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1. Introduction 

Designing an algorithm to build a program to solve all forms of problems is an attractive 
idea. The programmers don’t need to spend efforts on figuring out an optimal way to solve 
the problem, the algorithm itself will explore the problem and automatically finds the 
solution to the problem. This amazing feature of automatic programming is what makes 
reinforcement learning so appealing, and have the potential to apply on virtually every 
single task of our world. Reinforcement learning is a general framework to find an optimal 
solution for the given task. Its generalization reduces the effort of programmers on mapping 
a specific task into a reinforcement learning problem, but this feature is also the main 
performance bottleneck of reinforcement learning. Since there are not many constraints 
within the framework, the search space of the policy is exponentially proportional to the 
dimension of the state space. When mapping a high dimensional problem into a 
reinforcement learning problem, the conventional reinforcement learning algorithm 
becomes infeasible. Most of the real world problems are high-dimensional, and it is the 
major limitation for reinforcement learning. Therefore, how to find a way to reduce the 
search space and improve the search efficiency is the most important challenge. 
On dealing with a high dimensionality problem, there are two common approaches to 
improve the performance. One is to reduce the dimensionality; the other is to find a better 
optimization algorithm. The first approach has drawn much attention in recent years, and 
many interesting works have been proposed this way to boost the performance of 
reinforcement learning. This article is going to review some recent advances in the 
dimensionality reduction approach. 
Approaches for dimensionality reduction can be classified into two categories. One is value 
function approximation, and the other is abstraction. The first category approximate the 
utility function as a specific form of function, usually linear function, and the optimization 
of value function becomes much more efficient when dealing with linear functions. This 
approximation not only reduces the cost of optimization, but also provides the abilities to 
dealing with continuous-variable problems and generalizing the original policy to similar 
problems. The second category identifies the structure of the problem, represent the 
problem with higher-level concepts, and remove irrelevant parameters. Approaches within 
this category identify the sub-spaces of the state space that do not need to include other sub-
spaces when solving the problem. For example, on solving a “make-coffee” problem, we can 
divide the problem into two sub-problems “reach the coffee maker” and “cook coffee with 

www.intechopen.com



 Advances in Reinforcement Learning 

 

182 

coffee maker”. This article is going to talk a little bit on the value function approximation, 
and the main focus is to review some recent advances in abstractions. 
Abstraction approaches require determining sub-problems, and the sub-problems are also 

known as subtasks. On representing the original problem with subtasks, the program then 

can make decision among these subtasks instead of low-level actions. The new 

representation scales down the complexity of the problem. The problems remain to solve are 

how to identify these subtasks and how to learn policies of them. The second task depends 

on the first task: we need to construct subtasks so that to learn their policies. One way to 

implement this framework is to construct subtasks and define sub-policies manually. When 

a problem is divided into several sub-problems, it is usually easy for a programmer to 

implement the sub-policies, so the approach can be practical for simple problems. But when 

dealing with large-scale decision making problems, programming these sub-policies 

becomes effort demanding, and identifying a good set of subtasks is difficult if not 

impossible. This leads to the issue of how to identify these subtasks. Many algorithms have 

been proposed to attack this problem, but the complexity of these algorithms is proportional 

to the complexity of the problem, so they become impractical for challenging problems. 

How to automate these processes remains an open problem. 

Even subtasks are constructed, the sub-policy learning problem is still critical. Adding sub- 

tasks to the original problem actually increases the complexity, so simply applying the 

conventional reinforcement learning algorithms provides no benefit. Except for 

implementing the sub-policies manually, the benefit of constructing subtasks comes from 

the potential for dimension reductions. (1) A subtask can be shared among solving different 

sub-problems and can save the time for learning redundant subtasks. (2) It is much easier to 

find irrelevant parameters within a subtask. An object can be relevant in one task and 

irrelevant in others; separates the problem into different subtasks allow the specific task to 

remove the parameters for that object. Removing irrelevant parameters reduces the 

dimensionality of the problems. Therefore, despite of subgoal identification issue, we will 

also talk about dimension reductions among subtasks. 

The second section introduces existing frameworks for representing subtasks. The third 

section reviews existing works for subtask discovery. The fourth section discusses the issue 

of dimension reduction among subtasks. And the conclusions are given in the last section. 

2. Subtask representation 

We start the introduction for subtask representation from a widely used model, the option 

framework Sutton et al. (1999). The option framework defines a subtask as an option. Each 

option consists of three components, initiation set, terminal conditions, and the option 

policy function. The initiation set determines what states the option can be applied, the 

terminal conditions specify when the option will be terminated, and the option policy 

corresponds to the sub-policy of that subtask. An initiation set and terminal conditions 

define the scope of a subtask. The defined options are added to the action list of policies, 

and the decision maker can choose to apply these temporally-extended actions instead of 

trying a sequence of one-step actions. This approach define a general framework for 

defining a subtask, and the component of a subtask is simple. Due to such modulation, the 

option framework is widely used representation discovery algorithms. 
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The framework of hierarchies of abstract machines (HAM) Andre & Russell (2000); Parr & 
Russell (1997) is another classic approach for hierarchically structuring a task. The 
framework composes policies as hierarchies of stochastic finite-state machines. The root 
layer decision maker decides what subtask to be performed, and each subtask is one or a 
collection of predefined control programs. The control programs can be a simple task like 
moving an arm to a specific position, and the policy learning addresses how to use these 
abstract actions to perform the task and ignores low-level controls. The control programs are 
easy to be implemented, and the combination reduces the complexity of policy learning. 
One major difference between HAMs and option frameworks is that HAMs restrict the 
available choices of actions, while option framework augments the action set. Therefore, 
HAMs construct a more compact representation for policies. On the other hand, HAMs 
require more domain knowledge to define the precise architecture, and applying this 
framework is more challenging for subtask identification algorithms. 
There are two kinds of design to learn the policy with subtasks. One is recursive optimality, 
the other is hierarchical optimality. In recursive optimality, each subtask performs its task 
without considering the context of its parent. On the other hand, the hierarchical optimality 
recognizes the fact that many tasks have to consider the hierarchy relation. For example, for 
driving to a specific point, whether you want to stop at that point or will keep driving to the 
other destination influences the driving behavior; you will decelerate before reaching the 
point in the former case, but will keep driving in an efficient speed in the latter case. Thus, 
the recursive optimality is a local optimal solution compared to hierarchical optimality. 
The reason to seek recursive optimality is that this kind of design removes the dependency 
of a subtask to its parent. Without considering the context in which a subtask is executed, it 
is much easier to share and re-use subtasks. The design provides a more compact 
representation for a task, and the idea is proposed by Dietterich (2000). The algorithm, 
MAXQ, separates the utility values of performing the subtask and the utility within current 
task after the subtask is terminated (completion value): Qi(s, a) = Va(s)+Ci(s, a) where Vi(s) is 
the expected cumulative rewards for executing action a on state s, and Ci(s, a) is the expected 
cumulative rewards before subtask i ends. With this form of value function decomposition 
and ignoring the long term expected utility after the current task, the hierarchical utility 
function can be computed by a compact recursive function call. Each subtask is an 
independent process–its execution does not need to consider the exterior variables, or the 
global states. Therefore, a subtask can be implemented as a function call. The concise and 
compact features of MAXQ lead to subsequent works Andre & Russell (2002); Marthi et al. 
(2006) that adopt the design of value function decomposition and extend it to achieve 
hierarchical optimality. 

In sequential decision making, a common approach is to model the entire task with Markov 
decision processes (MDPs). An MPD , , ,a a

ss ssS A P R′ ′< > is composed of a set of states S, a set of 
actions A, a transition function specifying the transition probability from s to s′ with action a, 
and a reward function specifying the reward from s to s′ with action a. In MDPs, the action 
execution is represented by only the sequence of these actions, and the performance time  
of each action is ignored. In hierarchical reinforcement learning, each subtask may take 
various amount of time, and ignoring the time factor becomes sub-optimal when making 
decisions. The semi-Markov decision process (SMDP) is a framework that extend MDPs to 
consider temporal-effect. Each action has an additional time variable, and the utility of an 
action is its expected utility over time. The Bellman equation for calculating utility values 
becomes 
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Fig. 1. The second eigenvector of the graph Laplacian on a 9-room example. Spectral graph 
theory has been widely applied in subgoal identification algorithms and value function 
approximation like Proto-value functions Mahadevan & Maggioni (2007). 

,

( ) max ( , ) ( , , ) ( )
sa A

s

V s R s a P s s a V sτ

τ
γ τ

∈ ′

⎡ ⎤
′ ′= +⎢ ⎥

⎢ ⎥⎣ ⎦
∑  

The policy function evaluates the utility of an action with the consideration of its various 
executing time, and fits the execution criterion of the subtask. Thus, this is the main model 
applied in hierarchical reinforcement learning. 

3. Subtask identification 

The fundamental works about hierarchical representation relies on manual definition for 
sub-tasks. This kind of design requires sufficient prior knowledge about a task, and its 
optimality depends on the proper construction of the hierarchical structure. Although 
hierarchical reinforcement learning framework provides an efficient formulation on a 
complex problem, the manual design requirement limits its flexibility. In many cases, we 
could only acquire partial solutions in problem solving that do not provide complete 
information for deciding a policy for states that the problem solver had not visited. These 
action sequences contain information for dimension reduction for the hierarchical 
reinforcement learning framework. The design of a HRL algorithm includes two processes, 
hierarchical control construction and abstractions. To formulate HRL automatically is to 
provide methods for performing these two processes with associated learning algorithms. 
This leads to researches on subtask identification and dimension reduction. 
Subtask identification processes are interpreted as subgoal identification processes. Once 
subgoals are identified, subtasks are formulated to pursue these subgoals, and these subgoal 
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states are the terminal conditions, and subtask policies aim for reaching the subgoals. The 
existing algorithms for subgoal identification can be classified into three types: (1) 
Identifying subgoals as states that are most relevant to a task. (2) Identifying subgoals as 
states that provide an easy access to the neighbor regions. (3) Constructing subtasks based 
on factored state space. The first case identifies subgoals as states with a high visit frequency 
and reward gradient Digney (1998) or as highly-visited states based on only successful 
trajectories McGovern & Barto (2001). Şimşek & Barto (2004) uses relative novelty as a 
metric to classify subgoals and non-subgoal states. 
The second case defined decomposition states as access states or bottlenecks that is similar 
to the graph cut in graph theory. Thus, to identify bottlenecks, Menache et al. (2002) applied 
graph cut based on conventional network flow analysis to the whole state transition graph. 
Chiu & Soo (2007) use a flooding algorithm to transmit network flow between starting 
position and terminal position of problem solver, and take states with local maximum flood 
value as subgoals. Şimşek & Barto (2008) took similar idea that their approach calculates the 
density of shortest paths through state nodes, which is called betweenness in their work, and 
choose states with local maximum density as subgoals. 
Şimşek et al. (2005) applied normalized cut based on spectral clustering approach Shi & 
Malik (2000) to the state transition graph updated through newly observations. The graph 
cut itself only provides binary separation, so they took part of state space for analysis to 
reduce computation complexity, and may find different results on different trials. Chiu & 
Soo (2010) also adopt spectral graph theory, but instead of using graph cut result, they take 
the smoothness property of the spectral theory. With the spectral analysis, the edges with 
local maximum differences are considered bottleneck edges, and their connecting nodes are 
bottleneck states. Mannor et al. (2004) proposed a clustering method to identify blocks 
which are densely connected inside but weakly connected in between. The algorithm also 
finds multiple separations. 
HEXQ Hengst (2002) evaluates the updating frequencies of variables to rank their hierarchy. 
The idea is that variables which change often tend to be at lower level of hierarchy, just as 
variables in the inner loop will change more often. The framework constructs options based 
on the projected graph. The heuristic considers one variable at a time, and can not model 
causal relations with more than one variable. Thus, Jonsson & Barto (2006) and Mehta et al. 
(2008) took dynamic Bayesian network to model the causal relation. Their work requires a 
pre-constructed dynamic Bayesian network. 
Most of works for subgoal identifications are based on discrete domains. Konidaris & Barto 
(2009) proposed skill chaining to find options in continuous domain. The idea is similar to 
the LQR-tree mechanism which builds a tree gradually via sampling points in the state 
space, and finds a trajectory to link to the tree. Skill chaining takes other options’ boundary 
as terminal states and creates a new option to link to the existing option sets. 

4. Redundancy reduction 

Identifying subgoals from a problem only completes the half job. The benefit of constructing 
hierarchical reinforcement learning is its potential for redundancy reduction, and it is easier 
for a programmer to implement the subtask policies. Redundancy reduction scaled down 
the complexity of a problem in order to help the learning process, which can be done by 
eliminating irrelevant parameters for decision making. Givan et al. (2003) proposed a notion 
of equivalence in which states can be merged without losing optimality. The states are 
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aggregated together if they have the same rewards and state transitions. The approach is 
applied on factored representation, and is guaranteed to be optimal. In the work of 
constructing basis functions for hierarchical reinforcement learning Osentoski & Mahadevan 
(2010), they used a graph reduction method to merge nodes connected to the same set of 
vertices, having the same edge labels, and a subset of their variables are the same. 
Jong & Stone (2005) proposed a statistical hypothesis-testing approach to evaluate the 
relevance of state parameters. The method took the p-value of a single state to represent the 
overall projection result on a projected state. The algorithm defines the irrelevance of a state 
parameter if there is an action that is optimal among states that differ within only the 
parameter. Then all states projecting onto that state could share a unique optimal decision 
making without the state parameter, and the state parameters of this projection is 
apparently irrelevant. The irrelevant parameter analysis requires an optimal value function 
to determine the relevance of state parameters for decision making. Thus, the analysis can 
not help current problem, but the derived knowledge can be applied on similar problems to 
remove irrelevant parameters. The approach is applied on general MDPs, but it does not 
guarantee the optimality of abstractions. 
Chiu & Soo (2010) proposed to use analysis of variance to derive irrelevant parameters from 
incomplete data, namely, a partial near-optimal solution. They defined irrelevant state 
parameters as parameters that do not affect the policy function. In other words, the value 
distribution of a policy function should be at least similar if not exactly identical among 
states that differ only on that state parameter. The similarity of distributions is compared via 
the variance analysis. The analysis estimates the policy function value distribution of a state 
and its projected states, and takes the mean and variance from the value distribution of the 
projected states onto that state. It estimates the approximate distribution before the value 
function is exactly calculated. 

5. Conclusions 

We survey some recent works about subgoal identification and redundancy reduction. 
Conventional reinforcement learning algorithms runs in polynomial time, but for most of the 
problems, this cost is not practical. Hierarchical reinforcement learning is one of the 
approaches to make this framework infeasible. The abstraction mechanism in hierarchical 
reinforcement learning not only plays the role of dimension reduction. Via assigning low level 
works to some simple programs, the new framework maps the problem into a architecture 
that closer to the style that human used to adopt for problem solving. Hierarchical 
reinforcement learning brings another thought of design for the programmer to define the 
problem, which makes problem solving much easier. Hierarchical reinforcement learning 
depends on temporal-extended actions, and there are many existing works proposed for 
constructing these actions. These works improve the performance of reinforcement learning to 
some extent, but the gains are not significant enough to scale down most of the complex 
problems. A good way to construct a compact reinforcement learning is an open problem, and 
is an important issue required further focus in the field of reinforcement learning. 
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