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1. Introduction  

The adsorption of gases in porous solids such as zeolites and activated carbons, has been 

widely applied in cases of separation, purification and bottling of gases (Ruthven et al. 1994; 

Yang, 1997; Bastos-Neto et al. 2005a; Figueroa et al., 2008; Belmabkhout and Sayari, 2009). 

This potential is reflected not only in increasing the number of technical and scientific 

articles and patents, but also in the world market growth in plants for air separation and 

purification processes of hydrogen and natural gas and many others (Zimmermann and 

Keller, 2003). Due to the various applications of porous adsorbents, many research groups in 

various parts of the world have sought to develop and improve these materials to improve 

performance in these specific applications (Bastos-Neto et al. 2005b; Arou et al., 2008; 

Prauchner and Rodriguez-Reinoso, 2008; Rivers and Smith, 2009). In the procedures for 

obtaining porous solids, it is necessary to control the various process variables such as 

preparation, carbonization temperature and time, type and concentration of activating 

agents, among others, since these activation parameters determine the chemical and 

physical properties of adsorbents. The textural characteristics are the most important 

properties of the adsorbents, since it indicates the implementation and performance of the 

solid obtained (Giraldo and Moreno, 2005). In addition, chemical properties also determine 

the adsorption properties of adsorbent and solid-fluid interactions. Nature of surface 

groups, hydrophobic or hydrophilic character and acidic or basic behavior are some of the 

relevant chemical properties of the adsorbents in adsorption processes.  Since the physical 

and chemical properties of an adsorbent determine the application and performance of the 

same, it is necessary to determine precisely the parameters that characterize these materials 

such as surface area, microporosity, pore size distribution, heats of adsorption, among 

others. Several experimental techniques are used to characterize porous materials, for 

example, mercury porosimetry, adsorption of liquid nitrogen, x-ray diffraction, etc.. The 

technique most commonly used to characterize the texture of carbon adsorbents (ie surface 

area, properties of molecular sieve, size distribution of pores, etc.). Is the physical 

adsorption of gases and vapors. However, immersion calorimetry, with molecular probes of 

various molecular dimensions, and gas adsorption microcalorimetry techniques are also 

applied to characterize this type of solid (Denoyel et al., 1993, González et al. 1995; 

Rouquerol et al. 1999, Navarrete et al., 2004; Garcia-Cuello et al., 2009).  The aim of this 
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study is to review the calorimetric methods as a technique for characterization of adsorbent 

materials. The focus of this study is to review available scientific articles in the literature 

showing the use of calorimetry to physical characterization of adsorbent materials. The aim 

is also to describe some types of calorimeters commonly used in adsorption processes. 

2. Adsorption calorimetry   

The determination of heat of adsorption is essential in the description of gas solid interactions. 

This is particularly useful when measuring the heat of adsorption are combined with 

simultaneous measurements of adsorption isotherm (Llewellyn and Maurin, 2005; Garcia-

Cuello et al., 2008; Garcia-Cuello et al., 2009). There are many factors to determine the heat of 

adsorption, namely: to characterize the surface energy of the material (Rouquerol et al., 1999); 

provide basic data for developing new theories for equilibrium and kinetic adsorption 

(Zimmermann and Keller, 2003); design and improve plants separation processes such as 

adsorption and desorption, PSA, VSA, TSA and their combinations (Ruthven et al. 1984; Yang, 

1997).  Calorimetry was never widely used for characterization of carbons. In fact, its use has 

been limited to a few researchers who have used calorimetric techniques to specific problems 

(Menéndez, 1998). However, it has been shown that the adsorption calorimetry in combination 

with other physical techniques or physical-chemical properties can be used to describe the 

properties of the surface of a solid (Llewellyn and Maurin, 2005; Giraldo and Moreno, 2005; 

Garcia-Cuello et al., 2008; Garcia-Cuello et al., 2009).  Menéndez (1998) presents a brief review 

of calorimetric methods applied to physical and chemical surface characterization of 

carbonaceous adsorbents. Their results indicate great potential of using calorimetry to study 

the physical structure (ie textural) of carbons, especially when used in conjunction with more 

traditional techniques based on physical adsorption of gases and vapors. Three types of 

calorimetric methods have been used to characterize the porous solids, namely, immersion, 

flow-adsorption calorimetry and gas adsorption. Among the three methods, immersion 

calorimetry and  itrogen adsorption are the most used for the characterization of adsorbents.  

The next section presents the classifications of the calorimetric curves depending on the 

classification of adsorption isotherms according to IUPAC. In the following sections will show 

the advantages of using calorimetric techniques as a tool for characterization of adsorbents 

through their applications.   

2.1 Theoretical microcalorimetric curves (Llewellyn and Maurin, 2005)  
The differential enthalpy curve obtained from microcalorimetric experiments is a result of 
various effects that include both adsorbent-adsorbate interactions and adsorbate-adsorbate. 
Mechanisms of pore filling and phase transition can be demonstrated as well as structural 
changes of the adsorbent.  In general, the calorimetric curve shows three distinct behaviors, 
as shown in Figure 1. In each system, an increased amount of gas adsorbed by the sample 
leads to an increase of interactions between adsorbed molecules. Regarding contributions 
adsorbate-adsorbent, the interaction of the adsorbed molecule with an energetically 
homogeneous surface leads to a constant signal.  
Finally, in most cases, the adsorbent is energetically heterogeneous due to their pore size 
distribution (amorphous adsorbents) or a variable surface chemistry (defects, cations, etc.).. 
Initially, one would expect relatively strong interactions between the adsorbed molecules 
and surface. The intensity of these interactions decreases as the specific sites are occupied. 
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Therefore, to energetically heterogeneous adsorbents, a gradual decrease in the calorimetric 
signal is observed. However, each curve of enthalpy differential current varies because the 
results of the different contributions are summed. 

 

Fig. 1. Hypothetical calorimetric curves illustring the various interactions involved during 
the adsorption of simple gases at low temperatures . (Llewellyn and Maurin, 2005.) 

2.2 Thermodynamic basis of calorimetry  
The determination of the heat quantity that is involved in a process, be it physical, chemical, 
or biological, provides information about the evolution, duration, and intensity of the same, 
and the experimentation being conducted to determine the magnitude of the heat that is 
produced or absorbed can be simple or complex according to the required measurement 
accuracy, the sensitivity of the instruments used, and the amount of energy that is 
transferred, to name some of the features involved in the determination.   
In the development of chemistry, and particularly in the field of thermodynamics, 
calorimetry has been a factor of undeniable importance. Some authors point to the 
calorimeter as an instrument that opens up the second part of the pre-classical 
thermodynamics, which is called calorimetry (Swietoslawski, 1946). 
Construction of the first calorimeter by Cavendish (Armstrong, 1964) in 1720, for the 
determination of the heat of vaporization of water and specific heats of various substances, 
was the start of the creation of a great variety of designs by leading researchers of that time, 
among whom names of such importance as Lavoisier, LaPlace, Black and Irvine, Bunsen, 
Dulong and Petit, and Nernst Euken can be highlighted (Wilhoit, 1967; Rouquerol, 1985). 
Due to the large number of systems, phenomena, and conditions of interest, there is no 
single model of calorimeter, so their diversity is very wide. That is why since the very 
emergence of calorimeters a variety of equipment has been generated, among which we can 
examine adiabatic calorimeters, isothermal calorimeters, and isoperibolic calorimeters. In 
parallel with the development of calorimeters, it was necessary to improve data collection 
systems, leading to the use of peripheral systems with high sensitivity and precision. 
The purposes and applications of calorimeters have greatly expanded the field of study and 
concepts of calorimetry and therefore of thermodynamics: the heat of solution, combustion, 
mixing, and vaporization are just some of the determinations that are made using this 
technique. Because information can be obtained from the measurement of heat, the number 
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of instrument designs for its determination has increased, taking into account that the 
energetic effect associated with different interactions may be of short duration or, later in 
development, hours or even weeks (Swietoslawski, 1946; Hemminger and Hohne, 1984). 
The calorimetric determination must then take into account the accuracy required, the 
temperature, the amount of sample available, the magnitude of the heat involved, the 
duration of the experiment, and the cost of the instrument. 

2.3 General classes and types of signals of calorimeters 
The heat transfer can be determined in different conditions, and therefore different kinds of 
instruments are used as calorimeters, which can be classified into three general groups as 
described below (Wadso and Goldberg, 2001; Giraldo et al., 1996).  

2.3.1 Isoperibolic calorimeter 
An isoperibolic calorimeter maintains a constant temperature of the surroundings through 
the use of a thermostat, while the temperature measurement system may vary over time. 
There is a thermal resistance RT, with a magnitude defined between the surroundings and 
the cell which is being measured, so that the heat exchange depends on the temperature 
difference between the temperature of the surroundings TA and the temperature of the cell 
and measuring system TC; as TA is constant then the flow of heat is a function of TC. If the 
heat generation within the cell is completed, the temperature TC approaches the temperature 
of the surroundings TA. 
 

T 

t 

T  = temperature t 
1  = when: A 

1  (area 1) = A 
2 

(area 2) 

t  = time T  =rise of temperature corrected 

T 

A 
1 

A 
2 T 

A 
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Fig. 2. Typical thermogram determined by an isoperibolic calorimeter. Adapted from Hohne 
et al. (1996) 

Figure 2 illustrates a typical curve of temperature versus time obtained by an isoperibolic 
calorimeter in the observation of an exothermic event. At the beginning of the experiment 
the temperature stays close to the temperature of the surroundings TA; when there is a 
certain amount of heat in the cell, the temperature increases initially, and then reaches a 
maximum value to finally begin to decline because TA is less than TC, and the magnitude of 
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the decrease depends on the isolation of the cell, that is, the thermal resistance RT, which 
defines the constant heat leak, Kft, a parameter of the device used, which is also a function of 
the temperature gradient. The amount of heat for the process under consideration is equal to 

Q = CpΔTcorrected where Cp is the heat capacity of the system understudy plus the heat 

capacity of the cell; ΔTcorrected is the difference in temperature above which gives a 
correction graphic of small but existing heat leaks, as shown in Figure 1. For accurate 
measurements it is not absolutely necessary to keep the heat losses as small as possible; 
however these are reproducible in terms of the temperature difference between the cell and 
the surrounding area and can be determined by electric calibration (Giraldo et al., 1994). 
Taking into account the above considerations in general, isoperibolic calorimeters seek to 
reduce the heat exchange between the cell where the process is carried out and the 
surroundings, which is achieved by minimizing the temperature difference between them, 
decreasing the coefficient of heat transfer, and reducing the duration of heat exchange 
(Moreno and Giraldo, 2005). 

2.3.2 Adiabatic calorimeters 
Adiabatic calorimeters further restrict the heat transfer compared with isoperibolic 
calorimeters; ideally adiabatic calorimeters do not allow heat exchange between the cell and 
its surroundings. We can consider three ways to achieve this goal: 
 

T

t 

T  = temperature t 
1  = Heat production starts 

t  = time t 
2  = Heat production ends 

t 
1 t 

2 

 

Fig. 3. Typical thermogram of an adiabatic calorimeter. Adapted from Hohne et al. (1996)  

1. by carrying out the heat generation so fast that no appreciable amount of heat can enter 
or leave the cell during the period in which it is carried out; 

2. by separating the cell to give a near to infinitely large thermal resistance RT, so that the 
system is as isolated as possible; 
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3. by means of external controls that make the temperature of the surroundings always as 
close as possible to that of the cell. 

During the calorimetric process any heat generated or consumed in the cell leads to a 
change in temperature. Figure 3 shows the graph of temperature versus time, T vs t. t1 is 

generated in a heat effect until t2. The Δheat can be calculated from measurements of the 

temperature difference ΔT: 

 Q Cp T= Δ  (1) 

The heat capacity is easily determined by calibration with the use of electricity. Ideally the 
slope of the curve of temperature versus time is proportional to heat flow: 

 
)()( t

dt

dT
Ct

dt

dQ
≈

 (2) 

where the heat flow dQ/dt (t) is obtained directly from curves like that shown in Figure 2. 

2.3.3 Isothermal calorimeters 
Another way of measuring the energy involved in a process, using a method opposed to the 

previous two (total isolation in the adiabatic case or allowing a small thermal leak in the 

isoperibolic case), provides a large exchange of the heat that is produced in the cell. This 

method is isothermal in nature, and the cell and its surroundings have the same constant 

temperature (TA = TC = constant). 
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Fig. 4. Typical thermogram of an isothermal calorimeter. Adapted from Hohne et al. (1996) 
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The isothermal calorimeter has a very small thermal resistance RT and also the heat capacity 
of the surrounding area is infinitely large. Taking into account these requirements, under 
strict conditions isothermal TA and TC may remain constant over time and space, but then 
no heat flow occurs. In real cases, we present a heat flow between the cell, and the 
surrounding flow is detected by thermal sensors placed between them. The flow is usually 
due to the small temperature difference between TA and TC during the process observed, 
and the magnitude of this temperature difference depends on the amount of heat released 
per unit time, the thermal conductivity and geometry of the cell, and the type of insulation 
of the thermal sensors. Despite these limitations, an isothermal calorimeter design is 
commonly used where temperatures TA and TC may be different from each other but each 
taken separately is constant throughout the duration of the process that generates the heat 
flow (Zielenkiewicz, 2000). Figure 4 shows a thermogram (T vs t) obtained with an 
isothermal calorimeter, where the heat conduction is observed around the drop in 
temperature after the cell is supplied with a pulse of heat. 

2.3.4 Heat conduction calorimetry 
Heat conduction calorimetry studies can be undertaken to provide kinetic and analytical 
thermodynamic data. The potential of the technique is such that Buckton (1995) states "The 
isothermal microcalorimetry has the ability to record all physical and chemical processes. 
The range of application of this technique is limited only by the imagination of the 
researcher and the ability to control the experiment." Some other interesting examples of 
applications of the technique are presented below. 
Heat conduction calorimetry is classified as an isothermal technique (Wadso, 1986) because 
the variable that is constant in the experiment is the temperature of different parts of the 
computer. However, there is a local temperature difference which occurs whenever there is 
heat exchange between the cell and the surroundings (Wadso, 2001), as the heart of the 
device is composed of the cell, sensors, and a solid body, and this is expected to be the 
primary mechanism driving the exchange of heat. 
In isothermal calorimetry, the surroundings and the cell have the same constant temperature: 

 Tsurrounding = Tcell = constant (3) 

It can be seen that the calorimeter has a heat resistance, RT, which is very small and also that 
the heat capacity of the surrounding area is infinitely large. Taking into account these 
requirements, under strictly isothermal conditions Tsurrounding and Tcell can remain constant 
over time and space, but then no heat flow occurs. In real cases, we present a heat flow 
between the cell and the surrounding flow is detected by thermal sensors placed between 
them. The flow is usually due to the small temperature difference between Tcell and 
Tsurrounding, and during the process observed the magnitude of this temperature 
difference depends on the amount of heat released per unit time, the thermal conductivity 
and geometry of the cell, and the type of insulation of the thermal sensors (Hemminger and 
Hohne, 1984). Despite these limitations, isothermal calorimeters commonly have a design 
where the temperatures Tcell and Tsurrounding may differ from each other, but each taken 
separately is constant throughout the duration of the process that generates the heat flow. 
Figure 5 shows a diagram of the arrangement of the measuring cell and the surroundings in 
a heat conduction calorimeter. The cell is connected with them through a thermal resistance 
RT, which is an interesting parameter because it relates the flow of heat dQ/dt to the 
difference in temperature. 
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Fig. 5. Diagram of the heat conduction calorimeter 
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Fig. 6. Thermogram obtained by a heat conduction calorimeter 

The temperature difference of the thermal resistance is 

 ΔT = TC - TA (4) 

and at steady state we obtain the relationship 
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R

T
=

dt

dQ

T

Δ
 (5) 

Integration gives 

 T(t)dt
R

1
=Q

T

Δ∫  (6) 

Figure 6 shows the form of a thermogram determined by a heat conduction calorimeter in 

which the thermal effect generated in the cell appears as a pulse in the curve of temperature 

versus time. As in the case of isothermal calorimetry, the heat flows to the surroundings, 

and the change in system conditions can be detected by means of a property that is 

proportional to heat flow, producing a continuous variation in this case. Measuring the 

sensor system properties as a function of time and through calibration experiments can 

determine the amount of heat generated by that system. 

3. Adsorption calorimetry 

Heats of adsorption of pure gases, which are usually obtained from isotherms using the 

Clapeyron equation, are unreliable unless extra precautions are taken to ensure reversibility 

and reproducibility. The calculation of heats of adsorption for mixtures from extensions of 

the Clapeyron equation is impractical. However, we have recently demonstrated that both 

adsorption isotherms and multicomponent heats of adsorption can be measured accurately 

and quickly in a single, inexpensive (Sharma et al., 1994; Spiewak et al., 1994; Dunne et al., 

1997; García et al,2008). This paper summarizes the design criteria and construction of our 

combined calorimetric-volumetric apparatus in sufficient detail to reproduce our 

instrument, with numerous helpful suggestions to avoid some of the pitfalls associated with 

adsorption calorimetry. The known technology reported in the literature about the 

calibration systems (Handy et al., 93; Huertemendía et al., 2005) has been used here to 

evaluate the results obtained in this work. 

3.1 Theory 
The isosteric heat of adsorption is defined as the difference between the partial molar 

enthalpies in the gas and adsorbed phases: 

 
−−

−= a
hhQ

g
st

 (7) 

Thus, Qst is the heat of desorption. Even though it is not a heat but the difference of two 

state functions, the name is well established. The actual heat measured in a particular 

calorimeter must be related to the thermodynamic definition of isosteric heat in eq 7. 

3.2 Idealized calorimeter 
An idealized batch calorimeter consists of a dosing cell, a sample cell and a valve between 
the two, completely enclosed in an isothermal calorimeter at temperature T0. At the start, the 
valve is closed, both cells are at temperature T0, the pressure in the dosing loop is Pd, and 
the pressure in the sample cell is Pc, with Pd > Pc.  
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When the value is opened, an amount of gas expands from the dosing cell into the sample 
cell and a portion of this amount adsorbs. The total energy is: 

 aaa
nunuUUU

ggg +=+=  (8) 

The total energy U should include contributions from the adsorbent, the walls of the sample 
cell and dosing cell, and the valve. 
However, since the temperature is fixed at T0, these energies are omitted from eq 8 because 
they are constant and do not contribute to the change in energy. The total amount of gas in 
both cells is ng. The differential of the total energy is: 

 aaaa
dundnudundnudU

gggg +++=  (9) 

 

where dU refers to the differential energy change after attainment of adsorption equilibrium. 
Because the temperature is T0 before and after adsorption, dug= 0 and 

 aaaa
dundnudnudU

gg ++=  (10) 

The mass balance is: 

 tconsnn
ag

tan=+  (11) 

so 

 
a

dndn
g −=  (12) 

Substituting eq 12 into eq 10: 

 
aaaaa

dundnudnudU
g ++−=  (13) 

The first law for the combined closed system consisting of the dosing cell, the sample cell 
and the valve is  

 dQdU =  (14) 

where dQ is the heat adsorbed by the combined system. For adsorption, dQ is a negative 
quantity. Combining eqs 13 and 14 we obtain 

 
aaaaa dundnudnudQ g −−=−  (15) 

or 

 ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−=−

a

a
aa

a dn

du
nuu

dn

dQ g

 (16) 

Because ha ≈ ua  and hg  = ug + zRT0, comparison of eqs 7 and 16 gives 

 0zRT
dn

dQ
Qst +−=

a  (17) 
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This result was derived by Hill. The first term is the differential heat measured by the 

idealized calorimeter, and the second term is the difference between the enthalpy and the 

internal energy in the equilibrium gas phase. z=PV/RT, the compressibility factor in the gas 

phase, is close to unity for sub atmospheric measurements of isosteric heat. The RT0 term at 

25 °C is 2.5 kJ/mol, and typical isosteric heats of adsorption are in the range 10-50 kJ/mol 

(O´Neil et al., 85).  

3.2.1 Thermopiles theory 
The Seebeck effect  

If two semiconductors a and b are joined together at the hot point and a temperature 

difference ∆T is maintained between this point and the cold point, see Figure 6(a), then an 

open circuit voltage ∆V is developed between the leads at the cold point. This effect, called 

the Seebeck effect after its discoverer T. J. Seebeck (1770 - 1831), can be mathematically 

expressed by  

 TV sΔ=Δ α  (18) 

 

here αs  is the Seebeck coefficient expressed in V/K (or more commonly in μV/K). It was 

found that only a combination of two different materials, a so-called thermocouple, exhibits 

the Seebeck effect. For two leads of the same material no Seebeck effect is shown, for reasons 

of symmetry. It is, however, somehow present because the Seebeck effect is a bulk property 

and does not depend on a specific arrangement of the leads or the material, nor on a specific 

way of joining them. This bulk property can be expressed as 

 VTqVE sF α=/  (19) 

 

where EF is the Fermi energy (and EF/q = ΦF is the electrochemical potential), and where the 

Seebeck coefficient αs depends, among other things, upon the chemical composition of the 

material and upon the temperature. 

The Seebeck coefficient of, for example, silicon, can be derived by setting αs as (see Figure 

6(b)) 

 
( )Fs E

dTq

d
=α

 (20) 

 

For non-degenerate silicon the Seebeck coefficient may be approximated by using simple 

Maxwell- Boltzmann statistics. Three main effects are present. 

First, with increasing temperature the silicon becomes more intrinsic: 

 ( ) ( )(
2

3
/ln +−=− nN

q
E

dTq

d
cEEF FC

κ
 (21) 

 

where Ec is the conduction-band edge energy, Nc the conduction-band density of states, n 

the electron density (fixed by the doping concentration) nd and k the Boltzmann constant. 
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Fig. 6a. Seebeck Efect 

 

Fig. 6b. Variation of EF due to ΔT 
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Secondly, with increasing temperature the charge carriers have a higher average velocity, 
leading to charge build-up on the cold side of the silicon. 
Moreover, the scattering of charge carriers is usually energy (and thus temperature) 
dependent, likewise leading to charge build-up on the cold or hot side of the silicon, 
depending on whether the hot carriers can move more freely than the cold carriers or are 
'trapped' by increased scattering: 

 ( ) ( )s
q

E
dTq

d
F +−= 1

κ
τ  (22) 

where τ is the relaxation time (mean free time between collisions) and s is the exponent 
describing the relation between τ and the charge-carrier energy. 
Finally, the temperature difference in the silicon causes a net flow of phonons from hot to 
cold. In a certain temperature region (-10 - 500 K) and for non-degenerate silicon, a transfer 
of momentum from acoustic phonons to the charge carriers can occur. As there is a net 
phonon momentum directed from hot to cold, this will drag the charge carriers towards the 
cold side of the silicon. This effect may be represented by: 

 ( ) nF
q

E
dTq

d
n

φκ
φ −=  (23) 

in which Φn denotes the phonon drag effect. In sum, the total Seebeck coefficient in non-
degenerate silicon becomes: 

 ( ) typensnN
q

nncs −
⎭
⎬
⎫

⎩
⎨
⎧ +++−= φκα

2

5
/ln  (24) 

 ( ) typepspN
q

ppvs −
⎭
⎬
⎫

⎩
⎨
⎧ ++++= φκα

2

5
/ln  (25) 

where s is of the order -1 to 2, and where he phonon-drag contribution Φ ranges from 0, for 
highly-doped silicon, to approximately  5, for low-doped silicon, at 300 K, while Φ  ranges 
from 0,  for highly-doped silicon, to 100, for  low-doped silicon, at low temperature (100K). 
In practice, the Seebeck coefficient may be approximated, for the range of interest for use in 
sensors and at room temperature, as a function of electrical resistivity: 

 ( )os pp
q

m
/ln

κα =  (26) 

3.3 Experimental  
3.3.1 Design criteria 
The desired equilibrium information for adsorbed mixtures is the pressure and composition 
of the gas phase above the adsorbent for a given loading, as well as the heat evolved for 
differential increases in the loading. Because we considered direct calorimetric 
measurements of differential heats to be more reliable than differentiation of isotherms at 
various temperatures, the instrument was built around a Tian-Calvet calorimeter. Practical 
limitations on the ability to integrate the heat flow in the calorimeter as a function of time 
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required that equilibrium be established in 15 min or less. The necessity of establishing 
equilibrium within 15 min of changing the sample loading placed a stringent limitation on 
the design. The major limitation for the attainment of adsorption equilibrium is gas-phase 
mixing in the region above the sample. On the basis of a typical gas-phase diffusion 
coefficient of 0.1 cm2s-1, a tube length of even 10 cm will result in mixing times of 1000 s. 
This imposes significant challenges on the instrument design. While imposed circulation 
would alleviate this problem, forced flow would also complicate the design of the 
calorimeter because of convective heat losses. The maximum distance within our equipment 
(from the bottom of the sample cell to the diaphragm of the pressure transducer) was 
approximately 10 cm. The pressure transducer was chosen for its small dead volume. The 
leak valve for the composition measurements was welded directly on the top of the cell to 
minimize the dimensions of the apparatus. These design criteria could only be met by a 
custom-made calorimeter. In general this calorimeter is based in literature design and 
experience of our laboratory (Giraldo et al., 98) 

3.3.2 Practical calorimeter  
In the idealized calorimeter, the temperature of the gas in the sample loop decreases upon 

expansion while the temperature of the gas in the sample cell increases as it is compressed 

by the incoming gas. In the absence of adsorption, heat is absorbed by the dosing loop and 

heat is liberated by the sample cell until the pressures equalize and the temperature returns 

to T0. For a perfect gas, the two effects cancel because the enthalpy of a perfect gas is a 

function only of temperature.  

Our design is a modification of the idealized calorimeter in which only the sample cell is 

placed in the calorimeter. Because the dosing loop and valve are external to the calorimeter, 

adding a dose of gas to the sample cell generates an exothermic heat of compression in the 

sample cell which is not cancelled by absorption of heat in the dosing loop. The spurious 

heat of compression calculated from eq 21 is subtracted from the total heat registered by the 

calorimeter in order to obtain the heat of adsorption. 

3.3.3 Description of the Instrument 
A diagram of the calorimeter apparatus is shown in Figure 7, the components are described 

in Table 1. A picture of the sample cell and its connections is shown in Figure 8. The 

stainless steel cube is the sample cell for the adsorbent and adsorbate. The use of stainless 

steel to maximize heat conduction through the top of the cell is a crucial element of the 

design. The stainless cube is surrounded on all four sides and on the bottom by square 

thermal flow meters (show in the picture) obtained from the Melcor Corporation™. Each 

thermopile is a 40x40x2 mm ceramic plate with about 240 embedded thermocouples for 

detecting temperature differences across the plate. 

The signal from these thermopiles was input to a data acquisition system with a computer. 
The sample cell slides into cubical holes cut into an aluminum block (10x13x8 cm, mass 1 
kg). A silicone based heat-sink compound was used to ensure good thermal contact between 
the Al block and the thermopiles and between the thermopiles and the stainless steel. 
The cubic stainless steel cell shown in Figure 8 (on the top) was inserted into a Cajon fitting, 
which provides a vacuum seal by compression of a Viton O-ring. The Cajon fitting connects 
to a custom-made T connection onto which the leak valve, the pressure head, the connection 
to vacuum and the 0.01-in. bore tube from the dosing loop are welded. The leak valve is 
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connected through a 1/4-in.-o.d. stainless-steel tube; the pressure head is connected through 
a 1/4-in. ├ NPT fitting; the valve that opens to vacuum is connected through a 1/4-in. VCR 
fitting. The pressure head was chosen for its small dead space (2.0 cm3). The total dead space 
is 17.8 cm3 for the (empty) sample cell, the dead space inside the pressure head, the lines to 
vacuum, the dosing loop and the RGA leak valve. 
 

No. Description Model No. 

1 Gas 1 inlet  

2 Gas 2 inlet  

3 To vacuum pump  

4 Three-way valve  

5 Inlet valve to the dosing loop  

6 Outlet valve from the dosing loop  

7 Pressure transducer for the dosing loop Teledyne™ 

8 Liquid nitrogen trap  

9 Valco six-way valve  

10 Calibrated dosing loop (5 cm3)  

11 Variable leak valve Granville-Phillips 203™ 

12 Cell outlet valve  

13 Pressure transducer for the cell Edwards™, 655 and 622 

14 Reference cell  

15 Calorimeter cell  

16 K-type thermocouple  

17 Thermopiles Tellurex Corporation™ 

18 Heat sink (aluminium block)  

19 Mass spectrometer (RGA) 
HP GC/MS 5890 series II 5972 
MDS 

20 Turbopump Pfeiffer ™ 

21 Data acquisition board  

22 Computer  

Table 1. Components of microcalorimeter. Key to figure 1 

Gas was introduced to the sample cell from the dosing loop using a six-port Valco sampling 
valve connected to a small bore (0.01-in.-i.d.) tube. The small diameter of the tube prevents 
back mixing of the mixture into the dosing loop. This tube enters the T-shaped connector 
from the back (the welded connection does not appear on Figure 3) and extends downward, 
with the opening 5 cm above the bottom of the sample cell. Two small metal cylinders with 
a Viton O-ring between them were inserted in the NPT connection to the pressure head to 
make a vacuum seal. 
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Fig. 7. Schematic  diagram of microcalorimeter system and auxiliary equipment 

 

Cell 

Heat sink 

 Thermoelectric   system 

Thermostat 

Adsorbate 

 

Fig. 8. Picture of the stainless steel sample cell and connections to the pressure head, 
vacuum line, dosing loop and leak valve. The stainless steel sample cell is surrounded by 
thermopiles set into an aluminum heat sink  
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The adsorbent was covered with a 1.5 cm layer of glass chips to minimize heat loss through 
the top of the cell and regenerated in situ. 

3.3.4 Electric calibration of the adsorption micro calorimeter. 
To establish the correct operation of the micro calorimeter prior to connecting it to the 
volumetric adsorption unit, we evaluated its sensitivity by determining the calorimeter 
constant.  
The calibration constant gives the voltage generated by the calorimeter when a given 
amount of heat is emitted from inside the microcalorimetric cell.  
There are two methods to determine the calibration constant (K): 
Determination of the calibration constant by application of electric power.  
This method is based on the dissipation of electric work (We) by an electric resistor through 
which an electric current (i) passes for a certain amount of time (t). This generates a voltage 
(Vt) in the micro calorimeter and this is measured. 
The micro calorimeter calibration constant (K) is given by: 

 
dtV

itV

dtV

We
K

t

c

t ∫∫
==  (27) 

Where Vc is the voltage applied to the resistor, i is the current that passes through it, and t is 
the time expressed in seconds.  
Determination of the constant by the stationary state method. 
This is an alternate method to the one above, which is useful to compare and evaluate 
whether the constant (K) assessed by the above method is correct. The method consists on 
applying a constant voltage (Vc) through the micro calorimeter electric resistor until the 
voltage generated by the calorimeter (Vt) reaches the condition of stationary state. Under 
these conditions, K is given by: 

 
stationaryt

c

V

iV
K ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  (28) 

3.3.5 Spurious heat of compression in sample cell 
Before taking a measurement, the dosing loop and the sample cell are both at the 
temperature T0 of the experiment; the pressure inside the sample cell is Pc, and the pressure 
in the dosing loop is some higher pressure Pd. Increments of gas are added to the sample cell 
by opening the valve between the dosing loop and the cell. 
The temperature of the gas inside the dosing loop falls because of the expansion, while the 
temperature of the gas inside the sample cell rises as it is compressed by the incoming gas. 
The calorimeter measures both the latent heat of adsorption and the sensible heat liberated 
by the compressed gas as it cools to the temperature of the calorimeter. This sensible heat 
must be subtracted from the heat registered by the thermopiles to obtain the heat of 
adsorption. 
The spurious heat term generated by compression of the gas inside the cell was determined 
by expanding gas from the dosing loop into a sample cell containing no adsorbent. For a 10 
cm3 dosing loop and for a dead space of 18 cm3 in the sample cell, the linear correlation 
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PΔ= aQsp  (29) 

for the experimental data shown in Figure 9 yields a = 4.42 x10-4 J/Torr. ΔP is the driving 
force for the irreversible expansion: the pressure difference between the dosing loop and the 
sample cell. 
The correlation ignores the effect of adsorption as gas enters the sample cell. For the case of 
weak adsorption, when only a small fraction of the gas entering the sample cell actually 
adsorbs, the approximation is justified. 
For the case of strong adsorption, when most of the gas entering the sample cell adsorbs, the 
spurious heat of compression is negligible compared to the heat of adsorption. 
Thus, for strong adsorption (95% of gas dose adsorbs) or weak adsorption (5% of gas dose 
adsorbs), the approximation of considering that the heat of compression is independent of 
adsorption is acceptable. We have no proof that the correction for the spurious heat of 
compression is negligible in the intermediate case when about 50% of the gas dose adsorbs, 
but the excellent agreement of both strong and weakly adsorbing gases with the Clapeyron 
equation is indirect evidence that eq 29 is adequate for both strongly and weakly adsorbing 
gases. 
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Fig. 9. Linear correlation for a spurious sensible heat term in adding a dose of gas. The 
difference is the pressure in the dosing loop minus the pressure in the sample cell before 
opening the valve 

Other calorimeters are designed for isothermal introduction of gas to the sample cell. This is 

accomplished by adding increments of gas slowly through a needle valve so that the 

temperature of the gas in the dosing loop is equal to the temperature in the sample cell (T0). 

In the absence of adsorption, the reversible isothermal introduction of a gas sample 

generates an exothermic heat inside the sample cell equal to RT0 per mole of gas added; the 

signal for this spurious heat term can be eliminated by adding the same amount of gas to a 

reference cell wired in reverse polarity. Isothermal dosing is effective for the measurement 

of heats of adsorption of pure gases. For mixtures, the fast, irreversible addition of 

increments of gas shortens the time required for mixing and equilibration. 
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3.3.6 Verification of adsorption equilibrium 
The mixing time required when a new dose of gas is added to the sample cell containing a 
gaseous mixture but no adsorbent is about 15 min. Sampling the gas phase continuously to 
check for equilibrium is impracticable because the amount of gas sampled over 30 min 
would affect the mass balance used to calculate the amount adsorbed. 
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Fig. 10. Adsorption of mixtures of SF6 and CH4 
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Fig. 11. Selectivity of SF6 relative to CH4 at 24,5 ˚C. symbols are the same as those in figure 5 

Two methods were used to verify the attainment of equilibrium for mixture adsorption. The 
first method is to fit the experimental data to a model which is thermodynamically 
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consistent; agreement of the model with the experimental data is an indirect but robust 
method of verifying equilibration. A second, direct method is to verify that a particular 
point is independent of the path to reach that point. Figure 10 shows an example for the 
adsorption of mixtures of SF6 (component 1) and CH4 (component 2). The closed and open 
circles indicate two paths from zero loading to point A; the arrows show the direction of the 
paths. These two paths intersect at n1= 0.78 and n2 = 0.12, or a mole fraction x1 = 0.87. Figure 
11 shows the selectivity for the same two paths; the selectivity curves intersect at x1 = 0.89. 
Therefore, within an uncertainty of about 1%, the selectivity is independent of the path 
followed by the system. There is excellent agreement among them and with values reported 
in literature (Siperstein et al., 99). 

3.3.7 Determination of differential heats from finite doses 
The amount dosed Δn must be small enough to measure the differential heat but large 

enough to generate an accurate heat signal Q. Because the differential heat is defined as the 

ratio of Q/Δn in the limit as Δn goes to zero, the error associated with finite increments 

needs to be examined. 
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Fig. 12. Comparison of the differential heat of adsorption (solid line) with experimental 
heats determined with finites doses of gas. The dashed line is the integral heat of adsorption. 
Heats determined experimentally with small doses of the order 0.12 mol/Kg agree very well 
with the exact differential heat 

Assume that the differential heat qd(n) is given exactly by the polynomial: 

 qd(n) = q0 + d1n + d2n2 + d3n3 +.... (30) 

For a finite amount of gas adsorbed (Δn  = n2 - n1), the approximate differential heat q├ 

measured experimentally is 

www.intechopen.com



Calorimetric: A Tecnique Useful in Characterization of Porous Solid 

 

393 

 
( )

12

2

1

nn

dnnq
q

d
n

n

−

∫
=δ  (31) 

 representing the average value of the differential heat measured at the average loading (n1 
+ n2)/2. Comparison of q├ with the exact differential heat at the same average loading gives 
the  error: 

 ( ) ( )( )2 22 3
1 2 1 2 1 2

12 8
d

d d
q q n n n n n n ...δ − = − + + − +  (32) 

The error is of order of (n1 - n2) 2. Because the leading term of the error is also proportional to 
the second derivative of the heat curve, q├= qd  for linear heat curves. 
Figure 12 shows hypothetical differential (solid line) and integral (dashed line) heats of 

adsorption. The points show approximate heats q├ calculated from eq 25 for finite doses n2 - 

n1 = 0.1, 0.5, and 1.0 mol/kg. Only for finite doses as large as 1 mol/kg can the difference 

between the exact differential qd and the approximate q├ be appreciated. Typical 

experimental values of Δn are of order 0.1 mol/kg. Except for abrupt changes of heat with 

coverage associated with phase transitions, the error associated with the use of finite doses 

of gases to measure the differential heat is negligible. There is agreement among them and 

with values reported in literature (Siperstein et al., 99). 

It is convenient to report differential heats of adsorption at the loading n2 instead of the 

average loading (n1 + n2)/2. This introduces errors larger than that predicted by eq 24, 

especially when the slope of the heat curve is large. 

3.3.8 Alternating dosings of each component 
Two independent dosings (A and B) are required to measure the individual differential 
heats of adsorption (q1 and q2) from a binary mixture (Siperstein et al., 99) : 

 1 1 2 2
A A AQ n q n q= Δ + Δ  (33) 

 1 1 2 2
B B BQ n q n q= Δ + Δ  (34) 

where QA and QB are the heats registered by the calorimeter and Δn1 and Δn2 are the 

amounts adsorbed, or desorbed, of components 1 and 2, respectively. When the system of 

equations (33) and (34) is solved, the individual heats of adsorption are 

 2 2
1

1 2 1 2

A B B A

A B B A

Q n Q n
q

n n n n

Δ − Δ
=
Δ Δ − Δ Δ

 (35) 

 1 1
2

1 2 1 2

B A A B

A B B A

Q n Q n
q

n n n n

Δ − Δ
=
Δ Δ − Δ Δ

 (36) 

Dosing of one component generates a positive incremental adsorption of that component 
which is normally 1 or 2 orders of magnitude larger than the accompanying desorption of the 
other component. The solution of eqs 27 and 28 requires that the dosing of the components be 
alternated; successive dosings of the same component generate an indeterminate solution.  
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4. Experimental results  

4.1 Electric calibration  of the adsorption micro calorimeter: (by applying electric 
power) 
Table 2 shows the calibration constants obtained for the micro calorimeter operation 
conditions. Additionally, it presents the values reported at different voltage levels, which 

range between 12.34 ± 0.12 W V-1 and 16.67 ± 0.32 W V-1. These values show the sensitivity 
of the micro calorimeter built here, which is higher than that of equipments reported in 
literature and even of those built in our laboratory previously. This constitutes a 
considerable contribution to the construction of this type of instruments.  
Figure 13 shows a typical thermogram obtained with the calorimeter, which corresponds to 
an electric energy of 1 joule inside the cell, which contains only air. From this type of 
thermograms the calibration constant (K) can be obtained. It is necessary to point out the 
great stability of the baseline before and after the thermal effect.  
 

Total electrical energy (J) Electrical power (mW ) Calibration constant, K (W.V-1 )* 

4.500 25.00 22.21 ± 0.31 

3.000 16.00 21.45 ± 0.11 

2.000 9.000 23.68 ± 0.06 

0.700 4.000 24.25 ± 0.21 

0.180 1.000 25.41 ± 0.23 

0.045 0.250 22.64± 0.14 

Table 2. Calibration constants obtained for the micro calorimeter obtained applying a known 
electrical power 
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Fig. 13. A typical thermogram of electric calibration by electrical input 
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4.2 Calibration by stationary state method  
Table 3 shows the calibration constants obtained for the equipment built here. These results 
strongly agree with the previous methodology and with the laboratory previous works.  
The voltage signal from the calorimeter was determined as a function of the rate of heat 
dissipation (dQ/dt ) I2R in a platinum resistance wire wrapped around the outside of the cell 
in thermal contact with the cell wall and the thermopiles. Similar difficulties were encountered 
by Handy (Handy et al., 93) the voltage-to-power ratio for a resistor inside the cell was 9% 
lower than that for an externally wrapped resistance wire. The difference was attributed to 
heat losses. We chose the Clapeyron equation as the more reliable method of calibration. 
 

Applied voltaje (V) Electrical power (mW ) Calibration constant, K ( W.V-1 )* 

0.254 0.060 24.12 ±  0.31 

0.567 0.230 24.15±  0.15 

1.009 0.980 23.45 ±  0.64 

2.084 3.920 13.23 ± 0.22 

3.096 8.860 22.62 ± 0.41 

4.084 15.92 23.84 ± 0.45 

5.096 24.75 22.22± 0.2 

Table 3. Steady state calibration constants obtained for the microcalorimeter 

Figure 14 illustrates a thermogram obtained when an electric power of approximately 
10mW disperses inside the micro calorimetric cell. 
A secondary calibration of the calorimeter (0.045W/V) is based upon the Clapeyron 
equation applied to a series of adsorption isotherms measured in a separate, high-precision 
volumetric apparatus for ethane on silicalite (MFI) synthesized in our laboratory. The 
calibration constant for ethane was confirmed by excellent agreement of calorimetric data 
with the Clapeyron equation for SF6, CO2, and CH4. The calibration constant is independent 
of the amount of adsorbent in the cell. 
For the presentation of experimental results, it would be helpful that one of the variables, 
such as the total pressure or fugacity of one of the components, could be held constant. 
However, the necessity of alternating doses generates a locus similar to the closed circles 
shown in Figure 6. The inability to obtain data along some locus, such as an isobar, is 
annoying but does not affect the analysis of the experimental data for activity coefficients 
and excess functions. After covering the entire phase diagram for a binary mixture by 
varying the preloading of the pure components, a model fitting the experimental data can be 
used to generate loci such as isobars or constant loading of one component. 
Figure 7. Comparison of the differential heat of adsorption (solid line) with experimental 
heats determined with finites doses of gas. The dashed line is the integral heat of adsorption. 
Heats determined experimentally with small doses of the order 0.12 mol/Kg agree very well 
with the exact differential heat. 
Since our first measurements of heats of adsorption from binary mixtures reported in 1997 for 

CH4 and C2H6 in silicalite and for CO2 and C2H6 in NaX, we have completed experiments for 

four other binary mixtures; one of them is reported in this paper (SF6 and CH4 on NaX). 

Presently, we are computing thermodynamic excess properties for these mixtures, especially 

adsorbed-phase activity coefficients, excess free energy, excess entropy, and heat of mixing in 
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the adsorbed phase. It is interesting that all of the excess functions are negative: activity 

coefficients are less than unity, and the heat of mixing is exothermic in every case. 
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Fig. 14. A typical thermogram of electric calibration by stationary state  

5. Variation of the noise levels in the baseline of an adsorption 
microcalorimeter 

To measure precisely the heat, various elements can be used. The thermometer can be very 
stable, but only by a period of time that exceeds the experiment. However, other sensors can 
be used, such as termistors that are particularly useful for several reasons: high thermometric 
sensitivity; built with simple and inexpensive components; and at last, they have a small mass 
then, the time constant can be also small. The principal disadvantage is that the termistor heats 
itself. Some electronic circuits are sometimes used when termistors are employed to measure 
the temperature (Hansen and Hart, 2004), like the modified Wheatstone bridge, one of the 
most used because of its simplicity, easy operation and high sensitivity. However, when a high 
sensitive system is required, like in calorimetric studies for the gas-solid interphase, a Calvet-
type adsorption calorimeter is the chosen. In these equipments the measure system consists in 
a group of thermo couples in series that form the thermo battery, which is the measure thermo 
element. These thermo elements use the Seebeck effect, where a difference in the temperature 
generates a difference in the potential (Martínez et al., 2004). A thermo battery works very well 
in theory, but errors are common in practice, which are attributed to small electrical signals 
generated by the unions, connections and imperfections in the electrical circuit employed in 
the laboratories to obtain the thermo electrical signal. Within them it can be mentioned: a) the 
length, thickness, polarity of the terminal wires in the thermo batteries; b) the number of 
connections in the system; c) the magnitude of the thermal gradients along the wires in the 
thermal elements. These factors can generate noise levels that could invalidate the calorimetric 
measures if taken into account that the magnitude of the thermal effect in adsorption 

www.intechopen.com



Calorimetric: A Tecnique Useful in Characterization of Porous Solid 

 

397 

calorimetry, in some cases, are about μW. In this context, it is called noise to every undesired 
signal that overlaps the genuine signal and it is not directly related to the thermal measure and 
could distort it. There are three kinds of fundamental noises in every electronic component, 
two of which are: a) thermal noise or Johnson; b) shot noise. 

5.1 Thermal noise or Johnson 
Every kind of resistances generates, by themselves and by their terminals, a voltage with 
random fluctuations like thermal noise or Johnson, which is caused by the charge carrier 
random movement in conductor materials. It is always produced at temperatures above 
absolute zero (-273ºC or 0 K).  
This kind of noise is related to the no continuous nature of the electrical current, formed by 
a discrete charges flow that causes statistical fluctuations in the current. The shot noise, as 
well as the thermal noise, is a kind of white noise.   
In this work, we studied the noise signal behavior generated in an adsorption micro 
calorimeter built in our laboratory, based in others built previously, respect to the applied 
potent and the temperature, to establish if the noise level can eventually affect the measures 
in the gas-solid interface (García et al., 2008). 

5.2 Experimental 
The measures are realized in a micro calorimeter designed in our laboratory, which basic 
scheme is shown in Figure 15. I consist basically in two parts: a) adsorption part and b) the 
micro calorimeter itself. Each one of these parts is detailed in the figure. 
 

 

Fig. 15. Adsorption Micro calorimeter 
1. Precision Valves 2. Calibration volume or storage.  3. Pressure Transducers. 4. Nitrogenous Traps 5. 
Adsorbate.  6. Reference Cell.  7. Reaction Cell.  8. Heat Storage.  9. 3D-Type Heat Sensors.  10. Vacuum 
System.  11. Temperature Control Sensor  
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A detail of the calorimetric cell is shown in Figure 16. It consists in two calorimetric cells; 
one of them acts as the reference cell and the other as the measure cell. The 3D-Type heat 
sensors used are zoomed in the same figure. 
The equipment is insolated from the surroundings to control the temperature by a special 
material with low thermal conductivity. The calorimeter has two resistances with the same 
magnitude, which value is about 698.32 KΩ. The measurements scheme is shown in Figure 
17; it is highlighted with an interrupted line, the external electrical connections between the 
adsorption micro calorimeter and the data entry system, which contribute to the noise in the 
signal measurements.  
 

 

Fig. 16. Calorimetric Cell in the adsorption micro calorimeter  

 

Fig. 17. Sistema de captura de datos 
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To determine the noise level, different signal potencies are applied by means of the 
electrical resistance with a fix electrical work at different temperatures and under 
experimental work conditions in the surroundings. It was also realized some essays at a 
fix temperature and varying the electrical work level. A highly stabilized source Agilent™ 
E3649A Al model applies the potential and a multimeter Agilent™ 34401 with 6½ 
numbers enters the data. This multimeter is connected to a PC by a GPIB interface, where 
the signals are evaluated.  

5.3 Results 
 

The results at a constant temperature of 18ºC, where obtained by putting the system in an 

air thermostat and varying the applied potential and the electrical work levels. The applied 

potential varied from 0.40 to 1.5 volts that corresponds to electrical works from 0.19 to 2.70 

Jules. Figure 18 shows that increasing the electrical work magnitude, increases the noise 

level about 10 μV and repeated tests for the lowest values of electrical work increase the 

noises values about 15 μV. These results are interesting under an experimental point of view 

in fine calorimetry like adsorption because, independently of this values magnitude, it is 

important to compare them with the thermal effect magnitude and then, quantify the 

possible error introduced in the measures. When dissipating a small electrical work, there is 

a tendency to about 1 μV noise in the baseline; when shooting bigger electrical works, it 

increases to magnitude orders no too large compared to the measurements. 
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Fig. 18. Peak to Peak Noise Level at 18 °C varying the Voltage Level 

Although in specialized bibliography there are some studies about the noise level in 

calorimeters and/or in calorimetric measurements and different magnitude orders have 

been reported in different kind of calorimeters (Degroote and García, 2005), this work 

focuses in the importance of determining in a precise way, the signals that are not associated 

with what is under measure, like noises, which are due to the connections between the 

different parts of the equipment. 
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Figure 19 shows a calibration potenciogram for the constructed calorimeter with a zoom in 
the baseline signal part; it is clear that the noise level is insignificant respect to the signal, 
with a noise value in this case of 0.5 μV for a dissipated electrical work of 0.42 Jules. 
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Fig. 19. Potenciogram: Applied Work 0.42 Jules; Peak to Peak Noise 0.5  
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Fig. 20. Peak to Peak Noise Level applying a 0.42 Jules Work   

In this work, it was studied if the time constant value (τ) of the equipment could be affected 
by the noise level magnitude. It was established that it is not true, obtaining repetitive 
values about 120 seconds, quite similar to commercial equipment like SETARAM™. 
Figure 20 shows the behavior of the calorimetric system when is varied the temperature at a 
fix level of electrical work (0.42 Jules). This essay is realized taking into account that the 
equipment was designed to work in a temperature range from -196ºC to 600ºC. The figure 
shows that near room temperature the signal noise level is about 0.5 μV, which permits 
without any doubt to carry out experiments with magnitudes about 5 mV with a good 
precision. At low temperatures the noise level increases up to about 20 μV. It must be taking 
into account that when the temperature decreases in the calorimeter, a thermal gradient is 
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generated between the heat sensor terminals inside the calorimeter and the ones connected 
to its external part, causing a higher noise level in the signal. Certainly, it is observed here 
the thermal noise or Johnson that is present at temperatures higher than -273ºC, where the 
connections can be considered resistances that generate by means of their terminals a 
voltage with random fluctuations. This generates a random movement in the charge carrier 
in conducting materials. The resistance has a conduction band with electrons free that tends 
to move freely in any direction, the thermal energy of the surrounding provokes this 
random movement that at the same time increases the temperature.  
In Figure 21 it is shown the noise level monitoring keeping constant the temperature at 18ºC 
by more than 36 hours.  
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Fig. 21. Noise Signal in the Calorimeter during 36 hours 

It is noticed that the stability in the baseline is very important, where the noise level is under 
0.5 μV; the scale is zoomed to a better visualization of the noise signal. It is important to 
recall that the electrical connections generate noises that can also be associated to the shot-
type noise. 

6. Conclusions 

It was built an adsorption micro calorimeter at an affordable price, which is useful to measure 
adsorption heats and solid surfaces reactions. The equipment works in a temperature range 
from 77 K to 500 K. It was demonstrated experimentally in this work that it works at 298 K. 
Calorimetric cells in glass and stainless steel were prepared for the treatment of samples in 
static form. These cells enable the study of various catalysts in general. The time constants in 
vacuum and at atmospheric pressure were determined. These constants show that this 
equipment is useful to study processes with slow kinetic. The sensitiveness of the equipment is 
high. Finally the noise in the signal is very small and do not affect the measures. 
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