
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322392438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

10

Subgoal Identifications in
Reinforcement Learning: A Survey

Chung-Cheng Chiu and Von-Wun Soo
National Tsing Hua University

Taiwan

1. Introduction

Designing an algorithm to build a program to solve all forms of problems is an attractive
idea. The programmers don’t need to spend efforts on figuring out an optimal way to solve
the problem, the algorithm itself will explore the problem and automatically finds the
solution to the problem. This amazing feature of automatic programming is what makes
reinforcement learning so appealing, and have the potential to apply on virtually every
single task of our world. Reinforcement learning is a general framework to find an optimal
solution for the given task. Its generalization reduces the effort of programmers on mapping
a specific task into a reinforcement learning problem, but this feature is also the main
performance bottleneck of reinforcement learning. Since there are not many constraints
within the framework, the search space of the policy is exponentially proportional to the
dimension of the state space. When mapping a high dimensional problem into a
reinforcement learning problem, the conventional reinforcement learning algorithm
becomes infeasible. Most of the real world problems are high-dimensional, and it is the
major limitation for reinforcement learning. Therefore, how to find a way to reduce the
search space and improve the search efficiency is the most important challenge.
On dealing with a high dimensionality problem, there are two common approaches to
improve the performance. One is to reduce the dimensionality; the other is to find a better
optimization algorithm. The first approach has drawn much attention in recent years, and
many interesting works have been proposed this way to boost the performance of
reinforcement learning. This article is going to review some recent advances in the
dimensionality reduction approach.
Approaches for dimensionality reduction can be classified into two categories. One is value
function approximation, and the other is abstraction. The first category approximate the
utility function as a specific form of function, usually linear function, and the optimization
of value function becomes much more efficient when dealing with linear functions. This
approximation not only reduces the cost of optimization, but also provides the abilities to
dealing with continuous-variable problems and generalizing the original policy to similar
problems. The second category identifies the structure of the problem, represent the
problem with higher-level concepts, and remove irrelevant parameters. Approaches within
this category identify the sub-spaces of the state space that do not need to include other sub-
spaces when solving the problem. For example, on solving a “make-coffee” problem, we can
divide the problem into two sub-problems “reach the coffee maker” and “cook coffee with

www.intechopen.com

 Advances in Reinforcement Learning

182

coffee maker”. This article is going to talk a little bit on the value function approximation,
and the main focus is to review some recent advances in abstractions.
Abstraction approaches require determining sub-problems, and the sub-problems are also

known as subtasks. On representing the original problem with subtasks, the program then

can make decision among these subtasks instead of low-level actions. The new

representation scales down the complexity of the problem. The problems remain to solve are

how to identify these subtasks and how to learn policies of them. The second task depends

on the first task: we need to construct subtasks so that to learn their policies. One way to

implement this framework is to construct subtasks and define sub-policies manually. When

a problem is divided into several sub-problems, it is usually easy for a programmer to

implement the sub-policies, so the approach can be practical for simple problems. But when

dealing with large-scale decision making problems, programming these sub-policies

becomes effort demanding, and identifying a good set of subtasks is difficult if not

impossible. This leads to the issue of how to identify these subtasks. Many algorithms have

been proposed to attack this problem, but the complexity of these algorithms is proportional

to the complexity of the problem, so they become impractical for challenging problems.

How to automate these processes remains an open problem.

Even subtasks are constructed, the sub-policy learning problem is still critical. Adding sub-

tasks to the original problem actually increases the complexity, so simply applying the

conventional reinforcement learning algorithms provides no benefit. Except for

implementing the sub-policies manually, the benefit of constructing subtasks comes from

the potential for dimension reductions. (1) A subtask can be shared among solving different

sub-problems and can save the time for learning redundant subtasks. (2) It is much easier to

find irrelevant parameters within a subtask. An object can be relevant in one task and

irrelevant in others; separates the problem into different subtasks allow the specific task to

remove the parameters for that object. Removing irrelevant parameters reduces the

dimensionality of the problems. Therefore, despite of subgoal identification issue, we will

also talk about dimension reductions among subtasks.

The second section introduces existing frameworks for representing subtasks. The third

section reviews existing works for subtask discovery. The fourth section discusses the issue

of dimension reduction among subtasks. And the conclusions are given in the last section.

2. Subtask representation

We start the introduction for subtask representation from a widely used model, the option

framework Sutton et al. (1999). The option framework defines a subtask as an option. Each

option consists of three components, initiation set, terminal conditions, and the option

policy function. The initiation set determines what states the option can be applied, the

terminal conditions specify when the option will be terminated, and the option policy

corresponds to the sub-policy of that subtask. An initiation set and terminal conditions

define the scope of a subtask. The defined options are added to the action list of policies,

and the decision maker can choose to apply these temporally-extended actions instead of

trying a sequence of one-step actions. This approach define a general framework for

defining a subtask, and the component of a subtask is simple. Due to such modulation, the

option framework is widely used representation discovery algorithms.

www.intechopen.com

Subgoal Identifications in Reinforcement Learning: A Survey

183

The framework of hierarchies of abstract machines (HAM) Andre & Russell (2000); Parr &
Russell (1997) is another classic approach for hierarchically structuring a task. The
framework composes policies as hierarchies of stochastic finite-state machines. The root
layer decision maker decides what subtask to be performed, and each subtask is one or a
collection of predefined control programs. The control programs can be a simple task like
moving an arm to a specific position, and the policy learning addresses how to use these
abstract actions to perform the task and ignores low-level controls. The control programs are
easy to be implemented, and the combination reduces the complexity of policy learning.
One major difference between HAMs and option frameworks is that HAMs restrict the
available choices of actions, while option framework augments the action set. Therefore,
HAMs construct a more compact representation for policies. On the other hand, HAMs
require more domain knowledge to define the precise architecture, and applying this
framework is more challenging for subtask identification algorithms.
There are two kinds of design to learn the policy with subtasks. One is recursive optimality,
the other is hierarchical optimality. In recursive optimality, each subtask performs its task
without considering the context of its parent. On the other hand, the hierarchical optimality
recognizes the fact that many tasks have to consider the hierarchy relation. For example, for
driving to a specific point, whether you want to stop at that point or will keep driving to the
other destination influences the driving behavior; you will decelerate before reaching the
point in the former case, but will keep driving in an efficient speed in the latter case. Thus,
the recursive optimality is a local optimal solution compared to hierarchical optimality.
The reason to seek recursive optimality is that this kind of design removes the dependency
of a subtask to its parent. Without considering the context in which a subtask is executed, it
is much easier to share and re-use subtasks. The design provides a more compact
representation for a task, and the idea is proposed by Dietterich (2000). The algorithm,
MAXQ, separates the utility values of performing the subtask and the utility within current
task after the subtask is terminated (completion value): Qi(s, a) = Va(s)+Ci(s, a) where Vi(s) is
the expected cumulative rewards for executing action a on state s, and Ci(s, a) is the expected
cumulative rewards before subtask i ends. With this form of value function decomposition
and ignoring the long term expected utility after the current task, the hierarchical utility
function can be computed by a compact recursive function call. Each subtask is an
independent process–its execution does not need to consider the exterior variables, or the
global states. Therefore, a subtask can be implemented as a function call. The concise and
compact features of MAXQ lead to subsequent works Andre & Russell (2002); Marthi et al.
(2006) that adopt the design of value function decomposition and extend it to achieve
hierarchical optimality.

In sequential decision making, a common approach is to model the entire task with Markov
decision processes (MDPs). An MPD , , ,a a

ss ssS A P R′ ′< > is composed of a set of states S, a set of
actions A, a transition function specifying the transition probability from s to s′ with action a,
and a reward function specifying the reward from s to s′ with action a. In MDPs, the action
execution is represented by only the sequence of these actions, and the performance time
of each action is ignored. In hierarchical reinforcement learning, each subtask may take
various amount of time, and ignoring the time factor becomes sub-optimal when making
decisions. The semi-Markov decision process (SMDP) is a framework that extend MDPs to
consider temporal-effect. Each action has an additional time variable, and the utility of an
action is its expected utility over time. The Bellman equation for calculating utility values
becomes

www.intechopen.com

 Advances in Reinforcement Learning

184

Fig. 1. The second eigenvector of the graph Laplacian on a 9-room example. Spectral graph
theory has been widely applied in subgoal identification algorithms and value function
approximation like Proto-value functions Mahadevan & Maggioni (2007).

,

() max (,) (, ,) ()
sa A

s

V s R s a P s s a V sτ

τ
γ τ

∈ ′

⎡ ⎤
′ ′= +⎢ ⎥

⎢ ⎥⎣ ⎦
∑

The policy function evaluates the utility of an action with the consideration of its various
executing time, and fits the execution criterion of the subtask. Thus, this is the main model
applied in hierarchical reinforcement learning.

3. Subtask identification

The fundamental works about hierarchical representation relies on manual definition for
sub-tasks. This kind of design requires sufficient prior knowledge about a task, and its
optimality depends on the proper construction of the hierarchical structure. Although
hierarchical reinforcement learning framework provides an efficient formulation on a
complex problem, the manual design requirement limits its flexibility. In many cases, we
could only acquire partial solutions in problem solving that do not provide complete
information for deciding a policy for states that the problem solver had not visited. These
action sequences contain information for dimension reduction for the hierarchical
reinforcement learning framework. The design of a HRL algorithm includes two processes,
hierarchical control construction and abstractions. To formulate HRL automatically is to
provide methods for performing these two processes with associated learning algorithms.
This leads to researches on subtask identification and dimension reduction.
Subtask identification processes are interpreted as subgoal identification processes. Once
subgoals are identified, subtasks are formulated to pursue these subgoals, and these subgoal

www.intechopen.com

Subgoal Identifications in Reinforcement Learning: A Survey

185

states are the terminal conditions, and subtask policies aim for reaching the subgoals. The
existing algorithms for subgoal identification can be classified into three types: (1)
Identifying subgoals as states that are most relevant to a task. (2) Identifying subgoals as
states that provide an easy access to the neighbor regions. (3) Constructing subtasks based
on factored state space. The first case identifies subgoals as states with a high visit frequency
and reward gradient Digney (1998) or as highly-visited states based on only successful
trajectories McGovern & Barto (2001). Şimşek & Barto (2004) uses relative novelty as a
metric to classify subgoals and non-subgoal states.
The second case defined decomposition states as access states or bottlenecks that is similar
to the graph cut in graph theory. Thus, to identify bottlenecks, Menache et al. (2002) applied
graph cut based on conventional network flow analysis to the whole state transition graph.
Chiu & Soo (2007) use a flooding algorithm to transmit network flow between starting
position and terminal position of problem solver, and take states with local maximum flood
value as subgoals. Şimşek & Barto (2008) took similar idea that their approach calculates the
density of shortest paths through state nodes, which is called betweenness in their work, and
choose states with local maximum density as subgoals.
Şimşek et al. (2005) applied normalized cut based on spectral clustering approach Shi &
Malik (2000) to the state transition graph updated through newly observations. The graph
cut itself only provides binary separation, so they took part of state space for analysis to
reduce computation complexity, and may find different results on different trials. Chiu &
Soo (2010) also adopt spectral graph theory, but instead of using graph cut result, they take
the smoothness property of the spectral theory. With the spectral analysis, the edges with
local maximum differences are considered bottleneck edges, and their connecting nodes are
bottleneck states. Mannor et al. (2004) proposed a clustering method to identify blocks
which are densely connected inside but weakly connected in between. The algorithm also
finds multiple separations.
HEXQ Hengst (2002) evaluates the updating frequencies of variables to rank their hierarchy.
The idea is that variables which change often tend to be at lower level of hierarchy, just as
variables in the inner loop will change more often. The framework constructs options based
on the projected graph. The heuristic considers one variable at a time, and can not model
causal relations with more than one variable. Thus, Jonsson & Barto (2006) and Mehta et al.
(2008) took dynamic Bayesian network to model the causal relation. Their work requires a
pre-constructed dynamic Bayesian network.
Most of works for subgoal identifications are based on discrete domains. Konidaris & Barto
(2009) proposed skill chaining to find options in continuous domain. The idea is similar to
the LQR-tree mechanism which builds a tree gradually via sampling points in the state
space, and finds a trajectory to link to the tree. Skill chaining takes other options’ boundary
as terminal states and creates a new option to link to the existing option sets.

4. Redundancy reduction

Identifying subgoals from a problem only completes the half job. The benefit of constructing
hierarchical reinforcement learning is its potential for redundancy reduction, and it is easier
for a programmer to implement the subtask policies. Redundancy reduction scaled down
the complexity of a problem in order to help the learning process, which can be done by
eliminating irrelevant parameters for decision making. Givan et al. (2003) proposed a notion
of equivalence in which states can be merged without losing optimality. The states are

www.intechopen.com

 Advances in Reinforcement Learning

186

aggregated together if they have the same rewards and state transitions. The approach is
applied on factored representation, and is guaranteed to be optimal. In the work of
constructing basis functions for hierarchical reinforcement learning Osentoski & Mahadevan
(2010), they used a graph reduction method to merge nodes connected to the same set of
vertices, having the same edge labels, and a subset of their variables are the same.
Jong & Stone (2005) proposed a statistical hypothesis-testing approach to evaluate the
relevance of state parameters. The method took the p-value of a single state to represent the
overall projection result on a projected state. The algorithm defines the irrelevance of a state
parameter if there is an action that is optimal among states that differ within only the
parameter. Then all states projecting onto that state could share a unique optimal decision
making without the state parameter, and the state parameters of this projection is
apparently irrelevant. The irrelevant parameter analysis requires an optimal value function
to determine the relevance of state parameters for decision making. Thus, the analysis can
not help current problem, but the derived knowledge can be applied on similar problems to
remove irrelevant parameters. The approach is applied on general MDPs, but it does not
guarantee the optimality of abstractions.
Chiu & Soo (2010) proposed to use analysis of variance to derive irrelevant parameters from
incomplete data, namely, a partial near-optimal solution. They defined irrelevant state
parameters as parameters that do not affect the policy function. In other words, the value
distribution of a policy function should be at least similar if not exactly identical among
states that differ only on that state parameter. The similarity of distributions is compared via
the variance analysis. The analysis estimates the policy function value distribution of a state
and its projected states, and takes the mean and variance from the value distribution of the
projected states onto that state. It estimates the approximate distribution before the value
function is exactly calculated.

5. Conclusions

We survey some recent works about subgoal identification and redundancy reduction.
Conventional reinforcement learning algorithms runs in polynomial time, but for most of the
problems, this cost is not practical. Hierarchical reinforcement learning is one of the
approaches to make this framework infeasible. The abstraction mechanism in hierarchical
reinforcement learning not only plays the role of dimension reduction. Via assigning low level
works to some simple programs, the new framework maps the problem into a architecture
that closer to the style that human used to adopt for problem solving. Hierarchical
reinforcement learning brings another thought of design for the programmer to define the
problem, which makes problem solving much easier. Hierarchical reinforcement learning
depends on temporal-extended actions, and there are many existing works proposed for
constructing these actions. These works improve the performance of reinforcement learning to
some extent, but the gains are not significant enough to scale down most of the complex
problems. A good way to construct a compact reinforcement learning is an open problem, and
is an important issue required further focus in the field of reinforcement learning.

6. References

Andre, D. & Russell, S. J. (2000). Programmable reinforcement learning agents, in T. K. Leen,
T. G. Dietterich & V. Tresp (eds), NIPS, MIT Press, pp. 1019–1025.

www.intechopen.com

Subgoal Identifications in Reinforcement Learning: A Survey

187

Andre, D. & Russell, S. J. (2002). State abstraction for programmable reinforcement learning
agents, AAAI/IAAI, pp. 119–125.

Chiu, C.-C. & Soo, V.-W. (2007). Subgoal identification for reinforcement learning and
planning in multiagent problem solving, MATES ’07: Proceedings of the 5th German
conference on Multiagent System Technologies, Springer-Verlag, Berlin, Heidelberg,
pp. 37–48.

Chiu, C.-C. & Soo, V.-W. (2010). Automatic complexity reduction in reinforcement learning,
Computational Intelligence 26(1): 1–25.

Chiu, C.-C. and Soo, V.-W. (2010), AUTOMATIC COMPLEXITY REDUCTION IN
REINFORCEMENT LEARNING. Computational Intelligence, 26: 1–25.

Şimşek, O. & Barto, A. G. (2004). Using relative novelty to identify useful temporal
abstractions in reinforcement learning, ICML ’04: Proceedings of the twenty-first
international conference on Machine learning, ACM, New York, NY, USA, p. 95.

Şimşek, O. & Barto, A. G. (2008). Skill characterization based on betweenness, in D. Koller,
D. Schuurmans, Y. Bengio & L. Bottou (eds), NIPS, MIT Press, pp. 1497–1504.

Şimşek, O., Wolfe, A. P. & Barto, A. G. (2005). Identifying useful subgoals in reinforcement
learning by local graph partitioning, ICML ’05: Proceedings of the 22nd international
conference on Machine learning, ACM, New York, NY, USA, pp. 816–823.

Dietterich, T. G. (2000). Hierarchical reinforcement learning with the maxq value function
decomposition, J. Artif. Intell. Res. (JAIR) 13: 227–303.

Digney, B. (1998). Learning hierarchical control structure for multiple tasks and changing
environments, Proceedings of the Fifth Conference on the Simulation of Adaptive
Behavior: SAB 98.

Givan, R., Dean, T. & Greig, M. (2003). Equivalence notions and model minimization in
markov decision processes, Artif. Intell. 147(1-2): 163–223.

Hengst, B. (2002). Discovering hierarchy in reinforcement learning with hexq, ICML ’02:
Proceedings of the Nineteenth International Conference on Machine Learning, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 243–250.

Jong, N. K. & Stone, P. (2005). State abstraction discovery from irrelevant state variables,
IJCAI’05: Proceedings of the 19th international joint conference on Artificial intelligence,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 752–757.

Jonsson, A. & Barto, A. (2006). Causal graph based decomposition of factored mdps, J. Mach.
Learn. Res. 7: 2259–2301.

Konidaris, G. & Barto, A. (2009). Skill discovery in continuous reinforcement learning
domains using skill chaining, in Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I.
Williams & A. Culotta (eds), Advances in Neural Information Processing Systems 22,
pp. 1015– 1023.

Mahadevan, S. & Maggioni, M. (2007). Proto-value functions: A laplacian framework for
learning representation and control in markov decision processes, Journal of
Machine Learning Research 8: 2169–2231.

Mannor, S., Menache, I., Hoze, A. & Klein, U. (2004). Dynamic abstraction in reinforcement
learning via clustering, ICML ’04: Proceedings of the twenty-first international
conference on Machine learning, ACM, New York, NY, USA, p. 71.

Marthi, B., Russell, S. J. & Andre, D. (2006). A compact, hierarchical q-function
decomposition, UAI, AUAI Press.

www.intechopen.com

 Advances in Reinforcement Learning

188

McGovern, A. & Barto, A. G. (2001). Automatic discovery of subgoals in reinforcement
learning using diverse density, ICML ’01: Proceedings of the Eighteenth International
Conference on Machine Learning, Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, pp. 361–368.

Mehta, N., Ray, S., Tadepalli, P. & Dietterich, T. (2008). Automatic discovery and transfer of
maxq hierarchies, ICML ’08: Proceedings of the 25th international conference on Machine
learning, ACM, New York, NY, USA, pp. 648–655.

Menache, I., Mannor, S. & Shimkin, N. (2002). Q-cut - dynamic discovery of sub-goals in
reinforcement learning, ECML ’02: Proceedings of the 13th European Conference on
Machine Learning, Springer-Verlag, London, UK, pp. 295–306.

Osentoski, S. & Mahadevan, S. (2010). Basis function construction for hierarchical
reinforcement learning, AAMAS ’10: Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems, International Foundation for
Autonomous Agents and Multiagent Systems, Richland, SC, pp. 747–754.

Parr, R. & Russell, S. J. (1997). Reinforcement learning with hierarchies of machines, in M. I.
Jordan, M. J. Kearns & S. A. Solla (eds), NIPS, The MIT Press.

Shi, J. & Malik, J. (2000). Normalized cuts and image segmentation, IEEE Trans. Pattern Anal.
Mach. Intell. 22(8): 888–905.

Sutton, R. S., Precup, D. & Singh, S. P. (1999). Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning, Artif. Intell. 112(1-2): 181–211.

www.intechopen.com

Advances in Reinforcement Learning

Edited by Prof. Abdelhamid Mellouk

ISBN 978-953-307-369-9

Hard cover, 470 pages

Publisher InTech

Published online 14, January, 2011

Published in print edition January, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Reinforcement Learning (RL) is a very dynamic area in terms of theory and application. This book brings

together many different aspects of the current research on several fields associated to RL which has been

growing rapidly, producing a wide variety of learning algorithms for different applications. Based on 24

Chapters, it covers a very broad variety of topics in RL and their application in autonomous systems. A set of

chapters in this book provide a general overview of RL while other chapters focus mostly on the applications of

RL paradigms: Game Theory, Multi-Agent Theory, Robotic, Networking Technologies, Vehicular Navigation,

Medicine and Industrial Logistic.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Chung-Cheng Chiu and Von-Wun Soo (2011). Subgoal Identifications in Reinforcement Learning: A Survey,

Advances in Reinforcement Learning, Prof. Abdelhamid Mellouk (Ed.), ISBN: 978-953-307-369-9, InTech,

Available from: http://www.intechopen.com/books/advances-in-reinforcement-learning/subgoal-identifications-

in-reinforcement-learning-a-survey

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

