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1. Introduction     

In order to develop a generalized numerical model for multi-layered tsunami wave system, 
a three-layer system was considered. Six governing equations, two for each layer were 
derived from Euler equations of motion and continuity for three layers, assuming long wave 
approximation, negligible friction and interfacial mixing. From derived equations, it is 
found that only top layer equations are independent of number of intermediate layers; 
equations for all other layers are dependent on number, extent and density of intermediate 
layer(s). Momentum and continuity equations for the top layer are exactly same as in the 
case of earlier developed governing equations for two-layered system. Continuity equation 
for the bottom layer is also exactly same as in the case of two-layered system. Momentum 
equation for the bottom layer is dependent on extent and density of top layer as well as all 
intermediate layers. Continuity equation for intermediate layer is affected by levels of 
immediate bottom layer. Momentum equation for the intermediate layer is affected by 
extent and density of upper layer(s). Developed governing equations were converted to a 
numerical model using staggered Leap-Frog scheme for the computations of water level and 
discharge in each layer in one-dimensional propagation. Developed numerical model results 
were compared with an earlier developed model for two layers, which was rigorously 
verified by analytical solution. It was found that this three-layer model produces same 
results when it is converted to two-layer through mathematical manipulation (i.e. by 
assuming a negligible/zero depth or similar density of adjacent layer for any layer). The 
details properties of three-layer model were discussed through numerical simulations for 
different scenarios. The developed model can be easily converted to a multi-layer (any 
number) model and can be applied confidently to simulate the basic features of different 
practical tsunami problems similar to that investigated in this study. 

2. Background 

Multi-layered flow is related with many environmental phenomena. Thermally driven 
exchange flows through doorways to oceanic currents, salt water intrusion in estuaries, 
spillage of the oil on the sea surface, spreading of dense contaminated water, sediment 
laden discharges into lakes, generation of lee waves behind a mountain range and tidal 
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flows over sills of the ocean are examples of multi-layered flow. In hydraulics, this type of 
flow is often termed as gravity current. An extensive review on hydrodynamics of various 
gravity currents was provided by Simpson, J.E. (1982). 
Tsunamis are generated due to disturbances of free surfaces caused by not only seismic fault 
motion, but also landslide and volcanic eruptions (Imamura and Imteaz, 1995). Tsunami 
waves are also affected by density differences along the depth of ocean. There are some 
studies on two-layered long waves or flows in the case of underwater landslide generated 
tsunamis (Hampton, 1972; Parker, 1982; Harbitz, 1991; Jiang & Leblond, 1992). Imamura & 
Imteaz (1995) developed a linear numerical model on two-layered long wave flow, which 
was successfully validated by a rigorous analytical solution. Later the linear model was 
extended to a non-linear model and effects of non-linearity were investigated (Imteaz & 
Imamura, 2001b). Madsen et al. (2002) developed a model of multi-layered flow based on 
Boussinesq-type equations, which are suitable for shallow depth flow. Lynett and Liu (2004) 
developed another model of multi-layered flow using piecewise integration of Laplace 
equation for each individual layer and expanded the model for deep water.  
Choi and Camassa (1996) derived two-dimensional non-linear equations for two-layered 
fluid system and presented some numerical simulations of their model for one-dimensional 
unidirectional wave propagation. Later Choi and Camassa (1999) further developed 
governing equations for the unidirectional propagation of internal gravity waves at the 
interface of two immiscible inviscid fluids. They have compared their numerical results with 
available experimental data for solitary waves of large amplitude in two-fluid system. Liska 
and Wendroff (1997) derived one-layer and two-layer classic shallow water equations for 
flow over topography, as well as one-layer and two-layer non-hydrostatic equations. They 
have compared their numerical results with the numerical computations obtained by others. 
Percival et al. (2008) presented a multi-layer extension of Green-Naghdi equations (Green 
and Naghdi, 1976) using a special framework based on the Euler-Poincare theory. Through 
numerical simulations they have shown that free surface of a multi-layer model can exhibit 
intriguing differences compared to the results of single layer model. Cotter et al. (2010) 
modified the multi-layer Green-Naghdi equations to incorporate effects of shear stress. They 
have presented numerical simulations for the wave propagation and interactions between 
two layers, with and without shear considerations. 
All the above mentioned models, presented their results in two-layer case only. However, 
interactions within the layers for a two-layer fluid are significantly different than a three (or 
more) layer fluid. Top surface is having effect from immediate lower layer only, which is 
same for both the models; however, intermediate layer is having effects from both the lower 
layer and upper layers and lower layer is having effects from all the upper layers (Imteaz et 
al., 2009). Imteaz et al. (2009) provided detailed derivation of multi-layered tsunami wave 
and flow equations based on Navier-Stokes equation. Also, properties of multi-layered 
equations were discussed in details. Present paper describes conversion of developed multi-
layered tsunami equations in to numerical form, comparison of developed model with 
earlier validated model and several simulations scenario. 

3. Governing equations 

Figure 1 shows the schematic diagram of three layer propagation having different densities 
and depths. For a three layered one-dimensional propagation, considering Euler’s equations 
of motion and continuity for each layer in a wide channel with non-horizontal bottom, 
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through integration and rigorous formulation assuming a hydrostatic pressure distribution, 
negligible friction, negligible interfacial mixing and proper boundary conditions, 
mathematical continuity and momentum equations were derived for each layer. Also 
uniform density and velocity distributions in each layer were assumed. Original derived 
equations are further simplified considering horizontal bottom (i.e. no variations of ‘h’ along 
x direction, ∂h/∂x=0). 
 

 

Fig. 1. Schematic diagram of three layer profile  

Detailed derivations of mathematical equations are described by Imteaz et al. (2009). The 
equations are as follows: 
For the upper layer- 
Continuity equation, 

 
( - )M1 1 2+ = 0

x t
η η∂∂

∂ ∂  (1) 

Momentum equation, 

 
2( / )M D1M1 1 1+ + g = 0D1

t x x

∂ ∂η∂
∂ ∂ ∂

 (2) 

For the intermediate layer- 
Continuity equation, 

 2 2 3( - )M
+ = 0

x t

∂ η η∂
∂ ∂

 (3) 
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Momentum equation, 

 1

2

2( / )M D2M2 2 1 2 2+ + g - + = 0D2
t x x x x

⎧ ⎫α∂ ∂ ∂ ∂η η η⎛ ⎞∂ ⎪ ⎪
⎨ ⎜ ⎟ ⎬

∂ ∂ α ∂ ∂ ∂⎝ ⎠⎪ ⎪⎩ ⎭
 (4) 

For the lower layer- 
Continuity equation, 

 3 3M
+ = 0

x t

∂η∂
∂ ∂

 (5) 

Momentum equation, 

 33 3 3 32
3 1 2

2
1 2( / )M M D

+ + g - + - = 0D
t x x x x x x

⎧ ⎫∂ ∂∂ ∂ ∂η ηη η η⎛ ⎞∂ ∂ ⎛ ⎞⎪ ⎪α + α⎨ ⎬⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
 (6) 

Where, 
η1 = Water surface elevation above still water level of layer '1' 

η2 = Water surface elevation above still water level of layer '2' 
η3 = Water surface elevation above still water level of layer '3' 

D1 = η1 + h1 - η2, D2 = h2 + η2 - η3, D3 = h3 + η3, α1 = ρ1/ρ3, α2 = ρ2/ρ3 

h1 = Still water depth of layer '1' 
h2 = Still water depth of layer '2' 
h3 = Still water depth of layer '3' 

32
, 321 3

3 3
1

- h +- + hh 111 2
uM u= u dy, = dy M = dyM 2

- + - - - - hh h h h h1 1 2 1 22

− ηη η
∫ ∫ ∫

+ η −η
 

From the derived equations, it is found that momentum equation for upper layer is not 
affected by the properties of adjacent layer (layer underneath). However, continuity 
equation of upper layer is affected by surface elevation of intermediate layer. Continuity 
equation for intermediate layer is affected by the surface elevation of bottom layer. 
Momentum equation for intermediate layer is affected by density and spatial change of 
surface elevation of upper layer. Continuity equation for bottom layer is not affected by 
either uppermost layer or intermediate layer. However, momentum equation of bottom 
layer is affected by densities and spatial changes in surface elevations of all the layers above 
it. Properties of all these equations were described in detailed by Imteaz et al. (2009). Also, 
wave celerity of each layer was deduced as follows: 

( )11 1 3 1C gh= + α β  

( )1 ( )2 2 2 2 1C gh= + β α − α    

( )13 3 2C gh= − α  
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4. Numerical model 

Developed governing equations are non-linear. It is very difficult to solve the non-linear 

governing equations analytically, but it can be solved numerically using proper finite 

difference scheme. Staggered Leap-Frog scheme has been used to solve the governing 

equations numerically, as it was found producing very good results in earlier developed 

models (Imamura & Imteaz, 1995; Imteaz & Imamura, 2001a and Imteaz & Imamura, 2001b). 

Figure 2 shows the schematic diagram of the staggered Leap-Frog scheme. This scheme is 

one of the explicit central difference schemes with the truncation error of second order. The 

staggered scheme considers that the computation point for one variable (η) does not 

coincide with the computation point for other variable (M). There are half step differences 

(½Δt and ½Δx ) between computation points of two variables (as shown in Figure 2). Using 

this scheme, finite difference equations for the derived governing equations are as follows: 
 

For the upper layer- 
Continuity equation, 

 

n+1/ 2 n-1 / 2 n+1/ 2 n-1 / 2 n n-- - + M M1,i+1 / 2 1,i-1 / 21,i 1,i 2,i 2,i
+ = 0

t x

η η η η

Δ Δ
 (7) 

Momentum equation, 

n-1 / 2 n-1 / 2n-1 / 2 n-1 / 2n n-1
1,i+1 / 2 1,i+1 / 2 1,i+1 1,i 1,i+1 1,i- -+M M D D

+ g +
t 2 x

η η

Δ Δ
 

 

2 2n-1 n-1
1,i+1 / 2 1,i-1 / 2

n-1 / 2 n-1 / 2 n-3 / 2 n-3 / 2 n-1 / 2 n-1 / 2 n-3 / 2 n-3 / 2
1,i+1 1,i 1,i+1 1,i 1,i 1,i-1 1,i 1,i -1

( () )M M
-

( + + + ) / 4 ( + + + ) / 4D D D D D D D D
= 0

xΔ
 (8) 

For the intermediate layer- 
Continuity equation, 

 2 22 2 3 3
n+1 / 2 n-1 / 2 n+1 / 2 n-1 / 2 n n

,i+1 / 2 ,i-1 / 2,i ,i ,i ,i -- - + M M
+ = 0

t x

η η η η

Δ Δ
 (9) 

Momentum equation, 

2 2 2 2 1 1 2 2 2 21

2

n-1/ 2 n-1/ 2 n-1/ 2 n-1/ 2 n-1/ 2 n-1/ 2 n-1/ 2 n-1/ 2n n-1- + - - -M M D D,i+1/ 2 ,i+1/ 2 ,i+1 ,i ,i+1 ,i ,i+1 ,i ,i+1 ,i+ g
t 2 x x x

⎡ ⎤⎛ ⎞η η η η η ηα⎢ ⎥⎜ ⎟− +⎢ ⎥⎜ ⎟Δ α Δ Δ Δ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

2 2

2 2 2 2 2 2 2 2

2 2n-1 n-1( () )M M,i+1/ 2 ,i-1/ 2
-

n-1/ 2 n-1/ 2 n-3/ 2 n-3/ 2 n-1/ 2 n-1/ 2 n-3/ 2 n-3/ 2( + + + ) / 4 ( + + + ) / 4D D D D D D D D,i+1 ,i ,i+1 ,i ,i ,i-1 ,i ,i-1
= 0

x
+

Δ
 (10)   
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For the lower layer- 
Continuity equation, 

 
3 33 3

n+1/ 2 n-1 / 2 n n-- M M,i+1/ 2 ,i-1 / 2,i ,i
+ = 0

t x

η η

Δ Δ
 (11)  

Momentum equation, 

3 3 1 1 2 2
1

n-1/ 2 n-1 / 2 n-1 / 2 n-1 / 2 n-1 / 2 n-1 / 2+ - -D D,i+1 ,i ,i+1 ,i ,i+1 ,i
g

2 x x

⎡ ⎤⎛ ⎞η η η η⎢ ⎥⎜ ⎟α − +⎢ ⎥⎜ ⎟Δ Δ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

3 3 3 3 2 2 3 3
2

n-1/ 2 n-1 / 2 n-1 / 2 n-1 / 2 n-1 / 2 n-1 / 2 n-1 / 2 n-1 / 2+ - - -D D,i+1 ,i ,i+1 ,i ,i+1 ,i ,i+1 ,i
g

2 x x x

⎡ ⎤⎛ ⎞η η η η η η⎢ ⎥⎜ ⎟+ α − +⎢ ⎥⎜ ⎟Δ Δ Δ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

3 3

3 3 3 3 3 3 3 3

2 2n-1 n-1
,i+1 / 2 ,i-1 / 2

n-1 / 2 n-1 / 2 n-3 / 2 n-3 / 2 n-1 / 2 n-1 / 2 n-3 / 2 n-3 / 2
,i+1 ,i ,i+1 ,i ,i ,i -1 ,i ,i -1

( () )M M
-

( + + + ) / 4 ( + + + ) / 4D D D D D D D D

xΔ
 

 
2 2
n n-1

,i+1 / 2 ,i+1 / 2-M M
= 0

t
+

Δ
  (12) 

where, 'n' denotes the temporal grid points and 'i' denotes the spatial grid points as shown 
in Figure 2. To calculate 'D' values at the computation point of 'M', average of four 
surrounding 'D' values were taken.  
In spatial direction all η1, η2 and η3 at step 'n-1/2' and all M1, M2 and M3 at step '(n-1)' are 

given as initial conditions. For all later time steps at right boundary all values of M1, M2 and 

M3 are calculated by characteristic method, using the values of previous time step and wave 

celerity. By using deduced finite difference Momentum equations for upper, intermediate 

and lower layer all M1, M2 and M3 values at step 'n' are calculated. Then using the latest 

values of M3 and deduced finite difference continuity equation for the lower layer all the 

values of η3 at step '(n+1/2)' are calculated. Then using the latest values of η3, M2 and 

deduced finite difference continuity equation for the intermediate layer, all the values of η2 

at step '(n+1/2)' are calculated. Again, using the latest values of η2, M1 and deduced finite 

difference continuity equation for the upper layer, all the values of η1 at step '(n+1/2)' are 

calculated. Similarly, using new values of η1, η2, η3, M1, M2 and M3 as initial conditions 

calculations proceeded in time direction up to the desired time step. 

As initial condition (i.e. at t=0) all η1, η2, M1 and M2 values are taken as zero. For interface 

(between bottom layer and intermediate layer), assumed initial conditions are shown in 

Equations 13 & 14, which are based on the initial formation of tsunami wave. Expression of η3,  

 Sin Sin3 33
2

= (kx) = ( x)a a
L

π
η  (13) 
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Fig. 2. Schematic diagram of the staggered Leap-Frog scheme 

and corresponding discharge, 

 3 3 33 3= (g / ) ( + )M h hη η  (14)  

 

where, a3, k and L are the wave amplitude, wave number and wave length for the interfacial 

surface of intermediate layer and the bottom layer.  

While computing water levels and discharges using Staggered Leap-Frog scheme, it is 

required to calculate boundary values (right and left boundaries) of water levels and 

discharges, using appropriate boundary conditions. Imamura and Imteaz (1995) discussed 
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several possible boundary conditions. Among all the possible boundary conditions, it was 

found that the following provides good results for non-linear model simulations (Imteaz & 

Imamura, 2001b):  M1, M2 and M3 at the right boundary are calculated using characteristic 

method; constant wave celerities (which were estimated using analytical expressions) were 

used throughout the computational domain. Finally, using periodic condition, water levels 

at left boundary was used same as the right boundary. 

5. Model comparison 

It is found that the developed governing equations are complicated having influence from 

upper and/or lower layer(s) flow. Analytical solutions for such complicated differential 

equations are yet to be achieved. However, numerical models for two layer tsunami wave 

were validated with analytical solutions for known interface propagation with unknown top 

surface propagation by Imamura & Imteaz (1995) and for known top surface propagation 

with unknown interface propagation by Imteaz & Imamura (2001a). As the present 

developed model could not be verified with an analytical solution, it is indirectly compared 

with an earlier validated numerical model. Developed model was converted to a pseudo 

two-layer by assuming very close densities (1.0 and 0.99) for the intermediate and bottom 

layers respectively, with an upper layer density of 0.90. This numerical manipulation is 

supposed to produce similar results with a two-layer model having densities of 0.90 and 1.0 

for the upper layer and lower layer respectively, provided depth of upper layer in both the 

two-layer and three-layer models are same and total depth of lower layers (intermediate 

layer and bottom layer) in three-layer model is same as the bottom layer of the two-layer 

model. With the above-mentioned conditions two separate models (two-layer model and 

three-layer model) were simulated with the same  boundary conditions and having other 

properties as: 

 

Wave length: 395.0 m 
Wave amplitude: 2.0 m 
DX = 10.0 m 
DT = 0.20 sec 
 
Models were simulated for a period of 4 seconds. Figures 3 & 4 show the pseudo three-layer 

model results comparison with the two-layer model results for similar input data. Figure 3 

shows the comparison of model results for the top surface. It is found that the pseudo three-

layer model simulates exactly same top surface level as the original two-layer model. Figure 

4 shows the comparison of model results for the interface (interface between the 

intermediate layer and the upper layer for three-layer model). Again it is found that the 

pseudo three-layer model simulates almost same interface level as the original two-layer 

model. However, there are slight variations in the simulation of interface level, compared to 

the original two-layer model simulation. The reason for this variation is the fact that the 

lower layer density for the two-layer model is 1.0; however for a three-layer model this is 

not a single layer having a same density of 1.0, rather it is a combination of two layers 

having densities of 1.0 and 0.99. However, the variations are very insignificant and 

agreements of models results can be termed as very good.    

www.intechopen.com



Numerical Model for Multi-layered Tsunami Waves   

 

489 

-0.08

-0.04

0

0.04

0.08

0 0.2 0.4 0.6 0.8 1

x/L

η
/H

Two Layer Model

Three Layer Model

 

Fig. 3. Comparison of model results for the top surface 
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Fig. 4. Comparison of model results for the interface 

6. Scenario simulations 

The developed model was used for several scenario simulations. Model was simulated for 
the following conditions: 
 

Wave length: 395.0 m 
Lower layer wave amplitude: 2.0 m 
DX = 10.0 m, DT = 0.20 seconds 
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h1 = h2 = h3 = 25.0 m 
ρ1 = 0.8, ρ2 = 0.9, ρ3 = 1.0 
 

For simplicity each layer depth was assumed as 25.0m, however the model can simulate for 

any layer depth. For the previous two-layered models, it was found that with the assumed 

DX/DT ratio, model’s stability condition is good. Imteaz (1994) has presented detailed 

stability criteria analysis for the two-layered tsunami waves with Staggered Leap-Frog 

scheme. Eventually, Imteaz (1994) has proposed several regimes of DX and DT for the 

numerical stability of the model. A separate stability criteria analysis for the current three-

layered model needs to be performed to achieve best numerical stability.  

Figure 5 & 6 show the model simulations for all the three layer surfaces after 4 seconds and 

12 seconds respectively. From the figures it is found that the surface of the lower layer gets 

amplified with the course of time, whereas the surface of the intermediate layer gets 

dampen down with the course of time. These are because of the complicated interactions 

from the adjacent layers. 

Figures 7, 8 & 9 show the wave propagation patterns for lower surface, intermediate surface 

and top surface respectively. From the figures it is clear that propagations of lower layer and 

intermediate layers are relatively smooth. However, propagation of top surface is faster and 

having dramatic changes. For the top surface, wave phase changes from 4 seconds to 12 

seconds, i.e. wave moves a distance of half of the wave length within 8 seconds. Also, within 

4 seconds to 12 seconds, two wave crests of smaller amplitudes were formed. 

Till now analytical solution of such complicated flow was not successfully achieved. 

However, in the future if such analytical solution is achieved, numerical results of the 

current model can be verified. 
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Fig. 5. Three layer model simulation results after 4 seconds 
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Fig. 6. Three layer model simulation results after 12 seconds 
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Fig. 7. Simulation results for the propagation of lower surface 
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Fig. 8. Simulation results for the propagation of intermediate surface 
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Fig. 9. Simulation results for the propagation of top surface 
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7. Conclusion 

Earlier developed governing equations for three layered long waves are complex having 
several interactions from adjacent/all layers, which make those equations very difficult to 
solve analytically. Analytical solutions for these sorts of equations are yet to be succeeded 
by anyone. To achieve a numerical solution, governing equations were transformed into 
numerical formulations. Original derived equations were simplified considering horizontal 
bottom (i.e. no variations of ‘h’ along x direction, ∂h/∂x=0). Numerical model was 
developed using staggered Leap-Frog scheme, as the same scheme produced good results 
for two layer numerical models.  
At the beginning of the computations, all the initial values of η1, η2, η3, M1, M2 and M3 were 
given as initial conditions. All the variables for the later time steps were computed as 
follows:  

• using deduced finite difference Momentum equations for the upper, intermediate and 
lower layer all the M1, M2 and M3 values were calculated 

• then using the latest values of M3 and deduced finite difference continuity equation for 
the lower layer all the values of η3 were calculated 

• then using the latest values of η3, M2 and deduced finite difference continuity equation 
for the intermediate layer, all the values of η2 were calculated 

• using the latest values of η2, M1 and deduced finite difference continuity equation for 
the upper layer, all the values of η1 were calculated 

• at right boundary all the values of M1, M2 and M3 were calculated by characteristic 
method, using the values of previous time step and wave celerity 

• using periodic condition, water levels at left boundary was used same as the right 
boundary 

Model results for a pseudo two-layer case were compared with an earlier validated model 
for real two–layer mode. Agreements are very good and it can be concluded that developed 
three-layer model is capable to produce realistic results. Using the developed model, some 
scenarios were presented. From scenario simulations it is found that the lower surface gets 
amplified with the course of time, whereas the intermediate surface and top surface get 
dampen down with the course of time. Also, it is found that the propagations of lower and 
intermediate surfaces are relatively smooth. However, propagation of top surface is faster 
and having dramatic changes. These are because of the interactions from the adjacent layers. 
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NOTATIONS 

ρ = Density of fluid 
M = Discharge per unit width of flow 
η = Water surface elevation above still water level 
h = Still water depth for a particular layer 
D = Total depth of layer 
┙ = Ratio of density of upper layer fluid to lower layer fluid 
x = Distance along downstream direction 
y = Distance perpendicular to x-direction 
u = Uniform velocity over the depth along x-direction 
v = Uniform velocity along y-direction 
P = Hydrostatic pressure of fluid 
┚ = Ratio of depths of lower layer to upper layer 
C = Wave celerity 
‘t’ represents for time and subscripts ‘1’, ‘2’ and ‘3’ denotes for upper layer, intermediate 
layer and bottom layer respectively.  
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