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1. Introduction 

Adaptive/Approximate Dynamic Programming (ADP) is the class of methods that provide 
online solution to optimal control problems while making use of measured information 
from the system and using computation in a forward in time fashion, as opposed to the 
backward in time procedure that is characterizing the classical Dynamic Programming 
approach (Bellman, 2003). These methods were initially developed for systems with finite 
state and action spaces and are based on Sutton’s temporal difference learning (Sutton, 
1988), Werbos’ Heuristic Dynamic Programming (HDP) (Werbos, 1992), and Watkins’ Q-
learning (Watkins, 1989).  
The applicability of these online learning methods to real world problems is enabled by 
approximation tools and theory. The value that is associated with a given admissible control 
policy will be determined using value function approximation, online learning techniques, 
and data measured from the system. A control policy is determined based on the 
information on the control performance encapsulated in the value function approximator. 
Given the universal approximation property of neural networks (Hornik et al., 1990), they 
are generally used in the reinforcement learning literature for representation of value 
functions (Werbos, 1992), (Bertsekas and Tsitsiklis, 1996), (Prokhorov and Wunsch, 1997), 
(Hanselmann et al., 2007). Another type of approximation structure is a linear combination 
of a basis set of functions and it has been used in (Beard et al., 1997), (Abu-Khalaf et al., 
2006), (Vrabie et al. 2009). 
The approximation structure used for performance estimation, endowed with learning 
capabilities, is often referred to as a critic. Critic structures provide performance information 
to the control structure that computes the input of the system. The performance information 
from the critic is used in learning procedures to determine improved action policies. The 
methods that make use of critic structures to determine online optimal behaviour strategies 
are also referred to as adaptive critics (Prokhorov and Wunsch, 1997), (Al-Tamimi et al., 
2007), (Kulkarni & Venayagamoorthy, 2010). 
Most of the previous research on continuous-time reinforcement learning algorithms that 
provide an online approach to the solution of optimal control problems, assumed that the 
dynamical system is affected only by a single control strategy. In a game theory setup, the 
controlled system is affected by a number of control inputs, computed by different controllers 
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that try to optimize individual performance functions. In these situations the control problem 
is formulated with the purpose of finding the set of control policies that are admissible, i.e. 
control policies that guarantee the stability of the controlled dynamical system, and minimize 
the individual performance functions in a Nash equilibrium sense. This kind of solution is 
characterized by the fact that any change in the policy of any given player (in the space of 
admissible policies) will result in a worse performance for that player, relative to the 
performance that it receives by means of the Nash equilibrium solution policy.  
Nash differential games have been originally introduced in (Starr & Ho, 1969). Their study is 
highly relevant as they have a number of potential applications in control engineering and 
economics (see e.g. (Abou-Kandil et al., 2003); (Engwerda, 2005)). The underlying game 
theory formulation appears also in the study of coupled large scale systems (Mukaidani, 
2007-a), e.g. networking and wireless communication systems (Shah, 1998). 
This chapter is presenting an Adaptive Dynamic Programming (ADP) algorithm, 
formulated using the continuous-time mathematical framework, that provides, in an online 
manner, the Nash equilibrium solution of two-player nonzero-sum differential games with 
linear dynamics and infinite horizon quadratic cost. The main advantage of this ADP 
approach consists in the fact that neither of the two participants in the game makes use of 
explicit knowledge on the model of the drift dynamics of the system that they influence 
through their behavior policy. This means that the two players will learn online the most 
effective behavior policies that correspond to the Nash equilibrium while using no explicit 
knowledge on the drift dynamics of the differential game. This results in two clear benefits 
when compared with model based procedures:  
- conducting identification experiments for finding the drift term that describes the 

system dynamics is not required, while this lack of knowledge does not have any 
impact on the obtained equilibrium solution,  

- the resulting equilibrium behavior policies of the two players will not be affected by 
any error differences between the dynamics of a model of the system and the dynamics 
of the real system. 

For the case when the system has linear dynamics and the cost indices are quadratic and have 
infinite horizon, it is known that finding the Nash equilibrium to the game problem is 
equivalent with calculating the solution of a set of coupled algebraic Riccati equations (ARE) 
(see e.g. (Starr and Ho, 1969), (Abou-Kandil et al., 2003), (Basar and Olsder, 1999), (Engwerda, 
2005)). The solution of the coupled ARE has been approached in (Cherfi et al., 2005-a), (Cherfi 
et al., 2005-b), (Jungers et al., 2007), (Freiling, 1996), (Li and Gajic, 1995) by means of iterative 
procedures. These algorithms construct sequences of cost functions, or matrices, which 
converge to the equilibrium solution of the game. In the case of (Cherfi et al., 2005-a), (Cherfi et 
al., 2005-b), (Freiling et al., 1996), and (Jungers et al., 2007), convergence results of these 
procedures are still to be determined. It is important to note that all above mentioned 
algorithms require exact and complete knowledge of the system dynamics and the solution is 
obtained by means of offline iterative computation procedures.  
An ADP procedure that provides solution to the Hamilton-Jacobi-Isaacs equation, associated 
with the two-player zero-sum nonlinear differential game, has been introduced in (Wei and 
Zhang, 2008). The ADP algorithm involves calculation of two sequences of cost functions, the 
upper and lower performance indices, sequences that converge to the saddle point solution of 
the game. The adaptive critic structure that is required for learning the saddle point solution is 
comprised by four action networks and two critic networks. The requirement of full 
knowledge on the system dynamics is still present in the case of that algorithm.  
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The result presented in this chapter is the first reinforcement learning approach to the 
saddle point solution of a two player nonzero-sum differential game. By virtue of the online 
ADP method, that makes use of the integral reinforcement learning (IRL) approach (Vrabie 
et al., 2009), exact knowledge of part of the system dynamics is not required. To our 
knowledge, there exists no ADP algorithm that provides the Nash equilibrium solution of 
the two-player nonzero-sum differential game in an online fashion and without using 
complete information on the model of the dynamical system to be controlled. 
The main traits of this new online procedure are the following:  
- It involves the use of ADP techniques that will determine the Nash equilibrium solution 

of the game in an online data-based procedure that does not require full knowledge of 
the system dynamics. 

- It is the online version of a mathematical algorithm that solves the underlying set of 
coupled algebraic Riccati equations of the game problem. The equivalent algorithm 
makes use of offline procedures and requires full knowledge of the system dynamics to 
determine the Nash equilibrium of the game.  

In this ADP approach both game players are actively learning and improving their policy. 
The algorithm is built on interplay between  
- a learning phase, and  
- a policy update step.  
During the learning phase each of the players is learning the value function that it associates 
with the use of a given pair of admissible policies. Both players are learning simultaneously. 
During the policy update step both players are changing their feedback control policies in 
the sense of performance improvement. That means that each player will change its policy 
such that it will minimize his cost in front of the previous policy of their opponent.  
For learning the value that each player associates with a given admissible pair of control 
policies we will use value function approximation. In this chapter we will consider the case 
in which the critic is represented as a linear combination of a set of basis functions which 
spans the space of value functions to be approximated, see e.g. (Beard et al., 1997). The 
learning technique that is here employed for value function approximation uses the concept 
of minimization of the temporal difference error and has been described in (Vrabie, 2009). 
The objective of this chapter is to present an online algorithm that makes use of ADP 
techniques to provide the solution to the two-player differential nonzero-sum game. It 
will also show that the foundation of the novel online procedure that will be described 
here is the mathematical result introduced in (Li and Gajic, 1995). That algorithm involves 
solving a sequence of Lyapunov equations in order to build a sequence of control policies 
that converges to the Nash equilibrium solution of the game, and thus requires full 
knowledge on the system dynamics. Herein we will show how, by means of ADP 
techniques, the solution of these game optimal control problems can be obtained in an 
online fashion, using measured data from the system, and reduced information on the 
system dynamics.  
We begin our investigation by providing the formulation of the two player nonzero-sum 
game problem. We then provide an overview of the online integral reinforcement learning 
(IRL) method that can be used online to determine the value associated with a given pair of 
admissible control strategies. In Section 3 we describe the online method that provides the 
Nash equilibrium solution of the two-player nonzero-sum game. The adaptive critic 
structure associated with the online solution of the game will also be discussed. It will be 
important to note that in this case, each of the two players will make use of a critic structure 
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that will use reinforcement learning ideas to learn online the value that the player associates 
with a given admissible control strategy. Section 4 will investigate the convergence 
properties of the online reinforcement learning algorithm. It will be shown that the ADP 
procedure introduced in this chapter is theoretically equivalent with the iterative procedure 
introduced in (Li & Gajic, 1995), and thus has the same convergence properties. A 
formulation of the algorithm in the form of a quasi-Newton method will also be provided. 
Section 5 will present a simulation result. 

2. Preliminaries 

2.1 Problem formulation 
We consider the system described by the equation: 

 1 1 2 2

0 0( )

x Ax B u B u

x t x

= + +
=

$
 (1) 

where , imn
ix u∈ ∈{ { for 1, 2i = , and A , 1B  and 2B  are matrices of appropriate dimensions.  

Each player i , 1,2i = , desires to determine the feedback control strategy i iu K x=  such that 

the quadratic performance index, where 0, 0( ), 0i ij iiQ R i j R≥ ≥ ≠ > , 

 

0

1 1 1 2 2 2

1
( )

2
T T T

i i i i

t

J x Q x u R u u R u dτ
∞

= + +∫  (2) 

is minimized. 

Definition 1  

A feedback control pair 1 2( , )u u  is admissible if the dynamics of the closed loop system (1) 

are stable and the performance indices (2) calculated for the given control pair have finite 

values.  
The two-player game problem is defined as follows: 

Given the continuous-time system (1), the cost functions , 1, 2iJ i =  defined by (2), and the set 

of admissible control inputs 1 2m mU ⊂ ×{ { , determine the state-feedback admissible control 

policies such that the closed loop system is stable and the cost functions attain the minimum 

possible value.  

These control strategies corresponds to the Nash equilibrium of the two-player differential 

game. Thus, the pair of feedback control policies that is sought, denoted 1 2( , )u u∗ ∗ , satisfies 

the following relations for any admissible control pair 1 2( , )u u U∈  

 
* * *

1 1 2 1 1 2

* * *
2 1 2 2 1 2

( , ) ( , )

( , ) ( , )

J u u J u u

J u u J u u

≥

≥
. (3) 

For 1,2i =  and 1,2j j i= ≠ , let us define the minimum cost function by: 

 *( ) min ( , , )
i i

n
i i i j

u U
V x J u u x x

∈
= ∀ ∈{ . (4) 

Assuming that the optimal value function is differentialble, we can then write two coupled 

equations, for , 1,2,i j j i= ≠ , 
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 { }
*

* * *
1 2

( , )
0 min [ ]

i j

T T T T n
i i i i j i j i j j i i

u u U
x Q x u R u u R u V Ax B u B u x

∈
= + + +∇ + + ∀ ∈{ , (5) 

that we shall refer to as the Hamilton-Jacobi-Bellman equations.  
After performing the minimization in (5) we obtain that the two elements of the closed loop 
optimal control pair 1 2( , )u u∗ ∗  will have the state feedback form  

 1 * * 1,2T
i ii i i iu R B P x K x i∗ −= − = =  (6) 

where the values of the two matrices * , 1,2iP i =  satisfy the necessary conditions for finding 
the Nash equilibrium, i.e. the two matrices * , 1,2iP i =  must be positive definite solutions to 
the coupled algebraic Riccati equations (ARE) 

 
* * * * * * * * * * * *

1 1 2 1 1 1 2 12 2 1 1 1 2 2 1 1 2 2

* * * * * * * * * * * *
2 1 2 2 2 2 1 21 1 2 2 2 1 1 2 2 1 1

( , ) 0

( , ) 0

T

T

N P P A P P A Q P S P P S P P S P P S P

N P P A P P A Q P S P P S P P S P P S P

+ + + − − − =

+ + + − − − =

5

5
 (7) 

where 1 , 1,2T
i i ii iS B R B i−= =  and 1 1 ,T

ij j jj ij jj jS B R R R B− −=  , 1,2,i j j i= ≠ . 
Finding Nash equilibrium solutions of the game 1 2( , )u u∗ ∗ , defined through (6) by the pair of 
matrices 1 2( , )P P∗ ∗ , resumes to finding solutions to the coupled AREs (7) such that the closed 
loop system dynamics will be stable, i.e. 1 1 2 2A S P S P∗ ∗− −  is Hurwitz. 

2.2 Integral reinforcement learning 

The online iterative procedure that will be presented in Section 3 relies heavily on value 
function estimation. Thus the goal of this section is to briefly present the online procedure, 
introduced in (Vrabie et al., 2009), that uses reinforcement learning ideas to find the value of 
the parameters of the infinite horizon cost associated with a quadratic cost function such 
as , 1, 2iJ i = . We refer to this online method as integral reinforcement learning (IRL). 
As stated above, the procedure presented herein is used to find the value of the parameters 
of the infinite horizon cost associated with a cost function that has a quadratic nature, such 
as , 1, 2iJ i = . To bring the general theoretical concept into specific, let us formulate the 
following problem: Given the dynamical system (1) and an admissible pair of linear state-
feedback control policies 2 1 21( , ) ( , )u u K x K x U= ⊂ , determine the parameters of the infinite 
horizon cost function iJ , that player i associates with this admissible control pair. 
Before giving an online procedure for solving this problem one needs to choose a parametric 
representation for the value function to be determined. In this particular case the cost 
functions are quadratic and the control policies have linear state-feedback structure. Thus a 
quadratic representation in the initial state can provide an exact representation for each of 
the two cost functions. One can write: 

 

0

0 0

1

2
T T

i i i

t

J x Px x Q xdτ
∞

= = ∫  (8) 

where 1 1 1 2 2 2
T T

i i i iQ Q K R K K R K= + + , i 1,2= . 

After choosing a parametric representation for the value function one has to determine the 
values of its parameters, namely the matrix iP . The integral reinforcement learning algorithm 
that will be used for finding the parameters of the value function, i.e. the value of the matrix 

iP , is based on the following equation that is satisfied for every time sample 0 0T >  
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0

0 0

t T
T T T
t i t i t T i t T

t

x P x x Q x d x Pxτ τ τ
+

+ += +∫  (9) 

where xτ  denotes the state of the system described by 1 1 2 2( )x A B K B K x= + +$  with initial 
condition tx , and 

0t Tx +  is the value of the state at time 0t T+ . 
The online implementation of the algorithm is given next. 

The solution of (9) consists of the value of the matrix iP  that is parameterizing the cost 
function. The quadratic cost functions will be written as:  

 T T
t i t i tx Px p x=  (10) 

where tx  denotes the Kronecker product quadratic polynomial basis vector with the 

elements ( ) ( ){ }
1, ; ,k l k n l k n

x t x t
= =

 and ( )p v P=  with ( ).v  a vector valued matrix function that 

acts on symmetric matrices and returns a column vector by stacking the elements of the 

diagonal and upper triangular part of the symmetric matrix into a vector, where the off-

diagonal elements are taken as 2 ijP , (Brewer, 1978). Denote the integral reinforcement over 

the time interval [ ]0,t t T+  by: 

 
0

1 2( , , )

t T
T

t i

t

d x K K x Q x dτ τ τ
+

≡ ∫ . (11)  

Based on these notations and structures, (9) is rewritten as: 

 
0 1 2( ) ( , , )T

i t t T tp x x d x K K+− = . (12) 

In (12) the vector of unknown parameters is ip  and 
0t t Tx x +−  acts as a regression vector. 

The right hand side target integral reinforcement function is measured based on the state 
trajectories over the time interval 0[ , ]t t T+ . 
The parameter vector ip  is found by minimizing, in the least-squares sense, the error 
between the target expected cost over the finite horizon, and the measured cost, 

1 2( , , )td x K K . Thus the sought parameters satisfy  

 
0

2
1 2arg min( ( , , ) ( ))T

i t t t Tp d x K K x x
η

η += − − . (13) 

The solution can be obtained online based on data measured along the trajectories of the 
system, and using batch least squares or the recursive least squares algorithm. 
It is important to note that this online algorithm for value function approximation is a data-
based approach that uses reinforcement learning ideas. Also, this value function 
approximation technique does not require explicit knowledge of the model of the controlled 
system’s drift dynamics, i.e. matrix A, or input to state matrices B1, B2 . 

3. Online iterative algorithm that solves the coupled algebraic Riccati 
equations of the nonzero-sum game 

3.1 Initialization of the online algorithm 

Before we proceed with the description of the online algorithm, we give a necessary 
assumption. 

www.intechopen.com



Integral Reinforcement Learning for Finding Online  
the Feedback Nash Equilibrium of Nonzero-Sum Differential Games   

 

319 

Assumption 1 The triples ( , , )i iA B Q , 1, 2i =  are stabilizable and detectable. 

Under this assumption one can reasonably say that initial state feedback control strategies 
(0) (0) 1,2i iu K x i= =  exist such that closed loop system matrix (0) (0)

1 21 2A B K B K− −  is 

Hurwitz.  
A procedure for obtaininig the two controllers such that the closed loop system is stable is 
described next. The procedure has two steps and it can be execute in an online manner 
without using knowledge on the drift dynamics of the system (1), i.e. without knowing the 
matrix A. 
Step 1 

Let Player 2 use the “no control” policy corresponding to 2( ) 0u x = , and determine the 

optimal control strategy of Player 1 with respect to the cost index 1J .  

This is a classical linear quadratic regulation problem and the optimal control strategy will 

have the form (0) (0) (0)1
11 1 11 1( ) Tu x K x R B P x−= = −  where (0)

1P is the solution of the ARE 

 (0) (0) (0) (0)1
1 1 1 1 1 11 1 1 0T TA P P A Q P B R B P−+ + − = . (14) 

Note that the solution of this single player optimal control problem can be obtained by 
solving (14) by means of the online ADP technique introduced in (Vrabie et al., 2009), 
without using any knowledge on the drift dynamics described by matrix A .  
For completeness we outline the procedure herein. 

a. We start from the assumption that an initial stabilizing state-feedback control policy 
(00) (00)

1 1( )u x K x= −  is available such that the matrix describing the closed loop system 
(00)

1 1A B K−  is Hurwitz. 

b. For 0,k k≥ ∈Ν , determine the value function defined as: 

 ( )
0

(0, 1) (0, ) (0, )
0 1 0 1 1 11 1

1
( ) ( )

2
k k kT T

t

x P x x Q K R K x dτ τ τ
∞

+ = +∫ , (15) 

function that is associated with the use of the stabilizing state-feedback controller 
(0, ) (0, ) (0, )1

1 1 11 1 1( )k k kTu x K x R B P x−= − = − , where 0 (0)x x=  is an initial state. 

The sequence of matrices (0, )
1

kP , 0,k k≥ ∈Ν  can be determined using integral 

reinforcement learning, as described in Section 2.2, using discrete-time data measured from 

the system and without using any knowledge on the dynamics of the system (1). 
Finding this value via de online model free algorithm is equivalent with solving the 

Lyapunov equation  

 (0, ) (0, 1) (0, 1) (0, ) (0, ) (0, )
1 1 1 1 1 1 1 1 11 1( ) ( ) 0k k k k k kTA B K P P A B K Q K R K+ +− + − + + = , (16) 

equation that requires complete knowledge on the model of the system. 

c. The iterative procedure described in b) has as result a convergent sequence of positive 

definite matrices, as shown in (Kleinman, 1968), such that (0, ) (0)
1 1

k

k
P P

→∞
→ . A stop 

criterion can be defined as: 

 (0, 1) (0, )
1 1

k kP P ε+ − ≤  (17) 
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or:  

 
(0, ) (0, ) (0, ) (0, )1

1 1 1 1 1 11 1 1
k k k kT TA P P A Q P B R B P ε−+ + − ≤ , (18) 

for a prespecified value of , where ║║ denotes a matrix norm. The latter expression, 
although it requires knowledge of the system dynamics, can be checked using online 
measured data and equation (12) such as 

 ( ) 0

(0, ) (0, )
11

( ) ( , ,0)
Tk k

t t T tp x x d x K ε+− − ≤  (19) 

The result is that the dynamics of the system (1) with the control pair (0)
1( ( ),0)u x  are stable, 

i.e. (0)
1 1A S P−  is Hurwitz. 

Step 2  

Let Player 1 use the stabilizing control policy (0) (0)
1 1( )u x K x= , and determine the optimal 

control strategy of Player 2 with respect to the cost index 2J .  

Again, this is a classical linear quadratic regulation problem and the optimal control strategy 

will have the form (0) (0) (0)1
22 2 22 2( ) Tu x K x R B P x−= = −  where (0)

2P is the solution of the ARE 

 
(0) (0) (0) (0) 1

1 1 1 1 2 1 21 1 2 22 2( ) ( ) 0T TA S P P P A S P Q P S P PB R B P−− + − + + − = . (20) 

Similarly to Step 1, the solution of this single player optimal control problem can be 

obtained by means of the online ADP IRL technique, introduced in (Vrabie et al., 2009) and 

outlined above, without using any knowledge on the drift dynamics of the system described 

by the matrix A. 

The resulting control pair (0) (0)
1 2( ( ), ( ))u x u x  is admissible, i.e. (0) (0)

1 21 2A S P S P− −  is Hurwitz. 

At this point we are in the possession of an initial admissible pair of feedback control 

strategies (0) (0) (0) (0)
1 2 1 2( , ) ( , ),u u K x K x=  that we shall also represent by (0) (0)

1 2( , )P P .  
It is worth noting that the Step 1 above can also be executed with respect to Player 2, 

followed by Step 2 that will now be relative to Player 1. Also in this case, a pair of 

admissible control policies will be obtained.  

In the following we formulate the iterative algorithm that learns online the Nash 

equilibrium solution of the two-player zero-sum differential game. At every step of the 

iterative procedure each player uses reinforcement learning to estimate the infinite horizon 

value function that it associates with the current admissible control pair. Following the 

value function estimation procedure each of the two players makes a decision to improve its 

control policy. The end result is an online algorithm which leads to the saddle point solution 

of the differential game while neither of the two players uses any knowledge on the drift 

dynamics of the environment.  

3.2 Online partially model free algorithm for solving the nonzero-sum differential 
game 
Initialization 

Start with initial matrices (0) (0)
1 2( , )P P  such that  (0) (0)

1 21 2A S P S P− −  is Hurwitz (i.e. initial 

control policies for both players are available such that the closed loop dynamics of the 

system are stable). Let 0k = . 
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Itterative procedure 

For 0,k k≥ ∈Ν , let two critic structures use the integral reinforcement learning procedure 
described in Section 2.2 to determine the value that each of the two players is associating 
with the control policies described by the matrix pair ( ) ( )

1 2( , )k kP P . Namely each of the two 
critics will determine the matrices ( 1) , 1,2, 0k

iP i k+ = ≥  that satisfy 

 

0

( )( 1)
0 0

1

2

kkT T
ii

t

x P x x Q xdτ
∞

+ = ∫  (21) 

where 
( ) ( ) ( ) ( ) ( ) 1,2,
k k k k k

i i i iji i j jQ Q P S P P S P i j i= + + = ≠ . 

Each of the two players will update their control policies such that the new control policy 

pair is characterized by ( 1) ( 1)
1 2( , )k kP P+ + , i.e. 

 
( 1) ( 1) ( 1)1

11 1 11 2

( 1) ( 1) ( 1)1
22 2 22 2

( )

( )

k k kT

k k kT

u x K x R B P x

u x K x R B P x

+ + +−

+ + +−

= = −

= = −
. (22) 

Stop criterion 

Stop the online algorithm when the following criterion is satisfied for a specified value of 

the number ε  

 ( 1) ( 1) ( 1) ( 1)
1 21 2 1 2max( ( , ) , ( , ) )k k k kN P P N P P ε+ + + + ≤ , (23) 

where  denotes a matrix norm. The latter expression can be checked using online 

measured data and the following relation 

 ( ) ( )0 0

( 1) ( 1)( 1) ( 1) ( 1) ( 1)
1 2 1 21 2

( ) ( , , ), ( ) ( , , )
T Tk kk k k k

t t T t t t T tp x x d x K K p x x d x K K ε
+ ++ + + +

+ +
⎛ ⎞

− − − − ≤⎜ ⎟
⎝ ⎠

. (24) 

3.3 Adaptive critic structure for solving the two-player Nash differential game 

The adaptive critic structure that represents the implementation of this algorithm is given in 
Figure 1. 
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x
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Fig. 1. Adaptive critic structure for the ADP game with IRL. 
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An important aspect that is revealed by the adaptive critic structure is the fact that this ADP 
algorithm is now using three time scales:  
a. the continuous-time scale, represented by the full lines, that is connected with the 

continuous-time dynamics of the system and the continuous-time computation 
performed by the two players; 

b. a discrete time scale given by T0. This time scale is connected with the online learning 
procedure that is based on discrete-time measured data; 

c. a slower, discrete-time scale that is a multiple of T0. This time scale, indicated by the 
dashed lines, is connected with the update procedure of the control policies of the two 
players. The update procedure is performed only after the value function learning 
procedure, that uses integral reinforcement information, has converged. 

The values of the time periods T0 can be variable and are controlled by the two learning 
critics. Each critic will output a matrix ( ) , 1,2k

iP i = , in a synchronous fashion, after both 
online learning algorithms for the value functions have converged. Each controller will use 
the information from its corresponding critic to calculate and then implement a new control 
policy. 
From the perspective of two-player games, the proposed online algorithm can be presented 
as follows: 
Initialization 

Let the initial policy of Player 2 be zero (00)
2 0u = .  

Let Player 1 determine its optimal control policy (0) (0)1
11 1 11

TK R B P−= −  in an online 
optimization procedure while Player 2 is not playing the game.  

Let Player 2 determine its optimal control policy (0) (0)1
22 2 22

TK R B P−= −  in an online 

optimization procedure while Player 1 is playing the game using (0)
1K . 

Iterative procedure 

For 0k ≥ , let both players determine online, using the integral reinforcement learning 

procedure, the values that they associate with the use of the policy pair ( ) ( )
1 2( , )k kK K , namely 

the pair of matrices ( 1) ( 1)
1 2( , )k kP P+ + . 

Let both players update their control policies using  

 ( 1) ( 1)1k kT
ii i iiK R B P+ +−= − . (25) 

Stop criterion  
Let both players stop this iterative procedure when there is no change in the control policies 
is observed at two successive steps (i.e. the Nash equilibrium has been obtained and both 
players can not further improve their cost function by changing their behavior policy). 

4. Analysis of the online learning algorithm 

In this section we are providing an analysis for the online algorithm that was introduced in 
section 3.  

4.1 Mathematical formulation of the online algorithm 

Using the notation ( ) ( )( )
1 21 2

k kkA A S P S P= − − , it can be shown that equations (21) can be 
written as:  

 ( ) ( )( 1) ( 1)( ) ( )T kk kk k
ii iA P P A Q+ ++ = −  (26) 
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where 1,2i = . 
Thus the online algorithm described in Section 3.2 is equivalent with the following 
procedure: 
Initialization 

Start with initial matrices (0) (0)
1 2( , )P P  such that  (0) (0)

1 21 2A S P S P− −  is Hurwitz.  
Iterative procedure  

For 0,k k≥ ∈Ν , solve the Lyapunov equations (25). 
Stop criterion 

Stop the online algorithm when the criterion (23) is satisfied for a user specified value of ε .  
This offline algorithm that uses iterations on Lyapunov equations has been proposed and 
analysed in (Li & Gajic, 1995) and its convergence has been further discussed in (Mukaidani, 
2006) and (Mukaidani, 2007-b). Considering the mathematical equivalence between the 
algorithm introduced in (Li & Gajic, 1995) and the online procedure based on reinforcement 
learning that we proposed in Section 3, we can conclude that the online, partially model 
free, algorithm that we presented herein has the same convergence properties. 

4.2 Analysis of the online algorithm 

It is interesting to see that, similarly to the Newton method proposed in (Kleinman, 1968) for 
solving the classical continuous-time algebraic Riccati equation, the algorithm presented in 
this chapter relies on iterations on Lyapunov equations. However, the online procedure 
introduced here, and its underlying algorithm, is not a Newton method for finding the 
solution of the coupled ARE given in (7). This shall be clarified by means of the next two 
propositions. 
First let us look at the formulation of the Newton method that determines the unique 
positive definite solution of the classical continuous-time algebraic Riccati equation 

 1 0T TA P PA Q PBR B P−+ + − = . (27) 

Denote with ( )kRic P  the matrix valued function defined as 

 1( ) T T
k k k k kRic P A P P A Q P BR B P−= + + −  (28) 

and let '

kPRic denote the Frechet derivative of ( )kRic P  taken with respect to kP . The matrix 

function '

kPRic , evaluated at a given matrix M, will thus be  

 ' 1 1( ) ( ) ( )
k

T T T
P k kRic M A BR B P M M A BR B P− −= − + − . (29) 

Proposition 1 The unique positive solution of (27) can be determined by Newton’s method 
given by: 

 
1

' 1
1 1( ) ( )

kk k P kP P Ric Ric P
−

−
− −= − , (30) 

provided that the initial matrix 0P  is such that 1
0

TA BR B P−−  is Hurwitz; and considering 

that the regular conditions for existence and uniqueness of positive definite solution are 

satisfied.  For a proof see (Vrabie et al., 2009). 
Next we will use the same mathematical tools to provide formulation to the algorithm used 
herein. 
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Consider the notations introduced in (7) for the two coupled algebraic Riccati equations, and 

let ( )
1

'
1 kP

N  and ( )
2

'
2 kP

N  denote the Frechet derivatives of ( ) ( )
1 1 2( , )k kN P P  and ( ) ( )

2 1 2( , )k kN P P , 

taken with respect to ( )
1

kP  and respectively ( )
2

kP , such that  

 
( )
1

( )
2

( ) ( )'
1

( ) ( )'
2

( ) ( )

( ) ( )

k

k

k kT

P

k kT

P

N M A M MA

N M A M MA

= +

= +
, (31) 

where ( ) ( ) ( )
2 2 1 1

k k kA A S P S P= − − . 

Proposition 2 Consider that the regular conditions for existence and uniqueness of 

solution of the infinite horizon nonzero-sum differential game with quadratic 

performance are satisfied. Then, provided that an initial pair (0) (0)
1 2( , )P P  is such that 

(0) (0) (0)
2 2 1 1A A S P S P= − −  is Hurwitz, the online algorithm described in Section 3.2, that 

provides the Nash equilibrium solution of (7), can be formulated as the following quasi-

Newton method  

 
( )
1

( )
2

( 1) ( ) ( ) ( )' 1
1 11 1 1 2

( 1) ( ) ( ) ( )' 1
2 22 2 1 2

( ) ( , )

( ) ( , )

k

k

k k k k

P

k k k k

P

P P N N P P

P P N N P P

+ −

+ −

= −

= −
. (32) 

Proof We first show that the two equations (26) 

 ( ) ( )( 1) ( 1)( ) ( )T kk kk k
ii iA P P A Q+ ++ = −  (33) 

can be written in the form:  

 ( 1) ( ) ( ) ( ) ( 1) ( ) ( ) ( )
11 1 1 1 1 2( ) ( ) ( ) ( , ) 0k k k k k k k kTP P A A P P N P P+ +− + − + =  (34) 

and respectively:  

 ( 1) ( ) ( ) ( ) ( 1) ( ) ( ) ( )
22 2 2 2 1 2( ) ( ) ( ) ( , ) 0k k k k k k k kTP P A A P P N P P+ +− + − + = . (35) 

For i=1, we write (33) as: 

 ( ) ( 1) ( 1) ( ) ( ) ( ) ( )( ) ( )
1 1 121 1 1 1 2 2( )

T k k k k k kk kA P P A Q P S P P S P+ ++ = − + + . (36) 

Using the definition of ( ) ( )
1 1 2( , )k kN P P  we can write: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 2 1 21 2 1 2 1 1 1 2

( ) ( ) ( ) ( )
1 12 12 2 1 1

( , ) ( ) ( )k k k k k k k kT

k k k k

N P P A S P S P P P A S P S P

Q P S P P S P

= − − + − − +

+ + +
 (37) 

and thus we have  

 ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 12 11 2 1 1 2 2 1 1( , )

Tk k k k k k k k k kN P P A P P A Q P S P P S P− − = + + . (38) 
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Adding equations (36) and (38) we obtain 

 ( ) ( ) ( )( 1) ( ) ( ) ( ) ( 1) ( ) ( ) ( )
11 1 1 1 1 2( , ) 0

Tk k k k k k k kP P A A P P N P P+ +− + − + = . (39) 

Similarly, for i=2, one can obtain (35) using (33) and the definition of ( ) ( )
2 1 2( , )k kN P P . 

Using (31) we write 

 ( ) ( )( )
1

( 1) ( ) ( 1) ( ) ( 1) ( )( ) ( )'
1 1 1 1 1 1 1( ) ( )k

k k k k k kk kT

P
N P P A P P P P A+ + +− = − + −  (40) 

and thus (39) becomes 

 ( )
1

( 1) ( ) ( ) ( )'
1 11 1 1 2( ) ( , )k

k k k k

P
N P P N P P+ − = − , (41) 

and the sequence of matrices { }( )
1

kP  will be determined using the iterative relation  

 ( )
1

( 1) ( ) ( ) ( )' 1
1 11 1 1 2( ) ( , )k

k k k k

P
P P N N P P+ −= − . (42) 

In a similar fashion we can show that the sequence of matrices { }( )
2

kP  is the result of the 

iterative procedure  ( )
2

( 1) ( ) ( ) ( )' 1
2 22 2 1 2( ) ( , )k

k k k k

P
P P N N P P+ −= − .    

5. Simulation result for the online algorithm 

This section presents the results that were obtained in simulation while finding the state-

feedback controllers that correspond to the Nash equilibrium solution of the differential 

game.  

Here we considered the system used in Example 1 in (Jungers et al., 2007). The purpose of the 

design method is to allow the two players to determine by means of online measurements and 

reinforcement learning techniques the control strategies that satisfy the equilibrium 

characterized by (3). It is important to emphasize that the equilibrium result will be obtained 

without making use of any knowledge on the drift dynamics of the system, matrix A. 

The matrices of the model of the plant, that are used in this simulation are:  

 

-0.0366    0.0271    0.0188   -0.4555

0.0482   -1.0100    0.0024   -4.0208

0.1002    0.2855   -0.7070    1.3229

      0             0       1.0000         0

nomA

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (43) 

 
[ ]
[ ]

1

2

0.4422    3.0447    -5.52   0

0.1761   -7.5922    4.99    0

T

T

B

B

=

=
 (44) 

The following cost function parameters were chosen 1 (3.5;2;4;5)Q diag= , 

2 (1.5;6;3;1)Q diag= , 11 1R = , 22 2R = , 12 0.25R = , 21 0.6R = . 

For the purpose of demonstrating the online learning algorithm the closed loop system was 

excited with an initial condition, the initial state of the system being [ ]0 0   0   0   1x = . The 
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simulation was conducted using data obtained from the system at every 0.2s. The value of 

the stop criterion ε  was 610− .  

The algorithm was initialized using the matrices (0) , 1,2iP i =  that were calculated using the 

initialization procedure that was outlined above. It is important to mention here that the two 

admissible control policies (0) , 1,2iK i =  corresponding to the solutions (0) , 1,2iP i =  can also 

be determined online by means of the online policy iteration algorithm introduced in 

(Vrabie et al., 2009), a procedure that does not require knowledge on the drift dynamics of 

the system, namely matrix A. 

In order to solve online for the values of the ( ) , 1,2k
iP i = , a least-squares problem of the sort 

described in Section 2.2 was set up before each iteration step in the online algorithm. Since 

there are 10 independent elements in the symmetric matrices ( ) , 1,2k
iP i =  the setup of the 

least-squares problem requires at least 10 measurements of the cost function associated with 

the given control policy and measurements of the system’s states at the beginning and the 

end of each time interval, provided that there is enough excitation in the system. Here we 

chose to solve a least squares problem after a set of 15 data samples was acquired and thus 

the policy of the controller was updated every 3 sec.  
Figure 2 and Figure 3 present the evolution of the parameters of the value of the game seen 
by Player 1 and Player 2 respectively. 
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Fig. 2. Convergence of the cost function of Player 1 using the ADP method with integral 
reinforcement learning technique. 

The matrices that are characterizing the equilibrium solution were obtained in simulation 

after 7 iteration steps. These are: 

 (7)
1

7.6586    0.6438    0.6398   -3.0831

0.6438    0.2878    0.2855   -0.0945

0.6398    0.2855    0.5620    0.2270

-3.0831   -0.0945    0.2270    6.6987

P

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (45) 
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and 

 (7)
2

3.4579    0.1568    0.2047   -1.8480

0.1568    0.6235    0.2889   -0.0711

0.2047    0.2889    0.4014    0.0729

-1.8480   -0.0711    0.0729    3.7850

P

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. (46) 

 

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Parameters of the cost function of Player 2

Time (s)

 

 

P
2
(1,1)

P
2
(1,2)

P
2
(2,2)

P
2
(3,4)

P
2
(4,4)

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Parameters of the cost function of Player 2

Time (s)

 

 

P
2
(1,1)

P
2
(1,2)

P
2
(2,2)

P
2
(3,4)

P
2
(4,4)

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Parameters of the cost function of Player 2

Time (s)

 

 

P
2
(1,1)

P
2
(1,2)

P
2
(2,2)

P
2
(3,4)

P
2
(4,4)

 
 

Fig. 3. Convergence of the cost function of Player 2 using the ADP method with integral 
reinforcement learning technique 

The same results have been obtained in (Freiling et al., 1996) by means of a different iterative 

method. 

The two saddle point control policies are:  

 (7)
1 [ 1.8151   0.4150    1.9501    2.9041]K = −  (47) 

and 

 (7)
2 [ 0.22    1.6323    0.0772   0.2891]K = − − . (48) 

It is important to note that the ADP online gaming method described in Section 3, uses 

measurements from the system and does not require any knowledge of the matrix A. 

Nonetheless, the resulting solution is close to the exact solution of the game problem that 

can be obtained via numerical methods that require an exact model of the system. 

6. Conclusion 

This chapter introduced an online data-based approach that makes use of reinforcement 

learning techniques to determine in an online fashion the solution of the two-player 
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nonzero-sum differential game with linear dynamics. The algorithm is suitable for online 

implementation and furthermore does not require exact knowledge of the system drift 

dynamics given by matrix A.  

The two participants in the continuous-time differential game are competing in real-time 

and the feedback Nash control strategies will be determined based on online measured data 

from the system. The algorithm is built on interplay between a learning phase, where each 

of the players is learning online the value that they associate with a given set of play 

policies, and a policy update step, performed by each of the payers towards decreasing the 

value of their cost. The players are learning concurrently.  

It was shown that the online procedure is based on a mathematical algorithm that solves 

offline the coupled ARE associated with the differential game problem and involves 

iterations on Lyapunov equations to build a sequence of controllers. The Lyapunov 

equations that appear at each step of the iteration are solved online using measured data by 

means of an integral reinforcement learning procedure.  

Here we considered the infinite horizon, state-feedback, linear-quadratic case of the 

problem. Ideas related with the extension of this result to the more general case of a game 

with nonlinear dynamics will be pursued in detail in a future research. Also, herein we 

restricted the discussion to the case of two-player games. However it is straightforward to 

formulate the ADP algorithm for the general case with N players. 
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