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1. Introduction 

In the last decade, the Computational Intelligence tools (CI), including Artificial Neural 
Networks (ANN) and Fuzzy Systems (FS), applying soft computing, became universal 
means for many applications. Because of their approximation and learning capabilities, the 
ANNs have been widely employed to dynamic process modeling, identification, prediction 
and control, (Boskovic & Narendra, 1995; Haykin, 1999; Bulsari & Palosaari, 1993; Deng & 
Li, 2003; Deng et al., 2005; Gonzalez-Garcia et al., 1998; Padhi & Balakrishnan, 2003; Padhi et 
al., 2001; Ray,1989). Many applications have been done for identification and control of 
biotechnological plants too, (Padhi et al., 2001). Among several possible neural network 
architectures the ones most widely used are the Feedforward NN (FFNN) and the Recurrent 
NN (RNN), (Haykin, 1999). The main NN property namely the ability to approximate 
complex non-linear relationships without prior knowledge of the model structure makes 
them a very attractive alternative to the classical modeling and control techniques. Also, a 
great boost has been made in the applied NN-based adaptive control methodology 
incorporating integral plus state control action in the control law, (Baruch et al., 2004; 
Baruch & Garrido, 2005; Baruch et al., 2007). The FFNN and the RNN have been applied for 
Distributed Parameter Systems (DPS) identification and control too. In (Pietil & Koivo, 
1996), a RNN is used for system identification and process prediction of a DPS dynamics - 
an adsorption column for wastewater treatment of water contaminated with toxic chemicals. 
In (Deng & Li, 2003; Deng et al., 2005) a spectral-approximation-based intelligent modeling 
approach, including NNs for state estimation and system identification, is proposed for the 
distributed thermal processing of the snap curing oven DPS that is used in semiconductor 
packaging industry. In (Bulsari & Palosaari, 1993), it is presented a new methodology for the 
identification of DPS, based on NN architectures, motivated by standard numerical 
discretization techniques used for the solution of Partial Differential Equation (PDE). In 
(Padhi & Balakrishnan, 2003), an attempt is made to use the philosophy of the NN adaptive-
critic design to the optimal control of distributed parameter systems. In (Padhi et al., 2001) 
the concept of proper orthogonal decomposition is used for the model reduction of DPS to 
form a reduced order lumped parameter problem. The optimal control problem is then 
solved in the time domain, in a state feedback sense, following the philosophy of adaptive 
critic NNs. The control solution is then mapped back to the spatial domain using the same 
basis functions. In (Pietil & Koivo, 1996), measurement data of an industrial process are 
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generated by solving the PDE numerically using the finite differences method. Both 
centralized and decentralized NN models are introduced and constructed based on this 
data. The models are implemented on FFNN using Backpropagation (BP) and Levenberg-
Marquardt learning algorithms. 
Similarly to the static ANNs, the fuzzy models could approximate static nonlinear plants 
where structural plant information is needed to extract the fuzzy rules, (Baruch et al., 2008a, 
Baruch et al., 2008b, Baruch et al., 2008c; Baruch & Galvan-Guerra, 2008; Baruch & Galvan-
Guerra, 2009). The difference between them is that the ANN models are global models 
where training is performed on the entire pattern range and the FS models perform a fuzzy 
blending of local models space based on the partition of the input space. So, the aim of the 
neuro-fuzzy (fuzzy-neural) models is to merge both ANN and FS approaches so to obtain 
fast adaptive models possessing learning, (Baruch et al., 2008a). The fuzzy-neural networks 
are capable of incorporating both numerical data (quantitative information) and expert’s 
knowledge (qualitative information), and describe them in the form of linguistic IF-THEN 
rules. During the last decade considerable research has been devoted towards developing 
recurrent neuro-fuzzy models, summarized in (Baruch et al., 2008a). To reduce the number 
of IF-THAN rules, the hierarchical approach could be used (Baruch et al., 2008a). A 
promising approach of recurrent neuro-fuzzy systems with internal dynamics is the 
application of the Takagi-Sugeno (T-S) fuzzy rules with a static premise and a dynamic 
function consequent part, (Baruch et al., 2008a). The paper of (Baruch et al., 2008a) proposed 
as a dynamic function in the consequent part of the T-S rules to use a Recurrent Neural 
Network Model (RNNM). 
Some results of this RNNM approach for centralized and decentralized identification of 
dynamic plants with distributed parameters are given in (Baruch et al., 2008a; Baruch et al., 
2008b; Baruch et al., 2008c; Baruch & Galvan-Guerra, 2008; Baruch & Galvan-Guerra, 2009). 
The difference between the used in the other papers fuzzy neural model and the approach 
used in (Baruch et al., 2008a) is that the other one used the Frasconi, Gori and Soda RNN 
model, which is sequential one, and in (Baruch et al., 2008a), it is used the RTNN model, 
which is completely parallel one. But it is not still enough because the neural nonlinear 
dynamic function ought to be learned, and the Backpropagation learning algorithm is not 
introduced in the T-S fuzzy rule. For this reason in (Baruch et al., 2008a) the RTNN BP 
learning algorithm (Baruch et al., 2008d) has been introduced in the antecedent part of the 
IF-THAN rule so to complete the learning procedure and a second hierarchical 
defuzzyfication BP learning level has been formed so to improve the adaptation and 
approximation ability of the fuzzy-neural system, (Baruch et al., 2008a). This system has 
been successfully applied for identification and control of complex nonlinear plants, (Baruch 
et al., 2008a). 
The aim of this chapter is to describe the results obtained by this system for decentralized 
identification and control of wastewater treatment anaerobic digestion bioprocess 
representing a Distributed Parameter System (DPS), extending the used control laws with 
an integral term, so to form an integral plus state control action, capable to speed up the 
reaction of the control system and to augment its resistance to process and measurement 
noises. The analytical anaerobic bioprocess plant model (Aguilar-Garnica et al., 2006), used 
as an input/output plant data generator, is described by PDE/ODE, and simplified using 
the orthogonal collocation technique, (Bialecki & Fairwether, 2001), in four collocation 
points and a recirculation tank. This measurement points are used as centres of the 
membership functions of the fuzzyfied space variables of the plant. 
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2. Description of the direct decentralized fuzzy-neural control with I-term 

The block-diagrams of the complete direct Fuzzy-Neural Multi-Model (FNMM) control 
system and its identification and control parts are schematically depicted in Fig.1, Fig. 2 and 
Fig. 3. The structure of the entire control system, (Baruch et al., 2008a; Baruch et al., 2008b; 
Baruch et al., 2008c) contained Fuzzyfier, Fuzzy Rule-Based Inference System (FRBIS), and 
defuzzyfier. The FRBIS contained five identification, five feedback control, five feedforward 
control, five I-term control, five total control T-S fuzzy rules (see Fig. 1, 2, 3 for more details). 

 

 

Fig. 1. Block-Diagram of the FNMM Control System 

The plant output variables and its correspondent reference variables depended on space and 
time. They are fuzzyfied on space and represented by five membership functions which 
centers are the five collocation points of the plant (four points for the fixed bed and one 
point for the recirculation tank). The main objective of the Fuzzy-Neural Multi-Model 
Identifier (FNMMI), containing five rules, is to issue states and parameters for the direct 
adaptive Fuzzy-Neural Multi-Model Feedback Controller (FNMMFBC) when the FNMMI 
outputs follows the outputs of the plant in the five measurement (collocation) points with 
minimum error of approximation. The control part of the system is a direct adaptive Fuzzy-
Neural Multi-Model Controller (FNMMC). The objective of the direct adaptive FNMM 
controller, containing five Feedback (FB), five Feedforward (FF) T-S control rules,  five I-
term control rules, and five total control rules is to speed up the reaction of the control 
system, and to augment the resistance of the control system to process and measurement 
noises, reducing the error of control, so that the plant outputs in the five measurement 
points tracked the corresponding reference variables with minimum error of tracking. 
The upper hierarchical level of the FNMM control system is one- layer- perceptron which 
represented the defuzzyfier, (Baruch et al., 2008a). The hierarchical FNMM controller has 
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two levels – Lower Level of Control (LLC), and Upper Level of Control (ULC). It is 
composed of three parts (see Fig. 3): 1) Fuzzyfication, where the normalized reference vector 
signal contained reference components of five measurement points; 2) Lower Level 
Inference Engine, which contained twety five T-S fuzzy rules (five rules for identification 
and twenty rules for control- five in the feedback part, five in the feedforward part, five in 
the I-term part, and five total control rules), operating in the corresponding measurement 
points; 3) Upper Hierarchical Level of neural defuzzification. 
The detailed block-diagram of the FNMMI (see Fig. 2), contained a space plant output 
fuzzyfier and five identification T-S fuzzy rules, labeled as RIi, which consequent parts are 
RTNN learning procedures, (Baruch et al, 2008 a). The identification T-S fuzzy rules have 
the form: 

 RIi: If x(k) is Ai and u(k) is Bi then Yi = Πi (L,M,Ni,Ydi,U,Xi,Ai,Bi,Ci,Ei), i=1-5. (1) 

 

 

Fig. 2. Detailed block-diagram of the FNMM identifier 

The detailed block-diagram of the FNMMC, given on Fig. 3, contained a spaced plant 
reference fuzzyfier and twenty control T-S fuzzy rules (five FB, five FF, five I-term, and five-
total control), which consequent FB, and FF parts are also RTNN learning procedures, 
(Baruch et al., 2008a), using the state information, issued by the corresponding identification 
rules. The consequent part of each feedforward control rule (the consequent learning 
procedure) has the M, L, Ni RTNN model dimensions, Ri, Ydi, Eci inputs and Uffi, outputs 
used by the total control rule. The T-S fuzzy rule has the form: 

 RCFFi: If R(k) is Bi then Uffi = Πi (M, L, Ni, Ri, Ydi, Xi, Ji, Bi, Ci, Eci), i=1-5. (2) 

The consequent part of each feedback control rule (the consequent learning procedure) has 
the M, L, Ni RTNN model dimensions, Ydi, Xi, Eci inputs and Ufbi, outputs used by the total 
control rule. The T-S fuzzy rule has the form: 

 RCFBi: If Ydi is Ai then Ufbi = Πi (M, L, Ni, Ydi, Xi, Xci, Ji, Bi, Ci, Eci), i=1-5. (3) 
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Fig. 3. Detailed block-diagram of the HFNMM controller 

The I-term control algorithm is as follows: 

 UIti (k+1) = UIti (k) + To K i (k) Eci (k), i=1-5; (4) 

where To is the period of discretization and K i  is the I-term gain. An appropriate choice for 

the  I-term gain K i is a proportion of the inverse input/output plant gain, i.e.: 

 K i (k) =  η (Ci Bi)+. (5) 

The product of the pseudoinverse  (Ci Bi)+ by the output error Eci (k) transormed the output 

error in input error which equates the dimensions in the equation of the I-term control. The 

T-S rule, generating the I-term part of the control executed both equations (4), (5), 

representing a computational procedure, given by: 

 RCIti: If Ydi is Ai then UIti = Πi (M, L, Bi, Ci, Eci , To, η), i=1-5. (6) 

The total control corresponding to each of the five measurement points is a sum of its 

corresponding feedforward, feedback, and I-term parts, as: 

 Ui (k) = -Uffi (k) + Ufbi (k) + UIti (k), i=1-5. (7) 

The total control is generated by the procedure (7) incorporated in the T-S rule: 

 RCi: If Ydi is Ai then Ui = Πi (M, Uffi, , Ufbi, UIti), i=1-5. (8) 

The defuzzyfication learning procedure, which correspond to the single layer perceptron 

learning is described by: 

 U = Π (M, L, N, Yd, Uo, X, A, B, C, E). (9) 
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The T-S rule and the defuzzification of the plant output of the fixed bed with respect to the 
space variable z (λi,z  is the correspondent membership function), are given by: 

 ROi: If Yi,t is Ai then Yi,t = aiTYt + bi, i=1,2,3,4; (10) 

 Yz=[Σi ┛i,z aiT] Yt + Σi ┛i,z bi  ; ┛i,z = λi,z / (Σj λj,z). (11) 

The direct adaptive neural control algorithm, which appeared in the consequent part of the 
local fuzzy control rule RCFBi, (3) is a feedback control, using the states issued by the 
correspondent identification local fuzzy rule RIi (1). 

3. Description of the indirect (sliding mode) decentralized fuzzy-neural 
control with I-term 

The block-diagram of the FNMM control system is given on Fig.4. The structure of the entire 
control system, (Baruch et al., 2008a; Baruch et al., 2008b; Baruch et al., 2008c), contained 
Fuzzyfier, Fuzzy Rule-Based Inference System, containing twenty T-S  fuzzy rules (five 
identification, five sliding mode control, five I-term control, five total control rules), and a 
defuzzyfier. Due to the learning abilities of the defuzzifier, the exact form of the control 
membership functions is not need to be known. The plant output variable and its 
correspondent reference variable depended on space and time, and they are fuzzyfied on 
space. The membership functions of the fixed-bed output variables are triangular or 
trapezoidal ones and that - belonging to the output variables of the recirculation tank are 
singletons.  Centers of the membership functions are the respective collocation points of the 
plant. The main objective of the FNMM Identifier (FNMMI) (see Fig. 2), containing five T-S 
rules, is to issue states and parameters for the indirect adaptive FNMM Controller 
(FNMMC) when the FNMMI outputs follows the outputs of the plant in the five 
measurement (collocation) points with minimum MSE of approximation. 
The objective of the indirect adaptive FNMM controller, containing five Sliding Mode 
Control (SMC) rules, five I-term rules, and five total control rules  is to reduce the error of 
control, so that the plant outputs of the four measurement points tracked the corresponding 
reference variables with minimum MSE%. The hierarchical FNMM controller (see Fig. 5) has 
two levels – Lower Level of Control (LLC), and Upper Level of Control (ULC). It is 
composed of three parts: 1) Fuzzyfication, where the normalized reference vector signal 
contained reference components of five measurement points; 2) Lower Level Inference 
Engine, which contained twenty T-S fuzzy rules (five rules for identification, five rules for 
SM control, five rules for I-term control, and five rules for total control), operating in the 
corresponding measurement points; 3) Upper Hierarchical Level of neural defuzzification, 
represented by one layer perceptron, (Baruch et al., 2008a) . The detailed block-diagram of 
the FNMMI, given on Fig. 2, contained a space plant output fuzzyfier and five identification 
T-S fuzzy rules, labeled as RIi, which consequent parts are learning procedures, (Baruch et 
al., 2008a), given by (1). The block-diagram of the FNMMC, given on Fig. 5, contained a 
spaced plant reference fuzzyfier, five SMC, five I-term control, and five total control T-S 
fuzzy rules. The  consequent parts of the SMC T-S fuzzy rules are SMC procedures, (Baruch 
et al, 2008 a), using the state, and parameter information, issued by the corresponding 
identification rules. The SMC T-S fuzzy rules have the form: 

 RCi: If R(k) is Ci then Ui = Πi (M, L, Ni, Ri, Ydi, Xi, Ai, Bi, Ci, Eci), i=1-5. (12) 
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Fig. 4. Block-diagram of the FNMM control system 

 

 

Fig. 5.  Detailed block-diagram of the HFNMM controller 
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The I-term control algorithm and its corresponding T-S fuzzy rule are given by (4), (5), (6). 
The total control corresponding to each of the five measurement points is a sum of its 
corresponding SMC and I-term parts, as: 

 Ui (k) = Usmci (k) + UIti (k), i=1-5. (13) 

The total control is generated by the procedure (13) incorporated in the T-S rule: 

 RCi: If Ydi is Ai then Ui = Πi (M, Usmci, UIti), i=1-5. (14) 

The defuzzyfication learning procedure, which correspond to the single layer perceptron 

learning is described by (9), (10), (11). 

Next the indirect SMC procedure will be briefly described. 

3.1 Sliding mode control system design 

Here the indirect adaptive neural control algorithm, which appeared in the consequent part 
of the local fuzzy control rule RCi (12) is viewed as a Sliding Mode Control (SMC), (Baruch 
et al., 2008a; Baruch et al., 2008d), designed using the parameters and states issued by the 
correspondent identification local fuzzy rule RIi (1), approximating the plant in the 
corresponding collocation point.  
Let us suppose that the studied local nonlinear plant model possess the following structure:  

 Xp(k+1)=F[Xp(k),-Up(k)]; Yp(k)=G[Xp(k)] , (15) 

where: Xp(k), Yp(k), U(k) are plant state, output and input vector variables with dimensions 

Np, L and M, where L>M (rectangular system) is supposed; F and G are smooth, odd, 

bounded nonlinear functions. The linearization of the activation functions of the local 

learned identification RTNN model, which approximates the plant leads to the following 

linear local plant model: 

 X(k+1)=AX(k)+BU(k); Y(k)=CX(k); (16) 

where L > M (rectangular system), is supposed. Let us define the following sliding surface 

with respect to the output tracking error: 

 
i=1

( 1) ( 1) ( - 1) ;  | | 1;
P

i i
S k E k E k iγ γ+ = + + + <∑  (17) 

where: S(⋅) is the sliding surface error function; E(⋅) is the systems local output tracking 

error; γi are parameters of the local desired error function; P is the order of the error 

function. The additional inequality in (17) is a stability condition, required for the sliding 

surface error function. The local tracking error is defined as: 

 ( ) ( ) - ( );E k R k Y k=  (18) 

where R(k) is a L-dimensional local reference vector and Y(k) is an local output vector with 

the same dimension. The objective of the sliding mode control systems design is to find a 

control action which maintains the systems error on the sliding surface assuring that the 

output tracking error reached zero in P steps, where P<N, which is fulfilled if: 
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 ( 1) 0.S k + =  (19) 

As the local approximation plant model (16), is controllable, observable and stable, (Baruch 
et al., 2004; Baruch et al., 2008d), the matrix A is block-diagonal, and L>M (rectangular 
system is supposed), the matrix product (CB) is nonsingular with rank M, and the plant 
states X(k) are smooth  non- increasing functions. Now, from (16)-(19), it is easy to obtain the 
equivalent control capable to lead the system to the sliding surface which yields: 

 ( )
1

( ) ( ) ( 1) ( 1) ,
P

eq i

i

U k CB CAX k R k E k i Ofγ+

=

= − + + + − + +⎡ ⎤
⎢ ⎥⎣ ⎦

∑  (20) 

 ( ) ( ) ( ) ( )
1

.
T T

CB CB CB CB
−+ = ⎡ ⎤⎣ ⎦  (21) 

Here the added offset Of is a learnable M-dimensional constant vector which is learnt using 

a simple delta rule (see Haykin, 1999, for more details), where the error of the plant input is 

obtained backpropagating the output error through the adjoint RTNN model. An easy way 

for learning the offset is using the following delta rule where the input error is obtaned from 

the output error multiplying it by the same pseudoinverse matrix, as it is: 

 ( ) ( ) ( ) ( )1 1 ( ) .Of k Of k Of k CB E kη ++ = + = +  (22) 

If we compare the I-term expression (4), (5) with the Offset learning (22) we could see that 

they are equal which signifyed that the I-term generate a compensation offset capable to 

eliminate steady state errors caused by constant perturbations and discrepances in the 

reference tracking caused by non equal input/output variable dimensions (rectangular case 

systems). So introducing an I-term control it is not necessary to use an compensation offset 

in the SM control law (20). 

The SMC avoiding chattering is taken using a saturation function inside a bounded control 

level Uo, taking into account plant uncertainties. So the SMC has the form: 

 ( )
0

0

0

( ), if ( )

( )
, if ( )

( )

;
.

eq eq

eq

eq

eq

U k U k U

U U kU k
U k U

U k

<

−=
≥

⎧
⎪
⎨
⎪
⎩

 (23) 

The proposed SMC cope with the characteristics of the wide class of plant model reduction 

neural control with reference model, and represents an indirect adaptive neural control, 

given by (Baruch et al., 2004).  Next we will give description of the used RTNN topology 

and learning. 

4. Description of the RTNN topology and learning 

4.1 RTNN topology and recursive BP learning 

The block-diagrams of the RTNN topology and its adjoint, are given on Fig. 6, and Fig. 7. 
Following Fig. 6, and Fig. 7, we could derive the dynamic BP algorithm of its learning based 
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on the RTNN topology using the diagrammatic method of (Wan & Beaufays, 1996). The 
RTNN topology and learning are described in vector-matrix form as: 

 X(k+1) = AX(k) + BU(k); B = [B1 ; B0]; UT = [U1 ; U2]; (24) 

 Z1(k) = G[X(k)]; (25) 

 V(k) = CZ(k); C = [C1 ; C0]; ZT = [Z1 ; Z2]; (26) 

 Y(k) = F[V(k)]; (27) 

 A = block-diag (Ai), |Ai | < 1; (28) 

 W(k+1) = W(k) +η ΔW(k) + α ΔWij(k-1); (29) 

 E(k) = T(k)-Y(k); (30) 

 

 

Fig. 6. Block diagram of the RTNN model 

 

Fig. 7. Block diagram of the adjoint RTNN model 

 E1(k) = F’[Y(k)] E(k); F’[Y(k)] = [1-Y2(k)]; (31) 

 ΔC(k) = E1(k) ZT(k); (32) 

 E3(k) = G’[Z(k)] E2(k); E2(k) = CT(k) E1(k); G’[Z(k)] = [1-Z2(k)]; (33) 

 ΔB(k) = E3(k) UT(k); (34) 

 ΔA(k) = E3(k) XT(k); (35) 

 Vec(ΔA(k)) = E3(k)▫X(k); (36) 
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where: X, Y, U are state, augmented output, and input vectors with dimensions N, (L+1), 

(M+1), respectively, where Z1 and U1 are the (Nx1) output and (Mx1) input of the hidden 

layer; the constant scalar threshold entries are Z2 = -1, U2 = -1, respectively; V is a (Lx1) pre-

synaptic activity of the output layer; T is the (Lx1) plant output vector, considered as a RNN 

reference; A is (NxN) block-diagonal weight matrix; B and C are [Nx(M+1)] and [Lx(N+1)]- 

augmented weight matrices; B0 and C0 are (Nx1) and (Lx1) threshold weights of the hidden 

and output layers; F[⋅], G[⋅] are vector-valued tanh(⋅)-activation functions with corresponding 

dimensions; F’[⋅], G’[⋅] are the derivatives of these tanh(⋅) functions; W is a general weight, 

denoting each weight matrix (C, A, B) in the RTNN model, to be updated; ΔW (ΔC, ΔA, ΔB), 

is the weight correction of W; η, α are learning rate parameters; ΔC is an weight correction 

of the  learned matrix C; ΔB is an weight correction of the learned matrix B; ΔA is an weight 

correction of the learned matrix A; the diagonal of the matrix A is denoted by Vec(⋅) and 

equation (34) represents its learning as an element-by-element vector products; E, E1, E2, E3, 

are error vectors with appropriate dimensions, predicted by the adjoint RTNN model, given 

on Fig.7. The stability of the RTNN model is assured by the activation functions (-1, 1) 

bounds and by the local stability weight bound condition, given by (28). Below a theorem of 

RTNN stability which represented an extended version of Nava’s theorem, (Baruch et al., 

2008d) is given. 

Theorem of stability of the BP RTNN used as system identifier (Baruch et al., 2008d). Let 

the RTNN with Jordan Canonical Structure is given by equations (24)-(28) (see Fig.6) and the 

nonlinear plant model, is as follows: 

Xp.(k+1) = G[ Xp (k), U(k) ], 

Yp (k) = F[ Xp (k) ]; 

where: {Yp (⋅), Xp (⋅), U(⋅)} are output, state and input variables with dimensions L, Np, M, 

respectively; F(⋅), G(⋅) are vector valued nonlinear functions with respective dimensions. 

Under the assumption of RTNN identifiability made, the application of the BP learning 

algorithm for A(⋅), B(⋅), C(⋅), in general matricial form, described by equation (29)-(36), and 

the learning rates η (k), α (k) (here they are considered as time-dependent and normalized 

with respect to the error) are derived using the following Lyapunov function: 

( ) ( ) ( )1 2L k  = L k +L k ;  

Where: 
1

L (k)   and  2L (k)  are given by: 

( ) ( )2
1

1
,

2
L k e k=  

( ) § ( )§ ( )( ) § ( )§ ( )( ) § ( )§ ( )( )2 ;
T T T

A A B B C CL k tr W k W k tr W k W k tr W k W k= + +  

where: § ( ) “ ( ) § ( ) " ( ) § ( ) “ ( )* * *, ,A B CW k A k A W k B k B W k C k C= − = − = − , are vectors of the 

estimation error and  * * *(A ,B ,C ) , ˆ ˆˆ(A(k),B(k),C(k))  denote the ideal neural weight and the 

estimate of the neural weight at the k-th step, respectively, for each case. 
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Then the identification error is bounded, i.e.: 

( ) ( ) ( )
( ) ( ) ( )

1 21 1 1 0,

1 1 ;

L k L k L k

L k L k k

+ = + + + <

Δ + = + −
 

where the condition for 1L (k+1)<0  is that: 

max
max max

1 1
1 1

2 2
;η

ψ ψ

⎛ ⎞ ⎛ ⎞
− +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠< <  

and for 2L (k+1)<0  we have: 

( ) ( ) ( ) ( )2 2

2 max max1 1 1 .L k e k e k d kη αΔ + < − + + +  

Note that maxη  changes adaptively during the RTNN learning and:  

{ }
3

max
1

max ;i
i

η η
=

=  

where all: the unmodelled dynamics, the approximation errors and the perturbations, are 
represented by the d-term. The Rate of Convergence Lemma used, , is given below. The 
complete proof of that Theorem of stability is given in (Baruch et al., 2008d). 

Rate of Convergence Lemma (Baruch et al., 2008a). Let kLΔ  is defined. Then, applying the 

limit's definition, the identification error bound condition is obtained as: 

( ) ( )2 2

1

1
lim 1 .

k

k
t

E t E t d
k→∞ =

⎛ ⎞+ − ≤⎜ ⎟
⎝ ⎠∑  

Proof.  Starting from the final result of the theorem of RTNN stability: 

( ) ( ) ( ) ( ) ( )2 2
1L k k E k k E k dη αΔ ≤ − − − +  

and iterating from k=0, we get:  

( ) ( ) ( ) ( )2 2

1 1

1 0 1 ,
k k

t t

L k L E t E t dk
= =

+ − ≤ − − − +∑ ∑  

( ) ( ) ( ) ( ) ( )2 2

1

1 1 0 0 .
k

t

E t E t dk L k L dk L
=

⎛ ⎞+ − ≤ − + + ≤ +⎜ ⎟
⎝ ⎠∑  

From here, we could see that d  must be bounded by weight matrices and learning 

parameters, in order to obtain: ( ) ( )L kΔ ∈ ∞L . 

As a consequence:. ( ) ( ) ( ) ( ) ( ) ( ), , ,A k B k C k∈ ∞ ∈ ∞ ∈ ∞L L L  

The stability of the HFNMMI could be proved via linearization of the activation functions of 

the RTNN models and application of the methodology using LMI. 
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Theorem of stability of the BP RTNN used as a direct system controller. Let the RTNN 
with Jordan Canonical Structure is given by equations (24)-(28) and the nonlinear plant 
model, is given above. Under the assumption of RTNN identifiability made, the application 

of the BP learning algorithm for A(⋅), B(⋅), C(⋅), in general matricial form, described by 
equations (29)-(36) without momentum term, and the learning rate η (k) (here it is 
considered as time-dependent and normalized with respect to the error) are derived using 
the following Lyapunov function: 

L(k) = L1 (k) + L2 (k); 

where: L1 (k) and L2 (k) are given by: 

( ) ( )2
1

1
,

2
L k e k=  

( ) §
( )

§
( )( ) §

( )
§

( )( ) §
( )

§
( )( )2 ;

k k k k k k

T T T
A A B B C CL k tr W W tr W W tr W W= + +  

where: §
( )

“ ( ) §
( )

" ( ) §
( )

“ ( )
* * *, , ,

k k kk kA B C kW A A W B B W C C= − = − = − are vectors of the estimation 

error and ( )* * *, ,A B C and “ ( ) " ( ) “ ( )( ), ,k k kA B C  denoted the ideal neural weight and the estimate 

of the neural weight at the k-th step, respectively, for each case. 

Let us define: ( )max max
k

kψ ψ= , and ( )max max
k

kϑ ϑ= , where ( ) ( )
( )

o k
k

W k
ψ

∂
=
∂

, and 

( ) ( )
( )

y k
k

W k
ϑ

∂
=
∂

, where W is a vector composed by all weights of the RTNN, used as a system 

controller, and ⋅  is an Euclidean norm in nℜ . 

Then the identification error is bounded, i.e.: 

L(k+1) = L1(k+1) + L2(k+1) < 0, 

∆L(k+1) = L(k+1) - L(k); 

where the condition for L1 (k+1) < 0 fulfillment is that the maximum rate of learning is 

inside the limits: 

max 2 2
max max

2
0 ,η

ϑ ψ
< <  

and for L2(k+1) < 0, we have: 

( ) ( ) ( )2

2 max1 1 1 .L k e k kη βΔ + < − + + +  

Note that maxη  changes adaptively during the learning process of the network, where:  

{ }
3

max i
i=1

η =max η .  
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Here all: the unmodelled dynamics, the approximation errors and the perturbations, are 

represented by the ┚-term, and the complete proof of that theorem and the rate of 

convergence lemma, are given in (Baruch et al., 2008d). 

4.2 Recursive Levenberg-Marquardt RTNN learning 

The general recursive L-M algorithm of learning, (Baruch & Mariaca-Gaspar, 2009) is given 

by the following equations: 

 ( ) ( ) ( ) ( ) ( )W 1 =Wk k P k Y W k E W k⎡ ⎤ ⎡ ⎤+ + ∇ ⎣ ⎦ ⎣ ⎦ , (37) 

 ( ) ( ) ( ),Y W k g W k U k⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ , (38) 

 ( ) ( ) ( ) ( ){ }2
2 ,pE W k Y k g W k U k⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦ , (39) 

 ( )
( ) ( )

( )

,

W W k

g W k U k
DY W k

W
=

⎡ ⎤∂ ⎣ ⎦⎡ ⎤ =⎣ ⎦ ∂
; (40) 

where W is a general weight matrix (A, B, C) under modification; P is the covariance matrix 

of the estimated weights updated; DY[⋅] is an nw-dimensional gradient vector; Y is the 

RTNN output vector which depends of  the updated weights and the input; E is an error 

vector; Yp is the plant output vector, which is in fact the target vector. Using the same 

RTNN adjoint block diagram (see Fig.7), it was possible to obtain the values of the gradients 

DY[⋅] for each updated weight, propagating the value D(k) = I through it. Applying 

equation (40) for each element of the weight matrices (A, B, C) in order to be updated, the 

corresponding gradient components are as follows:  

 ( ) ( ) ( )1,ij i jDY C k D k Z k⎡ ⎤ =⎣ ⎦ , (41) 

 ( ) ( )'
1,i j iD k F Y k⎡ ⎤= ⎣ ⎦ , (42) 

 ( ) ( ) ( )2,ij i jDY A k D k X k⎡ ⎤ =⎣ ⎦ , (43) 

 ( ) ( ) ( )2,ij i jDY B k D k U k⎡ ⎤ =⎣ ⎦ , (44) 

 ( ) ( ) ( )'
2 , 1,i i j i iD k G Z k C D k⎡ ⎤= ⎣ ⎦ . (45) 

Therefore the Jacobean matrix could be formed as: 

 ( ) ( )( ) ( )( ) ( )( ), ,ij ij ijDY W k DY C k DY A k DY B k⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦  (46) 

The P(k) matrix was computed recursively by the equation: 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 11 1 1TP k k P k P k W k S W k W k P kα − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − − − Ω Ω −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ; (47) 

where the S(⋅), and Ω(⋅) matrices were given as follows: 

 ( ) ( ) ( ) ( ) ( ) ( )1TS W k k k W k P k W kα⎡ ⎤ ⎡ ⎤ ⎡ ⎤= Λ +Ω − Ω⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (48) 

 ( )

( ) ( )

1 4 6

3 6

( )
( ) ;

0 1 0

1 0
; 10 10 ;

0

0.97 1; 10 0 10 .

T
T Y W k

W k

k

k P

ρ
ρ

α

− − −

⎡ ⎤∇ ⎡ ⎤⎣ ⎦Ω =⎡ ⎤ ⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

⎡ ⎤
Λ = ≤ ≤⎢ ⎥

⎣ ⎦
≤ ≤ ≤ ≤

A A

 (49) 

The matrix Ω(⋅) had a dimension (nwx2), whereas the second row had only one unity 

element (the others were zero). The position of that element was computed by: 

 ( )mod 1;i k nw k nw= + >  (50) 

After this, the given up topology and learning are applied for an anaerobic wastewater 

distributed parameter decentralized system identification. 

5. Analytical model of the anaerobic digestion bioprocess plant 

The anaerobic digestion systems block diagram is depicted on Fig.8. It consists of a fixed bed 

reactor and a recirculation tank. The physical meaning of all variables and constants (also its 

values), are summarized in Table 1. The complete analytical model of wastewater treatment 

anaerobic bioprocess, taken from (Aguilar-Garnica et al., 2006), could be described by the 

following system of PDE: 

 ( )1 1
1 1 1 1max

1 1 1

,
S

X S
D X

t K X S
μ ε μ μ∂

= − =
∂ +

, (51) 

 ( )2 1
2 2 2 2 2

2
2 2

2

, s

S
I

X S
D X

t S
K X

K

μ ε μ μ∂
= − =

∂
+

, (52) 

 
2

1 1 1
1 1 12 2

zES S S
D k X

t tH z
μ∂ ∂ ∂

= − −
∂ ∂∂

, (53) 

 
2

2 2 2
2 1 12 2

zES S S
D k X

t tH z
μ∂ ∂ ∂

= − −
∂ ∂∂

, (54) 

 ( ) ( ) ( ) ( )1, 1 2, 2
1 20, , 0, ,

1 1

in T in T T

eff

S t RS S t RS Q
S t S t R

R R DV

+ +
= = =

+ +
, (55) 
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Variable Units Name Value 

z z∈[0,1] Space variable  

t D Time variable  

Ez m2/d Axial dispersion coefficient 1 

D 1/d Dilution rate 0.55 

H m Fixed bed length 3.5 

X1 g/L Concentration of acidogenic bacteria  

X2 g/L Concentration of methanogenic bacteria  

S1 g/L Chemical Oxygen Demand  

S2 mmol/L Volatile Fatty Acids  

ε  Bacteria fraction in the liquid phase 0.5 

k1 g/g Yield coefficients 42.14 

k2 mmol/g Yield coefficients 250 

k3 mmol/g Yield coefficients 134 

μ1 1/d Acidogenesis growth rate  

μ2 1/d Methanogenesis growth rate  

μ1max 1/d Maximum acidogenesis growth rate 1.2 

μ2s 1/d Maximum methanogenesis growth rate 0.74 

K1s’ g/g Kinetic parameter 50.5 

K2s’ mmol/g Kinetic parameter 16.6 

KI2’ mmol/g Kinetic parameter 256 

QT m3/d Recycle flow rate 0.24 

VT m3 Volume of the recirculation tank 0.2 

S1T g/L Concentration of Chemical Oxygen Demand in the recirculation tank  

S2T mmol/L Concentration of Volatile Fatty Acids in the recirculation tank  

Qin m3/d Inlet flow rate 0.31 

VB m3 Volume of the fixed bed 1 

Veff m3 Effective volume tank 0.95 

S1,in g/L Inlet substr. Concentration  

S2,in mmol/L Inlet substr. Concentration  

Table 1.  Summary of the variables in the plant model 

 ( ) ( )1 21, 0, 1, 0
S S

t t
z z

∂ ∂
= =

∂ ∂
, (56) 

 ( )( ) ( )( )1 2
1 1 2 21, , 1,T T T T

T T
T T

dS Q dS Q
S t S S t S

dt V dt V
= − = − . (57) 

For practical purpose, the full PDE anaerobic digestion process model (51)-(57), taken from 
(Aguilar-Garnica et al., 2006), could be reduced to an ODE system using an early lumping 
technique and the Orthogonal Collocation Method (OCM), (Bialecki & Fairwether, 2001), in 
four points (0.2H, 0.4H, 0.6H, 0.8H) obtaining the following system of OD equations: 
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Fig. 8. Block-diagram of anaerobic digestion bioreactor  

 ( ) ( )1, 2,
1, 1, 2, 2 ,,i i

i i i i

dX dX
D X D X

dt dt
μ ε μ ε= − = − , (58) 

 
2 2

1,
, 1, , 1, 1 1, 1,2

1 1

N N
i z

i j j i j j i i
j j

dS E
B S D A S k X

dt H
μ

+ +

= =
= − −∑ ∑ , (59) 

 
2 2

2,
, 1, , 2 , 2 1, 2, 3 2, 2,2

1 1

N N
i z

i j j i j j i i i i
j j

dS E
B S D A S k X k X

dt H
μ μ

+ +

= =
= − − −∑ ∑ , (60) 

 ( ) ( )1 2
1, 2 1 2, 2 2,T T T T

N T N T
T T

dS Q dS Q
S S S S

dt V dt V
+ += − = − , (61) 

 ( ) ( )
1

1 1
,1 , , 2 , ,

1

1
,

1 1 1 1

N

k k in kT k N k in kT i k i
i

R K K R
S S t S S S t S K S

R R R R

+

+
=

= + = + +
+ + + + ∑ , (62) 

 2,1 2,
1

2, 2 2, 2

,N N i
i

N N N N

A A
K K

A A

+ +

+ + + +
= = , (63) 

 ( )1 2
,, 1 l

m l mA l zφ ω− −⎡ ⎤= Λ Λ = = −⎣ ⎦ , (64) 

 ( )( )1 3 1
, , ,, , 1 2 ,l l

m l m l m m l mB l l z zφ τ τ φ− − −⎡ ⎤= Γ Γ = = − − =⎣ ⎦ , (65) 

 2, 2, , 1, 2i N m l N= + = +… … . (66) 
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The reduced plant model (58)-(66), could be used as unknown plant model which generate 

input/output process data for decentralized adaptive FNMM control system design, based 

on the concepts, given in (Baruch et al., 2008a; Baruch et al., 2008b; Baruch et al., 2008c; 

Baruch et al., 2008d). The mentioned concepts could be applied for this DPS fuzzyfying the 

space variable z, which represented the height of the fixed bed. Here the centers of the 

membership functions with respect to z corresponded to the collocation points of the 

simplified plant model which are in fact the four measurement points of the fixed bed, 

adding one more point for the recirculation tank. 

6. Simulation results 

In this paragraph, graphical and numerical simulation results of system identification, direct 

and indirect control, with and without I-term, will be given. For lack of space we will give 

graphical results only for the X1 variable. Furthermore the graphical results for the other 

variables possessed similar behavior. 

6.1 Simulation results of the system identification using L-M RTNN learning 

The decentralized FNMM identifier used a set of five T-S fuzzy rules containing in its 

consequent part RTNN learning procedures (1). The RTNN topology is given by the 

equations (24)-(28), the BP RTNN learning is given by (29)-(36), and the L-M RTNN learning 

is given by (37)-(50). The topology of the first four RTNNs is (2-6-4) (2 inputs, 6 neurons in 

the hidden layer, 4 outputs) and the last one has topology (2-4-2), corresponding to the fixed 

bed plant behavior in each collocation point and the recirculation tank. The RTNNs 

identified the following fixed bed variables: X1 (acidogenic bacteria), X2 (methanogenic 

bacteria), S1 (chemical oxygen demand) and S2 (volatile fatty acids), in the following four 

collocation points, z=0.2H, z=0.4H, z=0.6H, z=0.8H, and the following variables in the 

recirculation tank: S1T (chemical oxygen demand) and S2T (volatile fatty acids). The graphical 

simulation results of RTNNs L-M learning are obtained on-line during 600 iteration with a 

step of 0.1 sec. The learning rate parameters of RTNN have small values which are different 

for the different measurement point variables (ρ=0.1 and α=0). The Figs. 9-11 showed 

graphical simulation results of open loop decentralized plant identification. The MSE of the 

decentralized FNMM approximation of plant variables in the collocation points, using the L-

M and BP RTNN learning are shown in Tables 2 and 3. The input signals applied are:  
 

 1,

3
0.55 0.15cos 0.3sin

80 80
inS t t

π π⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, (67) 

 2,

3
0.55 0.05cos 0.3sin

40 40
inS t t

π π⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. (68) 

 
The graphical y numerical results of decentralized FNMM identification (see Fig. 9-11, and 

Tables 2, 3) showed a good HFNMMI convergence and precise plant output tracking (MSE 

0.0083 for the L-M, and 0.0253 for the BP RTNN learning in the worse case). 
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Collocation point X1 X2 S1 / S1T S2 / S2T 

z=0.2 0.0013 0.0012 0.0049 0.0058 

z=0.4 0.0013 0.0013 0.0058 0.0049 

z=0.6 0.0013 0.0013 0.0071 0.0055 

z=0.8 0.0014 0.0013 0.0083 0.0070 

Recirculation tank   0.0080 0.0058 

Table 2. MSE of the decentralized FNMM approximation of the bioprocess output variables 
in the collocation points, using the L-M RTNN learning 

 

Collocation point X1 X2 S1 / S1T S2 / S2T 

z=0.2 0.0015 0.0023 0.0145 0.0192 

z=0.4 0.0015 0.0044 0.0098 0.0164 

z=0.6 0.0030 0.0009 0.0092 0.0133 

z=0.8 0.0046 0.0048 0.0045 0.0086 

Recirculation tank   0.0168 0.0253 

Table 3. MSE of the decentralized FNMM approximation of the bioprocess output variables 
in the collocation points, using the BP RTNN learning 
 
 

 
 

Fig. 9. Graphical simulation results of the FNMM identification of X1 in a) Z=0.2H; b) 0.4H; 
c) 0.6H; d) 0.8H (acidogenic bacteria in the corresponding fixed bed points) by four fuzzy 
rules RTNNs (dotted line-RTNN output, continuous line-plant output) for 600 iteration of L-
M RTNN learning 
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Fig. 10. Detailed graphical simulation results of the FNMM identification of X1 in a) Z=0.2H; 
b) 0.4H; c) 0.6H; d) 0.8H (acidogenic bacteria in the corresponding fixed bed points) by four 
fuzzy rules RTNNs (dotted line-RTNN output, continuous line-plant output) for the first 15 
iterations of the L-M RTNN learning 
 

 

Fig. 11. Graphics of the 3d view of X1 space/time approximation during its L-M RTNN 
learning in four points 

6.2 Simulation results of the direct HFNMM control with I-term and L-M RTNN learning 

The topology of the first four RTNNs is (12-14-2) for the variables in the collocation points 

x=0.2H, z=0.4H, z=0.6H, z=0.8H and for the recirculation tank is (8-10-2). The graphical 

simulation results of RTNNs L-M learning are obtained on-line during 600 iterations (2.4 

www.intechopen.com



Distributed Parameter Bioprocess Plant Identification and I-Term Control  
Using Decentralized Fuzzy-Neural Multi-Models   

 

441 

hours) with a step of 0.1 sec. The learning parameters of RTNN are ρ=0.2 and α=1; while the 

parameter of the I-term are η=0.01 and α=1e-8. Finally the topology of the defuzzifier neural 

network is (10-2) with parameters η=0.0035 and α=0.00001. 

The Figs. 12-17 showed graphical simulation results of the direct decentralized HFNMM 

control with and without I-term, where the outputs of the plant are compared with the 

reference signals. The reference signals are train of pulses with uniform duration and 

random amplitude. The MSE of control for each output signal and each measurement point 

are given on Table 4 For sake of comparison the MSE of direct decentralized HFNMM 

proportional control (without I-term) for each output signal and each measurement point 

are given on Table 5. 

 
 
 

 
 
 

Fig. 12. Results of the direct decentralized HFNMM I-term control of X1 (acidogenic bacteria 
in the fixed bed) (dotted line-plant output, continuous-reference) in four collocation points 
(a) 0.2H,b) 0.4H, c) 0.6H, d) 0.8H) for 600 iterations 

Also, for sake of comparison, graphical results of direct decentralized HFNMM 

proportional control (without I-term) only for the X1 variable will be presented. The 

results show that the proportional control could not eliminate the static error due to 

inexact approximation and constant process or measurement disturbances. The graphical 

and numerical results of direct decentralized HFNMM I-term control (see Fig. 12-13, and 

Tables 4, 5) showed a good reference tracking (MSE is of 0.0097 for the I-term control and 

0.0119 for the control without I-term in the worse case). The results showed that the I-term 

control eliminated constant disturbances and approximation errors and the proportional 

control could not. 
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Fig. 13. Detailed graphical results of the direct decentralized HFNMM I-term control of X1 
(acidogenic bacteria in the fixed bed) (dotted line-plant output, continuous-reference) in 
four collocation points (a) 0.2H, b) 0.4H, c) 0.6H, d) 0.8H) for the first 30 iterations 

 

 

Fig. 14. Graphics of the 3d view of X1 space/time approximation and direct decentralized 
HFNMM I-term control in four collocation points of the fixed bed 
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Fig. 15. Results of the direct decentralized HFNMM control without I-term of X1 (acidogenic 
bacteria in the fixed bed) (dotted line-plant output, continuous-reference) in four collocation 
points (a) 0.2H, b) 0.4H, c) 0.6H, d) 0.8H) for 600 iterations 

 

Fig. 16. Detailed graphical results of the direct decentralized HFNMM control without I-
term of X1 (acidogenic bacteria in the fixed bed) (dotted line-plant output, continuous-
reference) in four collocation points (a) 0.2H, b) 0.4H, c) 0.6H, d) 0.8H) for the first 30 
iterations 
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Fig. 17. Graphics of the 3d view of X1 space/time approximation and direct decentralized 
HFNMM proportional control (without I-term) in four collocation points of the fixed bed 

 

Collocation point X1 X2 S1 / S1T S2 / S2T 

z=0.2 0.0011 0.0013 0.0065 0.0097 

z=0.4 0.0009 0.0011 0.0051 0.0090 

z=0.6 0.0008 0.0011 0.0042 0.0074 

z=0.8 0.0006 0.0010 0.0037 0.0063 

Recirculation tank   0.0060 0.0086 

Table 4. MSE of the direct decentralized HFNMM I-term control of the bioprocess plant 

 

Collocation point X1 X2 S1 / S1T S2 / S2T 

z=0.2 0.0012 0.0016 0.0084 0.0119 

z=0.4 0.0009 0.0014 0.0068 0.0107 

z=0.6 0.0007 0.0012 0.0055 0.0089 

z=0.8 0.0006 0.0010 0.0045 0.0073 

Recirculation tank   0.0068 0.0092 

Table 5. MSE of the direct decentralized HFNMM proportional control (without I-term) of 
the bioprocess plant 

6.3 Simulation results of the indirect HFNMM I-term SMC and L-M RTNN learning 

The neural network used as defuzifier in the control with BP learning rule has the toplogy 

(10-2) with learning parameters η=0.005 and α=0.00006. For the simuulation with the L-M 

RTNN learning we use a saturation U0=1 with γ=0.8. In the integral term we used the 

parameters for the offset (Of), η=0.01 and α=1e-8. The Figs. 18-23 showed graphical 
simulation results of the indirect (sliding mode) decentralized HFNMM with and without I-
term control. The MSE of control for each output signal and each measurement point are 
given on Table 6. The reference signals are train of pulses with uniform duration and 
random amplitude and the outputs of the plant are compared with the reference signals.  
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Collocation point X1 X2 S1 / S1T S2 / S2T 

z=0.2 0.0010 0.0011 0.0052 0.0089 

z=0.4 0.0007 0.0009 0.0040 0.0084 

z=0.6 0.0006 0.0009 0.0037 0.0063 

z=0.8 0.0006 0.0008 0.0034 0.0061 

Recirculation tank   0.0051 0.0074 

Table 6.  MSE of the indirect decentralized HFNMM I-term control of the bioprocess plant 

 

 

Fig. 18. Results of the indirect (SMC) decentralized HFNMM I-term control of X1 
(acidogenic bacteria in the fixed bed) (dotted line-plant output, continuous-reference) in 
four collocation points (a) 0.2H, b) 0.4H, c) 0.6H, d) 0.8H) for 600 iterations 

 
Collocation point X1 X2 S1 / S1T S2 / S2T 

z=0.2 0.0013 0.0018 0.0101 0.0139 

z=0.4 0.0010 0.0016 0.0083 0.0125 

z=0.6 0.0008 0.0014 0.0068 0.0104 

z=0.8 0.0007 0.0012 0.0057 0.0085 

Recirculation tank   0.0070 0.0095 

Table 7. MSE of the indirect decentralized HFNMM proportional control (without I-term) of 
the bioprocess plant 

The graphical y numerical results (see Fig. 18-23, and Tables 6, 7) of the indirect (sliding 
mode) decentralized control showed a good identification and precise reference tracking 
(MSE is about 0.0089 in the worse case). The comparison of the indirect and direct 
decentralized control showed a good results for both control methods (see Table 3 and Table 
4) with slight priority for the indirect control (9.8315e-5 vs. 1.184e-4) due to its better plant 
dynamics compensation ability and adaptation.  

www.intechopen.com



 Advances in Reinforcement Learning 

 

446 

 

Fig. 19. Detailed graphical results of the indirect (SMC) decentralized HFNMM I-term 
control of X1 (acidogenic bacteria in the fixed bed) (dotted line-plant output, continuous-
reference) in four collocation points (a) 0.2H, b) 0.4H, c) 0.6H, d) 0.8H) for the first 30 
iterations 
 

 

Fig. 20. Graphics of the 3d view of X1 space/time approximation and indirect decentralized 
HFNMM I-term control in four collocation points of the fixed bed 
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Fig. 21. Results of the indirect (SMC) decentralized HFNMM proportional control (without 
I-term) of X1 (acidogenic bacteria in the fixed bed) (dotted line-plant output, continuous-
reference) in four collocation points (a) 0.2H, b) 0.4H, c) 0.6H, d) 0.8H) for 600 iterations 
 

 

Fig. 22. Detailed graphical results of the indirect (SMC) decentralized HFNMM proportional 
control (without I-term) of X1 (acidogenic bacteria in the fixed bed) (dotted line-plant 
output, continuous-reference) in four collocation points (a) 0.2H, b) 0.4H, c) 0.6H, d) 0.8H) 
for the first 25 iterations 
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For sake of comparison, graphical results of indirect decentralized HFNMM proportional 
control (without I-term) only for the X1 variable are presented. The results show that the 
proportional control could not eliminate the static error due to inexact approximation and 
constant process or measurement disturbances. 
 

 

Fig. 23. Graphics of the 3d view of X1 space/time approximation and indirect decentralized 
HFNMM proportional control (without I-term) in four collocation points of the fixed bed 

7. Conclusion 

The chapter proposed decentralized recurrent fuzzy-neural identification, direct and 
indirect I-term control of an anaerobic digestion wastewater treatment bioprocess, 
composed by a fixed bed and a recirculation tank, represented a DPS. The simplification of 
the PDE process model by ODE is realized using the orthogonal collocation method in four 
collocation points (plus the recirculation tank) represented centers of membership functions 
of the space fuzzyfied output variables. The obtained from the FNMMI state and parameter 
information is used by a HFNMM direct and indirect (sliding mode) control with or without 
I-term. The applied fuzzy-neural approach to that DPS decentralized direct and indirect 
identification and I-term control exhibited a good convergence and precise reference 
tracking eliminating static errors, which could be observed in the MSE% numerical results 
given on Tables 4 and 6 (2.107e-5 vs. 1.184e-4 vs. 9.8315e-5 in the worse case). 
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