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1. Introduction

The reinforcement learning is a sub-area of machine learning concerned with how an agent
ought to take actions in an environment so as to maximize some notion of long-term
reward(Sutton & Barto, 1998). Reinforcement learning algorithms attempt to find a policy
that maps states of the world to the actions the agent ought to take in those states.
Temporal Difference (TD) learning is one of the reinforcement learning algorithm. The TD
learning is a combination of Monte Carlo ideas and dynamic programming (DP) ideas. TD
resembles a Monte Carlo method because it learns by sampling the environment according to
some policy. TD is related to dynamic programming techniques because it approximates its
current estimate based on previously learned estimates. The actor-critic method(Witten, 1977)
is the method based on the TD learning, and consists of two parts; (1) actor which selects the
action and (2) critic which evaluate the action and the state.
On the other hand, neural networks are drawing much attention as a method to realize
flexible information processing. Neural networks consider neuron groups of the brain in the
creature, and imitate these neurons technologically. Neural networks have some features,
especially one of the important features is that the networks can learn to acquire the ability of
information processing. The flexible information processing ability of the neural network and
the adaptive learning ability of the reinforcement learning are combined, some reinforcement
learning method using neural networks are proposed(Shibata et al., 2001; Ishii et al., 2005;
Shimizu and Osana, 2008).
In this research, we propose the reinforcement learning method using Kohonen Feature Map
Probabilistic Associative Memory based on Weights Distribution (KFMPAM-WD)(Osana,
2009). The proposed method is based on the actor-critic method, and the actor is realized by
the KFMPAM-WD. The KFMPAM-WD is based on the self-organizing feature map(Kohonen,
1994), and it can realize successive learning and one-to-many associations. The proposed
method makes use of this property in order to realize the learning during the practice of task.

2. Kohonen feature map probabilistic associative memory based on weights

distribution

Here, we explain the Kohonen Feature Map Probabilistic Associative Memory based on
Weights Distribution (KFMPAM-WD)(Koike and Osana, 2010) which is used in the proposed
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2 Advances in Reinforcement Learning

Input/Output-Layer

Map-Layer

Fig. 1. Structure of KFMPAM-WD.

method.

2.1 Structure

Figure 1 shows the structure of the KFMPAM-WD. As shown in Fig.1, the KFMPAM-WD has
two layers; (1) Input/Output(I/O)-Layer and (2) Map-Layer, and the I/O-Layer is divided
into some parts.

2.2 Learning process

In the learning algorithm of the KFMPAM-WD, the connection weights are learned as follows:

(1) The initial values of weights are chosen randomly.

(2) The Euclidean distance between the learning vector X(p) and the connection weights

vector Wi, d(X
(p),Wi) is calculated.

d(X(p),W i) =

√

√

√

√

M

∑
k=1

(X
(p)
k −Wik)

2 (1)

(3) If d(X(p),W i) > θt is satisfied for all neurons, the input pattern X(p) is regarded as an
unknown pattern. If the input pattern is regarded as a known pattern, go to (8).

(4) The neuron which is the center of the learning area r is determined as follows:

r = argmin
i : Diz+Dzi<diz

(for ∀z∈F)

d(X(p),W i) (2)

where F is the set of the neurons whose connection weights are fixed. diz is the distance
between the neuron i and the neuron z whose connection weights are fixed. In the
KFMPAM-WD, the Map-Layer is treated as torus, so the distance between the neurons
i and j dij is given by

dij =
√

(dxij)
2 + (d

y
ij)

2 (3)
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dxij =

{

xj − xi, (|xj − xi | ≤ xmax/2)

−sgn(xj − xi)(xmax − |xj − xi|), (otherwise)
(4)

d
y
ij =

{

yj − yi, (|yj − yi| ≤ ymax/2)

−sgn(yj − yi)(ymax − |yj − yi|), (otherwise)
(5)

where xi and yi are the coordinates of the neuron i in the Map-Layer, xj and yj are the
coordinates of the neuron j in the Map-Layer, and xmax and ymax are width and height of
the Map-Layer. In Eq.(2), Dij is the radius of the ellipse area whose center is the neuron i
for the direction to the neuron j, and is given by

Dij =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪



√

√

√

√

ai2bi
2

bi
2 +mij

2ai2
(mij

2 + 1), (dxij �= 0 and d
y
ij �= 0)

ai, (d
y
ij = 0)

bi, (dxij = 0)

(6)

where ai is the long radius of the ellipse area whose center is the neuron i and bi is the
short radius of the ellipse area whose center is the neuron i. In the KFMPAM-WD, ai and
bi can be set for each training pattern. mij is the slope of the line through the neurons i and
j, and is given by

mij =
d
y
ij

dxij
(dxij �= 0). (7)

In Eq.(2), the neuron whose Euclidean distance between its connection weights and the
learning vector is minimum in the neurons which can be take areas without overlaps to
the areas corresponding to the patterns which are already trained. In Eq.(2), the size of the
area for the learning vector are used as ai and bi.

(5) If d(X(p),Wr) > θt is satisfied, the connection weights of the neurons in the ellipse whose
center is the neuron r are updated as follows:

W i(t+ 1) =

{

Wi(t) + α(t)(X(p) −W i(t)), (dri ≤ Dri)

Wi(t), (otherwise)
(8)

where α(t) is the learning rate and is given by

α(t) =
−α0(t− T)

T .
(9)

α0 is the initial value of α(t) and T is the upper limit of the learning iterations.

(6) (5) is iterated until d(X(p),Wr) ≤ θt is satisfied.

(7) The connection weights of the neuron r Wr are fixed.

(8) (2)∼(7) are iterated when a new pattern set is given.
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Probabilistic Associative Memory based on Weights Distribution

www.intechopen.com



4 Advances in Reinforcement Learning

2.3 Recall process

In the recall process of the KFMPAM-WD, when the pattern X is given to the I/O-Layer, the
output of the neuron i in the Map-Layer, x

map
i is calculated by

x
map
i =

{

1, (i = r)

0, (otherwise)
(10)

where r is selected randomly from the neurons which satisfy

1

Nin ∑
k∈C

g(Xk −Wik) > θmap (11)

where θmap is the threshold of the neuron in the Map-Layer, and g(·) is given by

g(b) =

{

1, (|b|< θd)

0, (otherwise).
(12)

In the KFMPAM-WD, one of the neurons whose connection weights are similar to the input
pattern are selected randomly as the winner neuron. So, the probabilistic association can be
realized based on the weights distribution. For example, if the training patterns including
the common term such as {X,Y1}, {X,Y2} are memorized, and the number of the neurons
whose connection weights are similar to the pattern pair {X,Y1} is larger than the number
of the neurons whose connection weights are similar to the pattern pair {X,Y2}, then the
probability that the pattern pair {X,Y1} is recalled is higher than the probability that the
pattern pair {X,Y2} is recalled.
When the binary pattern X is given to the I/O-Layer, the output of the neuron k in the
I/O-Layer xiok is given by

xiok =

{

1, (Wrk ≥ θiob )

0, (otherwise)
(13)

where θiob is the threshold of the neurons in the I/O-Layer.
When the analog pattern X is given to the I/O-Layer, the output of the neuron k in the
I/O-Layer xiok is given by

xiok =Wrk. (14)

3. Reinforcement learning using Kohonen feature map probabilistic associative

memory based on weights distribution

Here, we explain the proposed reinforcement learning method using Kohonen Feature Map
Probabilistic Associative Memory based on Weights Distribution (KFMPAM-WD)(Osana,
2009).

3.1 Outline

In the proposed method, the actor in the Actor-Critic(Witten, 1977) is realized by the
KFMPAM-WD. In this research, the I/O-Layer in the KFMPAM-WD is divided into two parts
corresponding to the state s and the action a, and the actions for the states are memorized.
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actor

environment

agent

(TD error)

critic

state action

reward

Fig. 2. Flow of Proposed Method.

In this method, the critic receives the states which are obtained from the environment, the
state is estimated and the value function is updated. Moreover, the critic outputs Temporal
Difference (TD) error to the actor. The KFMPAM-WD which behaves as the actor (we call
this “actor network”) is trained based on the TD error, and selects the action from the state of
environment. Figure 2 shows the flow of the proposed method.

3.2 Actor network

In the proposed method, the actor in the Actor-Critic(Witten, 1977) is realized by the
KFMPAM-WD.

3.2.1 Dynamics

In the actor network, when the state s is given to the I/O-Layer, the corresponding action
a is recalled. In the proposed method, the other action is also selected randomly (random
selection), and the more desirable action from the recalled action and the action selected in the
random selection is chosen as the action finally.
When the pattern X is given to the network, the output of the neuron i in the Map-Layer at
the time t x

map
i (t) is given by Eq.(10), and the output of the neuron k in the I/O-Layer at the

time t xiok (t) is given by Eq.(13) or Eq.(14). In the actor network, only the state information is
given, so the input pattern is given by

X = (s(t),0)T (15)

where s(t) is the state at the time t.

3.2.2 Learning

The actor network is trained based on the TD error from the critic.
The learning vector at the time t X(t) is given by the state s(t) and the corresponding action
a(t) as follows.

X(t) = (s(t), a(t))T (16)

(1) When action is recalled by actor network

125Reinforcement Learning using Kohonen Feature Map
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6 Advances in Reinforcement Learning

When the pair of the state and the selected action are memorized in the actor network, the area
size corresponding to the pair is updated. If the TD error is larger than 0, the area is expanded.
If the TD error is smaller than 0, the area is reduced.
(1-1) When state and action are stored
(a) When TD error is larger than 0
When the TD error is larger than 0, the area including the fired neuron whose center is the
neuron z is expanded.

a
(new)
z ←

{

a
(old)
z + ∆a+, (a

(old)
z + ∆a+ ≤ amax)

a
(old)
z , (otherwise)

(17)

b
(new)
z ←

{

b
(old)
z + ∆b+, (b

(old)
z + ∆b+ ≤ bmax)

b
(old)
z , (otherwise)

(18)

where ∆a+, ∆b+ are the increment of az and bz, and amax, bmax are the maximum of az and bz.
The connection weights are updated as follows.

Wi(t+ 1) =

{

W i(t) + α(t)(X(tr)(t)−Wi(t)), (dzi < Dzi)

W i(t), (otherwise)
(19)

where dzi is the distance between the neuron i and the neuron z, and Dzi is the radius of the
ellipse area whose center is the neuron z for the direction to the neuron i.
(b) When TD error is smaller than 0
When the TD error is smaller than 0, the area including the fired neuron whose center is the
neuron z is reduced.

a
(new)
z ←

{

0, (a
(new)
z < 0 or b

(new)
z < 0)

a
(old)
z − ∆a−, (otherwise)

(20)

b
(new)
z ←

{

0, (a
(new)
z < 0 or b

(new)
z < 0)

b
(old)
z − ∆b−, (otherwise)

(21)

where ∆a−, ∆b− are the decrement of az and bz. If a
(new)
z or b

(new)
z becomes smaller than 0, the

connection weights of neuron z are unlocked and a
(new)
z and b

(new)
z are set to 0.

The connection weights are updated as follows.

W i(t+ 1) =

{

R, (Dzi
a f ter

< dzi ≤ Dzi
be f ore)

Wi(t), (otherwise)
(22)

where R is random value. Dzi
be f ore is the radius of the ellipse areawhose center is the neuron z

for the direction to the neuron i before the area update, and Dzi
a f ter is the radius of the ellipse

area whose center is the neuron z for the direction to the neuron i after the area update.
(1-2) When state and action are not stored
When the fired neuron is not in the areas corresponding to the stored pairs of state and action
and the TD error is larger than 0, the recalled pair of state and action is regarded as an unstored
data and is memorized as a new pattern.

126 Advances in Reinforcement Learning
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The connection weights are updated as follows.

Wi(t+ 1) =

{

W i(t) + α(t)(X(tr)(t)−Wi(t)), (dri ≤ Dri)

W i(t), (otherwise)
(23)

where r is the center neuron of the new area, and aini, bini are the initial radius of ellipse area.
(2) When action is selected by random selection and TD error is larger than 0
When the pair of the state and the selected action are not memorized in the actor network and
the TD error is larger than 0, the pair is trained as new pattern.

3.3 Reinforcement learning using KFMPAM-WD

The flow of the proposed reinforcement learning method using KFMPAM-WD is as follows:

(1) The initial values of weights in the actor network are chosen randomly.

(2) The agent observes the environment s(t), and the actor a(t) is selected by the actor
network or the random selection.

(3) The state s(t) transits to the s(t+ 1) by action a(t).

(4) The critic receives the reward r(s(t+ 1)) from the environment s(t+ 1), and outputs the
TD error δ to the actor.

δ = r(s(t+ 1)) + γV(s(t+ 1))−V(s(t)) (24)

where γ (0≤ γ ≤ 1) is the decay parameter, and V(s(t)) is the value function for the state
s(t).

(5) The eligibility et(s) is updated.

e(s)←

{

γλe(s) (ifs �= s(t+ 1))

γλe(s) + 1 (ifs= s(t+ 1))
(25)

where γ (0≤ γ ≤ 1) is the decay parameter, and λ is the trace decay parameter.

(6) All values for states V(s) are updated based on the eligibility et(s) (s ∈ S).

V(s)← V(s) + ξδet(s) (26)

where ξ (0≤ ξ ≤ 1) is the learning rate.

(7) The connection weights in the actor network are updated based on the TD error (See 3.2.2).

(8) Back to (2).

4. Computer experiment results

Here, we show the computer experiment results to demonstrate the effectiveness of the
proposed method.

4.1 Probablistic assocaition ability of KFMPAM-WD

Here, we examined the probabilistic association ability of the Kohonen Feature
Map Probabilistic Associative Memory based on Weights Distribution (KFMPAM-WD)
(Koike and Osana, 2010) which is used in the proposedmethod. The experiments were carried
out in the KFMPAM-WD which has 800 neurons in the I/O-Layer and 400 neurons in the
Map-Layer.

127Reinforcement Learning using Kohonen Feature Map
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8 Advances in Reinforcement Learning

cat crow

penguin

duck

dog bear

lion

panda

(a) Binary Patterns

crow chick

hen

penguin

lion bear

monkey

raccoon

(b) Analog Patterns

Fig. 3. Training Pattern Pairs.

Here, we show the association result of the KFMPAM-WD for binary and analog patterns.
Figure 3 shows examples of stored pattern pairs. Figure 4 (a)∼(c) show a part of the
association result of the KFMPAM-WD when “cat” was given during t =1∼500. As shown
in this figure, the KFMPAM-WD could recall the corresponding patterns (“duck” (t = 1),
“penguin” (t = 3),“crow” (t = 4)). Figure 4 (d)∼(f) show a part of the association result
of the KFMPAM-WD when “dog” was given during t = 501 ∼ 1000. As shown in this
figure, the proposedmodel could recall the corresponding patterns (“panda” (t= 501), “lion”
(t = 502),“bear” (t= 505)).
Figure 5 shows the same association result by the direction cosine between the output pattern
and each stored pattern.
Figure 6 (a)∼(c) show a part of the association result of the KFMPAM-WD when “crow”
was given during t =1∼500. As shown in this figure, the KFMPAM-WD could recall the
corresponding patterns (“hen” (t = 1), “penguin” (t = 2),“chick” (t = 3)). Figure 6 (d)∼(f)
show a part of the association result of the KFMPAM-WD when “lion” was given during
t = 501 ∼ 1000. As shown in this figure, the proposed model could recall the corresponding
patterns (“raccoon dog” (t= 501), “bear” (t = 503),“monkey” (t= 504)).
Figure 7 shows the same association result by the direction cosine between the output pattern
and each stored pattern.
Figure 8 shows an example of the area representation in the Map-Layer for the training set
shown in Fig.3. In this figure, light blue or green areas show area representation for each
training pattern, and the red neurons show the weight-fixed neurons.
Tables 1 and 2 show the relation between the area size and the number of recall time. As
shown in these tables, the KFMPAM-WD can realize probabilistic association based on the
area size (that is, weights distribution).

(a) t = 1 (b) t = 3 (c) t= 4 (d) t = 501 (e) t = 502 (f) t= 505

Fig. 4. Association Result (Binary Pattern).
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(a) cat–penguin
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(b) cat–crow
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(c) cat–duck
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(d) dog–lion
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(e) dog–bear

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400 500 600 700 800 900 1000

Time

D
ir
e
c
ti
o
n

C
o
s
in

e

(f) dog–panda

Fig. 5. Association Result (Direction Cosine).

(a) t = 1 (b) t = 2 (c) t= 3 (d) t = 501 (e) t = 503 (f) t= 504

Fig. 6. Association Result (Analog Pattern).
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(a) crow–hen
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(b) crow–chick
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(c) crow–penguin
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(d) lion–monkey
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(e) lion–bear
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(f) lion–raccoon dog

Fig. 7. Association Result (Direction Cosine).
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cat-duck

cat-crow

cat -

    penguin

dog-lion

dog-bear

dog-panda

(a) Binary Pattern.

cat-duck

cat-crow

cat -

    penguin

dog-lion

dog-bear

dog-panda

(b) Analog Pattern.

Fig. 8. Area Representation for Training Set in Fig.3.

Input Pattern Output Pattern Area Size Recall Time

penguin 11 85
cat crow 23 157

duck 33 258

lion 11 80
dog bear 23 166

panda 33 254

Table 1. Relation between Area Size and Recall Time (Binary Pattern).

Input Pattern Output Pattern Area Size Recall Time
hen 11 67

crow chick 23 179
penguin 33 254

monkey 11 82
lion bear 23 161

raccoon dog 33 257

Table 2. Relation between Area Size and Recall Time (Analog Pattern).
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4.2 Path-finding problem

We applied the proposed method to the path-finding problem. In this experiment, a agent
moves from the start point (S) to the goal point (G). The agent can observe the states of three
cells in the lattice, and can move forward/left/right. As the positive reward, we gave 3 when
the agent arrives at the goal and 2 when the agent moves. And as the negative reward, we
gave −1 when the agent hits against the wall. Table 3 shows experimental conditions. Figure
9 shows an example of maps (and the trained route (arrow)).

Parameters for Reinforcement Learning

Decay Parameter γ 0.7
Trace Decay Parameter λ 0.33
Learning Rate ξ 0.33

Parameters for Actor Network (Learning)

Random Value R 0.0< R < 1.0

Initial Long Radius aini 2.5

Initial Short Radius bini 1.5
Increment of Area Size ∆a+z 0.01
Decrement of Area Size ∆a−z 0.1
Lower Limit of Long Radius az

max 4.0
Lower Limit of Short Radius bz

max 3.0

Lower Limit of Long Radius az
min 0.0

Lower Limit of Short Radius bz
min 0.0

Weight Update Number Tmax 200

Threshold for Learning θl 10−7

Parameters for Actor Network (Recall)

Threshold of Neurons in Map-Layer θ
map
b 0.01

Threshold of Neurons in I/O-Layer θinb 0.5

Table 3. Experimental Conditions.

4.2.1 Transition of number of steps

Figure 10 shows the transition of number of steps from the start to the goal. As shown in these
figures, the agent can learn the route from the start to the goal by the proposed method.

4.2.2 Trained relation between state and action

Figure 11 shows an example of the trained relation between the state and the action. As
shown these figures, the agent can learn the relation between state and action by the proposed
method.

4.2.3 Variation of action selection method

Figure 12 shows the variation of the action selection method in the proposed method. As
shown in these figures, at the beginning of the learning, the random selection is used
frequently. After the learning, the action which is selected by the actor network is used
frequently.

131Reinforcement Learning using Kohonen Feature Map
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12 Advances in Reinforcement Learning

4.2.4 Use of learning information in similar environment

Here, we examined in the actor network that learns in the Map 2. Figure 13 (a) shows the
transition of steps in theMap 3. As shown in this figure, the agent learn to reach the goal in few
steps when the actor network that learns in the environment of the Map 2 in advance. Figure
13 (b) shows the variation of the action selection method in this experiment. Figure 14 shows
the an example of the trained relation between the state and the action in this experiment.

G

Number of Steps : 9

S

G

Number of Steps : 9

S

(a) Map 1 (b) Map 2

G

Number of Steps : 12

S

G

Number of Steps : 14

S

(c) Map 3 (d) Map 4

G

Number of Steps : 24

S

(e) Map 5

Fig. 9. Map and Trained Route.

5. Conclusion

In this research, we have proposed the reinforcement learning method using Kohonen
Feature Map Probabilistic Associative Memory based on Weights Distribution. The proposed
method is based on the actor-critic method, and the actor is realized by the Kohonen Feature
Map Probabilistic Associative Memory based on Weights Distribution. We carried out a
series of computer experiments, and confirmed the effectiveness of the proposed method in
path-finding problem.
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Fig. 10. Transition of Steps.
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Fig. 11. An example of Trained Relation between State and Action.
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Fig. 12. Variation of Action Selection Method.
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Fig. 13. Use of Learning Information in Similar Environment.
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Fig. 14. An example of Trained Relation between State and Action (Map 2 → Map 3).
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