclofop in algae cultures was governed primarily by the 
facilitated uptake by algae, whereas the enantioselective toxicity was primarily governed by 
the passive uptake (Cai et al., 2008). And it was proved that the S-diclofop-methyl dissipated 
faster than R-diclofop-methyl while the generation and degradation rates of S-diclofop were 
higher than R-enantiomer in the plant by Zhou et al. (Gu et al., 2010). However, in a former 
report of Zhou et al. (Diao et al., 2010a), it was found that the degradation of diclofop-methyl 
in two soils was not enantioselective while the degradation of diclofop was enantioselective 
under both aerobic and anaerobic conditions, and the S-(–)-diclofop was preferentially 
degraded, resulting in relative enrichment of the R-(+)-form. To haloxyfop ethoxyethyl ester, 
the S-form was degraded faster than R-form (the enantiomeric fraction of R-form was about 
72%) (Desiderio et al., 1997a). 
Phenoxypropionic acid (PPA) derivatives are widely used in agriculture as selective 
herbicides. R-enantiomer of PPAs is known for its herbicidal activity while S-isomer is 
inactive as herbicidal agent (Buser et al., 1997a). A large number of papers have discussed 
the enantioselectivity of DCPP and MCPP (Zipper et al., 1999, Rugge et al., 2002, 
Schneiderheinze et al., 1999, Zipper et al., 1998, Ma et al., 2009, Jarman et al., 2005, Garrison et 
al., 1996, Messina et al., 2007, Kurt-Karakus et al., 2010, Buser et al., 1997b, Muller et al., 1997, 
Harrison et al., 2003, Williams et al., 2003, Wen et al., 2009, Wen et al., 2010), thereinto 
Bidleman et al. (Kurt-Karakus et al., 2010) reviewed the concentrations and stereoisomer 
ratios of DCPP, MCPP and metolachlor. Mostly, the S-enantiomer of these herbicides 
degraded faster than the R-enantiomer (Zipper et al., 1999, Zipper et al., 1998, Garrison et al., 
1996, Messina et al., 2007, Buser et al., 1997b, Muller et al., 1997). Enantioselective microbial 
degradation increased the enantiomeric ratio of R- to S-MCPP during groundwater passage 
of the landfill leachate (Zipper et al., 1998). The S-enantiomers of MCPP, DCPP and 2,4-D 
were preferentially degraded under aerobic conditions (Zipper et al., 1999). The S-(–)-DCPP 
degraded significantly faster (t1/2) = 4.4 d) than the R-(+)-isomer (t1/2 = 8.7 d) in soil 
(Garrison et al., 1996). No preferential degradation of the R- and S-enantiomers of MCPP and 
of DCPP took place in an aerobic field-injection experiment (Rugge et al., 2002, Jarman et al., 
2005). However, in the nitrate-reducing microcosm S-MCPP did not degrade but R-MCPP 
degraded with zero order kinetics at 0.65 mg/(L·d) to produce a stoichiometric equivalent 
amount of 4-chloro-2-methylphenol while no biodegradation of MCPP was observed in the 
methanogenic, sulphate-reducing or iron-reducing microcosms. And in aerobic conditions 
S- and R-MCPP degraded with zero order kinetics at rates of 1.90 and 1.32 mg/(L·d), 
respectively (Harrison et al., 2003, Williams et al., 2003). Chitosan also changed the 
enantioselective bioavailability of DCPP (Wen et al., 2010). The dissipation of S-enantiomer 
in Chlorella pyrenoidosa culture media without chitosan was faster than that of the 
herbicidally active R-enantiomer, whereas it was inversed to R-enantiomer being faster than 
S-enantiomer when chitosan was added into the media. In the absence of chitosan, the 
toxicity of R-enantiomer to Chlorella pyrenoidosa was more potent than that of the S-
enantiomer. On the contrary, in the presence of chitosan, R-enantiomer was less toxic than S-
enantiomer. R-DCPP interacted with penicillium expansum alkaline lipase the strongest, 
followed by Rac-DCPP, while S-DCPP had the weakest interaction (Wen et al., 2009). R-
DCPPM was preferentially degraded over the S-DCPPM in different pH solutions (Ma et al., 
2009). 

www.intechopen.com



 Herbicides, Theory and Applications 

 

300 

Racemic mixtures of 2,4-DP and MCPP were applied to three species of turf grass, four 
species of broadleaf weeds, and soil. Both herbicides were degraded more quickly and 
completely by plants than by soil microbes. Preferential degradation of the S-(–)-enantiomer 
of each herbicide was observed in most species of broadleaf weeds and soil, while the 
degradation in all species of grass occurred without enantioselectivity. The biodegradation 
in all systems appeared to follow pseudo first-order kinetics will the fastest degradation 
occurring in broadleaf weeds, followed by the grasses. The slowest degradation was 
observed in soil. (Schneiderheinze et al., 1999) 
Enantioselective herbicidal activity and degradation of imidazolinone herbicides has been 
reported recently. Imazaquin exhibited nonselective enantiomer loss over its 3 months of 
incubation time, which could have been due to abiotic or nonselective microbial reactions 
(Jarman et al., 2005). However, in another report (Yi et al., 2007), the degradation rates of the 
two imazaquin enantiomers were slightly different, and the pH of the soil, combined with 
the moisture content in the soil, had a strong influence on the rate of degradation. And the 
first enantiomer imazethapyr-I, eluted by CE using 6% hydroxypropyl-ǃ-CD as chiral 
selector in buffer at pH 11.0, degraded at a higher rate when compared with imazethapyr-II 
(Han et al., 2008). The R-(+)-enantiomer of all three herbicides, imazapyr, imazethapyr and 
imazaquin, which has greater herbicidal activity (up to eight times), was found to degrade 
faster than the less active S-(–)-enantiomer (Ramezani et al., 2010). Generally, the R former of 
imidazolinones was more active than S former. Imazethapyr inhibits elongation of primary 
roots and shoots, and reduces the number of adventitious roots and the density of root hairs. 
The maximal root relative inhibition rate reached 80.4%, 67.0%, and 73.5% for R-(–)-
imazethapyr, S-(+)-imazethapyr and (+/–)-imazethapyr at the concentration of 0.5 mg/L, 
respectively, and the maximal shoot relative inhibition rate reached 77.7%, 26.9%, and 
61.7%, respectively (Qian et al., 2009). The inhibition abilities of (+/–)-imazethapyr to the 
root growth of maize seedlings was between S-(+)- and R-(–)-imazethapyr (Zhou et al., 
2009). Moreover, imazethapyr enantiomers enantioselectively suppressed the in vitro and in 
vivo acetolactate synthase (ALS) activity of maize leaves (Zhou et al., 2010). The in vivo ALS 
activity study showed only a 2-fold difference between R-(–)-imazethapyr and S-(+)-
imazethapyr, while the in vitro study showed that the difference in inhibition between the 
enantiomers fell sharply as concentration increased. At the lowest concentration of 40 μg/L, 
R-(–)-imazethapyr appeared 25 times more active than S-(+)-imazethapyr, but only 7 times 
at 200 μg/L. At the highest concentration of 25 mg/L, in vitro ALS activity was almost 
completely inhibited by S-(+)-, R-(–)- and (+/–)-imazethapyr, there was only 1.1 times 
differences between S-(+)- and R-(–)-imazethapyr. 
Thiobencarb was treated with a rat liver microsomal fraction containing cofactors (known as 
S9mix) (Kodama et al., 2002). The ratio between (+)- and (–)-thiobencarb sulfoxide was 
found to be 15:85. It was also found that the ratio between (+) and (–)-thiobencarb sulfoxide 
produced in soil spiked with thiobencarb was 3:7. These results indicated marked 
enantioselectivities for these metabolisms. The activities of thiobencarb, (+)- and (–)-
thiobencarb sulfoxides on 5ǂ-dihydrotestosterone- and 17 ǃ-estradiol-induced transcriptions 
were also investigated. Thiobencarb and (+)-thiobencarb sulfoxide did not show any 
activities, (–)-thiobencarb sulfoxide showed significant anti-estrogenic and anti-androgenic 
activities, suggesting that thiobencarb sulfoxide can act as both an enantioselective anti-
estrogen and an enantioselective anti-androgen. 
Racemic and the enantiopure S-(+)- and R-(–)-lactofen were incubated under aerobic and 
anaerobic conditions. The data from sterilized controls indicated that the dissipation of 
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lactofen was biological. The dissipation was shown to be enantioselective with S-(+)-
enantiomer being degraded faster than the R-(–)-enantiomer, resulting in residues enriched 
with R-(–)-lactofen when the racemic compound was incubated. Lactofen was 
configurationally stable in soil, showing no interconversion of S-(+)- to R-(–)-enantiomer 
and vice versa (Diao et al., 2009). The enantioselective degradation of lactofen enantiomers 
was proved in a report by Zhou et al. (Diao et al., 2010b). In sediments, S-(+)-lactofen or S-
(+)-desethyl lactofen was preferentially degraded, resulting in relative enrichment of the R-
(–)-form. Lactofen and desethyl lactofen were both configurationally stable in sediment, 
showing no interconversion of S- to R-enantiomers or vice versa. Furthermore, the acute 
toxicities of lactofen and desethyl lactofen enantiomers to Daphnia magna were 
enantioselective. The calculated LC50 values of S-(+)-, rac-, and R-(–)-lactofen were 17.689, 
4.308, and 0.378 μg/mL, respectively, and the calculated LC50 values of S-(+)-, rac-, and R-(–
)-desethyl lactofen were 21.327, 13.684, and 2.568 μg/mL, respectively. 
2-ǂ-substituted benzylamino-4-substituted-amino-6-chloro-1,3,5-triazines are herbicidal 

compounds showing leaf-burning and/or growth inhibition with concomitant greening and 

stunting. The test compounds inhibited root growth due to interference with a system or 

systems other than photosynthesis. 4-(R)-sec-butylamino-2-(ǂ,ǂ-dimethylbenzyl)amino-6-

chloro-1,3,5-triazine showed the highest inhibitory activity, and 4-methylamino-2-(R)-ǂ-

methylbenzylamino-6-chloro-1,3,5-triazine was second. The chiral requirement for a strong 

inhibition of root growth was the R-configuration, contrasting with the requirement for the 

S-configuration for an inhibition of photosystem II. (Omokawa et al., 1992) 

Differential chiral responses including enantioselectivity and cross intergenus response on 

root growth between Oryza and Echinochloa plants against optical active ǂ-methylbenzyl p-

tolylureas were indicated. Rice was more affected by the R-enantiomers and barnyard miller 

by the S-enantiomers (Omokawa et al., 2001). Plants of the tribe Oryzeae respond 

enantioselectively and homogeneously to optically active 1-(C)-methylbenzyl-3-p-tolylurea 

(MBTU) in root growth inhibition. The root growth of the genus Oryza was inhibited more 

by R-MBTU than by S-MBTU (Omokawa et al., 2004). 

5. Conclusions 

Over the last several decades, the enantioseparation of chiral herbicides has been widely 

studied and has made a great contribution for studying their stereoselectivity in biological 

target activity and non-target toxicity. The direct chromatographic separation approaches 

play a leading role in separation of chiral herbicides. HPLC combined with CSPs shows its 

superiority for the enantiomer analysis and enantiomer preparation of many common 

herbicides especially for the group of amide herbicides, phenoxy herbicides and 

imidazolinone herbicides. GC is powerful in the determination while CE with diversified 

modes is also useful for its maneuverability. The application of herbicides separation by SFC 

is relatively limited. 

Many herbicides, related to amide herbicides, phenoxy herbicides and imidazolinone 
herbicides and so on, have shown the enantioselective herbicidal activity and phytotoxicity 
with their enantiomers. Many chiral herbicides have been commercialized with the pure 
enantiomer such as S-metolachlor, quizalofop-P-ethyl, haloxyfop-P-methyl, fluazifop-P-
butyl, (R)-napropamide etc.. Additionally, more work should be conducted on researching 
enantioselectivity and environmental fate of herbicides. 
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