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1. Introduction 

Multi-agent systems are the systems in which several interacting, intelligent agents pursue 
some set of goals or perform some set of tasks (Wooldridge, 2000). In multi-agents systems, 
each agent must behave independently according to its states and environments, and, if 
necessary, must cooperate with other agents in order to perform a given task. Multi-agent 
systems have more robustness and flexibility than conventional centralized management 
one. However, it is difficult to beforehand predict the action of the agent and give the action 
rule for the multi-agent systems, because the interaction between agents is complicated.  
The acquisition of an autonomous agent’s intellectual action rule is a very interesting topic. 
Recently, extensive research has been done on models such as Robocap (Stone & eloso, 1996, 
Matsubara et al., 1998). Studying computation models of cooperative structure to 
accomplish a given task is known to be a difficult problem (Jeong & Lee, 1997).In the field of 
self-learning reactive systems, it is not even desirable to have a clear idea of a computational 
model. Thus, being adaptable, autonomous agents imply minimally pre-programmed systems. 
Numerous studies regarding autonomous agents in the multi-agent systems have been 
conducted. Nolfi and Foreano (Nolfi & Floreano, 1998) simulated a pursuit system with two 
agents (predator and prey) in real environments. They evolved both agents reciprocally 
using a genetic algorithm. Jim and Lee (Jim & Lee, 2000) evolved the autonomous agents 
with a genetic algorithm. Zhou (Zhou, 2002) used both a fuzzy controller and a genetic 
algorithm. The fuzzy function displayed the position of the agent, and the genetic algorithm 
was used for learning. Fujita and Matsuo (Fujita & Matsuo, 2005) learned the autonomous 
agent using reinforcement learning. The reinforcement learning method involves 
developing an agent’s behavior by means of the interrelationship with the environment and 
resulting reinforcement signals. The reinforcement learning method can guarantee learning 
and adaptability without precise pre-knowledge about the environment. 
In this chapter, we focused on the problem of “trash collection”, in which multiple agents 
collect all trash as quickly as possible. The goal is for multiple agents to learn to accomplish 
a task by interacting with the environment and acquiring cooperative behavior rules. 
Therefore, for a multi-agent system, we discuss how to acquire the rules of cooperative 
action to solve problems effectively.  
First we used a genetic algorithm as a method of acquiring the rules for an agent. Individual 
coding (definition of the rule) methods are performed, and the learning efficiency is 
evaluated.  
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Second, we construct the learning agent using the Q-learning which is a representative 

technique of reinforcement learning. Q-learning is a method to let an agent learn from 

delayed reward and punishment. It is designed to find a policy that maximizes for all states. 

The decision policy is represented by a function. The action vale function is shares among 

agents.  

The third, we concentrate on an application of Multi-agent systems to disaster relief using 

Q-learning. We constructed a simplified disaster relief multi-agent system and acquired 

action rules by Q-learning. We then observe how the autonomous agents obtain their action 

rules and examined the influence of the learning situations on the system. Moreover, we 

discuss how the system was influenced by learning situation and the view information of 

the agent. 

2. Cooperative action of multi-agent 

2.1 Cooperative action of agents 

When multiple autonomous agents exist, the environment changes from static to dynamic, 

compared to the case of an individual agent. An agent engaged in cooperative action 

decides its actions by referring to not only its own information and purpose, but to those of 

other agents as well (Jennings et al., 1998).  

Multi-agent systems enable problems to be solved more efficiently. In addition, multi-agent 

systems can solve problems that may be impossible for individual agents to solve, because 

multi-agents have one common aim and can adjust to their environment and perform 

cooperative actions. Occasionally, in order to proceed with a task in a changing 

environment, multi-agents must judge precise situations in order to make adaptive moves. 

In order to realize cooperative action, it is necessary to perform actions based on the rule 

that working as a group takes priority over the actions of the individual. Generally 

speaking, individual action is natural, whereas group action is acquired by learning to 

accomplish goals through cooperative actions.  

Multi-agents are not always advantageous. For example, if multiple agents in the same 

environment act independently, then the situation that each agent has to deal with becomes 

more complex because each agent has to consider the other agents movements before 

performing an action. If an agent tries to perform an autonomously decided action, the 

agent may not be able to perform the action as planned because of disturbances caused by 

the other agents. Changes to the environment caused by the actions of other agents may 

make understanding the environment difficult for the agents. 

2.2 Establishment of the problems environment 

This chapter considers the “trash collection” problem, in which trash is placed on a field of 
fixed size and agents must collect the trash as fast as possible. 
As in Figure 1, the field is divided into N × N lattice. Agents are denoted by ● symbols, and 
trash is denoted by the ■ symbols.  
In the trash collection problem, the actions of agents are defined as follows: 
i. The action of an agent is determined once per unit time. 
ii. An agent can move to an adjoining lattice, where up-and-down and right-and-left are 

connected per unit time. 
iii. An agent collects the trash when the agent has the same position as the trash. 

www.intechopen.com



Cooperative Behavior Rule Acquisition for Multi-Agent Systems by Machine Learning   

 

83 

 

Fig. 1. An example of the problem environment 

For the trash collection problem, an example of agent actions is shown in Figure 2 for 
cooperative behavior and non-cooperative behavior. If the priority of each agent is to act to 
increase individual profit, by collecting as much trash as possible, then the agents are 
expected to act as shown in Figure 2(a). However, if each agent has a complete 
understanding of the entire situation and has the priority of collecting all of the trash as fast 
as possible, then agents are efficient and act as shown in Figure 2(b). In this case, the priority 
action of an agent is called cooperative action. The goal of the present study is to have 
agents acquire, through learning, the rules that are necessary to take cooperative action.   
 

                   

                            (a) Non-cooperative action                (b) Cooperative action 

Fig. 2. Example of agent action 

3. Acquisition of cooperative rule using GA 

In this section, we use a genetic algorithm (GA) to acquire the cooperative action rule 
(Goldberg, 1989, Holland, 1975). The number of steps taken to collect all of the trash is used 
to evaluate the rule. We used a GA, which agents use to decide actions, to evolve and 
acquire the cooperative rules needed.  

3.1 Structure of the system 

The system to acquire the cooperative rules is described by the action rules of agents. An 
agent realizes the state from the field’s information, compares the state with the internal 
rules, and then decides on its next action. The renewal of the rules is carried by GA. The 
structure of the system is as follows: 
1. Development of the field - arrange the decided number of pieces of trash and agents on 

the established field. 
2. Each agent determines its next move - each agent decides the direction of its next move 

based on the situation of the field, the internal rules and knowledge. 
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3. Movement of agents - all agents move simultaneously. A piece of trash is collected if an 
agent occupies the same position. 

4. Repeat Items (2) ~ (3) until all of the trash is collected. Repetition of Items (2) ~ (3) is 
considered as one step. 

5. When collection is completed, evaluate the actions of the agents based on the number of 
steps required to complete the action. Agents also learn on the basis of this evaluation. 

6. The experiment is continued by returning to Item (1), and agents continue to learn.  

3.2 Acquisition of cooperative rule by GA 

The behavior of each agent is governed by a rule. A rule is a condition-action rule of the 
form. The condition part of the rule represents the situation of the field (the arrangement of 
agents and trash). The action part of the rule indicates the piece of trash toward which the 
agent moves at the next time step. 
An agent compares the present state of the field with the action part of the rules and decides 
a rule that is closest to the present state of the field. An agent executes the decided action.  
Because multiple agents are present in a dynamic environment, it is necessary for each agent 
to have the ability to learn from the environment in order to develop cooperative action. In 
this section, the acquisition of cooperative rules is performed using a GA. We propose two 
methods of individual representation are as follows:  

Representation Method 1: one rule for one individual 

This representation method takes one rule as a single individual, as shown in Table 1.  
 

Next Movement:
Agent1 Agent2 Trash1 Trash2

The No. Trash

Agent1 Agent2 Trash1 Trash2 watch

etc.

Agent1 Agent2 Trash1 Trash2

Distance from Agent B

Distance from Agent A

Distance from Agent C

 

Table 1. Structure of the individual by Representation Method 1 

The condition part of the rule represents the assumed field state at a distance. That is to say, 
each agent identifies the positions of agents to a central agent. The action part is the 
hamming distance from the central agent to each trash and to others agents rearranged in 
order of ascending proximity. The action part represents the piece of trash toward which the 
agent will move next. 

Representation Method 2: Multiple rules for one individual 

The form of a rule is as described in Method 1; however, one individual consists of a group 
of rules (Table 2). 

Evaluation of the individual 

Representation Method 1 takes one rule as a single individual for GA. An agent chooses a 
rule from the population consisting of such individuals and decides its next move. For the 
population of individuals, genetic operations, such as crossover, mutation and selection, are 
performed. The evaluation of each individual agent is based on that next move and the time 
required to finish collecting one piece of trash. The evaluation value of the individual agent 
is given a constant value when an agent applies the rule and collects one piece of trash. Once 
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Table 2. Structure of the individual by Representation Method 2 

collection is completed, the result is compared to the previous collection and the required 
number of steps is evaluated. The fewer the steps, the better the result. 
For Representation Method 2, an agent has some individual (group of rules). Evaluation of 
individuals is performed based in the decrease in the number of steps required for collection 
compared to the previous collection by giving in proportion to the degree. Trash collection 
is performed once by one individual, and each individual is evaluated by changing the 
individual used for the trash collection. After finishing the evaluation of all individuals, a 
GA is selected based on the above evaluation.   

3.3 Results and discussion 

Using the representation method of the proposed individual, the acquisition of the 
cooperative action of the multi-agent system was attempted using a GA. In the experiment, 
the size of the field was 15 × 15. There were 15 pieces of trash and three agents. The average 
results for 20 repetitions until all of the trash was collected by the agents for the same initial 
distribution are shown below.  

An example experimental result 

An experimental result is shown in Figure 3. In this result, the agents are denoted by ● and 
pieces of trash are denoted by ■, and the lines indicate the tracks of agents.  
When the cooperative action is learned using the Representation Method 1, each agent had 
50 rules. In other words, the population size of the GA is 50. The number of steps required 
in order to collect all trash differs in every generation, but fluctuates in the range from 20 to 
60 steps. That is because there are different rules taken for every generation by the GA. The 
shortest step of 20 was obtained by trial-and-error. As a result of the learning using the GA, 
this elite individual could be obtained in approximately 30 generations (Xie, 2006). 
In Representation Methods 2, each agent has 10 rule groups. In short, the population size of 
the GA is 10. One rule group consists of 50 rules. That is, the results for the number of steps 
required for 10 individuals fluctuate in the range from 20 to 50 steps, which is fewer than 
that for Representation Method 1. 

4. Cooperative behavior acquisition using Q-learning 

In this section, we discuss the cooperative behavior acquisition of agents using the Q-
learning which is a representative technique of reinforcement learning. Q-learning is a 
method to let an agent learn from delayed reward and punishment. It is designed to find a 
policy that maximizes for all states. 

Next Movement:
Agent1 Agent2 Trash1 Trash2

The No. Trash
Agent1 Agent2 Trash1 Trash2 watch

etc.
Agent1 Agent2 Trash1 Trash2

Rule １
Distance from Agent A

Distance from Agent B

Distance from Agent C

Individual 1

Rule 1
Rule 2

Rule 3
・ ・ ・
Rule n
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Fig. 3. An example experimental result 

4.1 Agent and environment 

The agent decides the action based on the condition of perceived environment, and some 
changes are caused environment by the action. Therefore, agent and environment are 
relationships of the interaction. 
An accessible environment is one in which the agent can obtain complete, accurate, up-to-
date information about the environment’s state. Most moderately complex environments are 
inaccessible. The more accessible can environment is, the simpler it is to build agent to 
operate in it (Alex et al., 2005). In the meantime, when the environments are inaccessible, the 
information which can be perceived from the environment is limited, and it is inaccurate, 
and it entails delay. 
When there is only one the agent, the environment is static. However, it is not always static 
for the environment, when other agent exists. Because, the condition of the environment 
may be due to be changed by other agent. 

4.2 The composition of agents 

In this section, the composition and each function of the agent are described. The structure 

of an agent is shown in Figure 4. The figure has shown each component of the agent, and the 

transmission of information has been expressed in the arrow. First, the agent perceives the 

condition of the environment in the detector. Next, the rule is compared with the condition 

that it was perceived by the acting decider, and the action is decided. Finally, the action is 

carried out in effector. 

The detector of the agent can't always perceive the condition of the environment completely. 

It is similar to there being a limit at the human visual acuity. Therefore, an agent can 

perceive only a part of condition of the environment or the state just in the neighborhood.  

The whole environment and the environment which an agent perceived are respectively 

shown in Figure 5 and Figure 6. Figure 5 shows whole of the arranged field of agents. The 

round sign is an agent, and the number is the label of the agent in Figure 6. The frame which 

each agent is enclosed with is the range that an agent can perceive, and it is the range that it 

has been limited. Figure 6 is the environment which each agent perceived. The symbol X is 

an agent itself, and the number is other agents. 

The conditions (position) of all the agents are included in the whole environment as like 
Figure 5. An agent 1 and an agent 2 perceive the respectively different environment.  
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Fig. 4. Composition of an agent 

 

 

Fig. 5. The whole environment 

 

 

Fig. 6. The environment which each agent perceives 

However, though each agent is located in the different environment, an agent 3 and an 
agent 4 perceive it as a condition of the same environment. This problem is called the 
imperfect perception problem, and it becomes one of the important problems in the agent 
design. It is considered that the visual field range of the agent is increased in order to avoid 
this problem. 
The behavior of each agent is governed. A rule is a condition-action rule of form. The 
condition part of the rule represents the situation of the environment which the defector 
perceives. The action part of the rule indicates the action of the agent. When the number of 

defector effector compare

acting decider 

rules set

rule 

information 
vision 

information 
acting 

X

agent 4

2

agent 3

agent 2agent 1

X

XX

1
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patterns of the condition of an environment which the defector perceives increases, the 
number of rules increases. An example of the condition-action rules is shown in Table 3. 
 

Situation of environment action

200000000000X000000010020 up

002000010000X000000020000 down

000000000000X000000002000 left

002000000000X000000001000 right

000000000000X000002000000 down  

Table 3. An example of rules 

The effector decides the action by the rule. For example, if the condition of the environment 
was perceived with “000000000000X000002000000”, the action to the “down” is chosen on 
the action of the agent in Table 3 rules. 

4.3 Q-Learning 
A prominent algorithm in reinforcement learning is the Q-Learning. In an environment of 
finite Markov decision process (MDP), the goal is to find the optimal policy in each state 
visited to maximize the value of a performance metric, e.g , long-run discounted reward 
using Q-Learning (Schleiffer, 2005).  
A policy defines the action in every state visited. Let A denote the set of actions allowed and 
let S denote the set of states. We will assume that both A and S are finite. Let rt+1 denote the 
immediate reward earned in going from state st to state st+1, when action at ∈ A is selected in 
state st, and let γ denote the discounting factor. Then with st as the starting state, for the 
policy π, the total discounted reward - generally referred to as discounted reward - is 
defined as (Bradtkes & Duff, 1994, Parr & Russell, 1998):  

 2 1 1
1 2 3

1

T t
T k

t t t t T t k
k

R r r r r r rπ γ γ γ
−

− −
+ + + +

=
= + + + + =∑A  (1) 

where T denotes the finished time of the system. If the Markov chain associated with the 
policy π is irreducible and a periodic, the discounted reward, tRπ , is independent of the 
starting state st.  
 In Q-Learning, which can be implemented in simulators or in real time, the algorithm 

iterates are the so-called Q-factors. Q(s,a) will denote the Q-factor for state s ∈ S and a ∈ A. 
The updating in Q-Learning is asynchronous. One iteration of the algorithm is associated 
with each state transition in the simulator. In one transition, only one Q-factor is updated. 
Let Q(s,a) denote the Q-factor for state s and action a. When the system transitions from state 
st to state st+1 and at denotes the action chosen in state st, then the Q-factor for state st and 
action at is updated as follows: 

 ( ) ( ) ( ) ( )1 1, , max , ,t t t t t t t t
a

Q s a Q s a r Q s a Q s aα γ+ +
⎡ ⎤

← + + −⎢ ⎥
⎢ ⎥⎣ ⎦

 (2) 

where 0 ≤ α ≤ 1, which denotes a step-size parameter in the iteration, must satisfy some 
standard stochastic-approximation conditions, and all other Q-factors are kept unchanged. 
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Theoretically, the algorithm is allowed to run for infinitely many iterations until the Q-
factors converge.  

4.4 Action acquisition by Q-learning  
The action-value function is renewed in which the agent acts. When an agent pick up a 
trash, the reward which affects the renewal of the action value is given for the agent. And, 
the field is initializes, when all trashes on the field are picked up. But, action-value function 
and agent learning number of step would not be initialized. It is repeated to learning 
number of step decided. 
The flow of the trash collection agent learning is as follows.   
 

 
 

The trash collection carries out the action based on action-value function. Action rule of 
trash collection agent is shown as Table 4. Action part is replaced with the action-value 
function. 
The action of the agent is decided by the value of action-value function moved to the each 
direction. For example, the action is decided by the each value of Q(B, up), Q(B, down), Q(B, 
left) and Q(B, right) when the state of the environment is B. As a method for deciding the action 
from these four values, there are two techniques are as follows (Watkins, 1989, Bridle, 1990): 
1. ε-greedy policies 
It is a method that most of time they choose an action that has maximal estimated action 
value, but with probability ε they instead select at random. That is, all nongreedy action are 
given the minimal probability of selection, and the remaining bulk of the probability is 
given to the greedy action. 
Although ε-greedy action selection is an effective and popular means of balancing 
exploration and exploitation in reinforcement learning, one drawback is that when it 
explores it chooses equally among all action. This means that it is as likely to choose the 
worst-appearing action as it is to choose the next-to-best action.  
2. Softmax policies 
It is a method to vary the action probabilities as a graded function of estimated value. The 
greedy action is still given the highest selection probability, but all the others are ranked and 
weighted according to their value estimates. 

Initialize Q(s, a) arbitrarily 
  Initialize state of field 
 (Arrange initial position of agents and trash) 
Loop (until decided step){ 

Decide randomly action a, then act 
IFゴpick up a trashサ 

 r=M (M is any positive number)  
ELSE 

 r=0 (don’t pick up) 
Acquire present state s 

Acquire next state s’ 
Acquire max Q(s’, a’) in the next state 

Renew Q-factor  

( ) ( ) ( ) ( )( ), 1 , max ,Q s a Q s a r Q s aα α γ ′ ′← − + +  

    IFゴAll trashes on the field are picked upサ 
 Initialize state of field 
} 
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up down left right

A Q(A, up) Q(A, Q(A, left) Q(A, right)

B Q(B, up) Q(B, Q(B, left) Q(B, right)

Z Q(Z, up) Q(Z, Q(Z, left) Q(Z, right)

state
action-value function

 

Table 4. Environment ‘s state and action-value 

4.5 Experiment results and discussion 

Using the system as has been mentioned in 4.2, the experiment on the learning of the agent 
was carried out. The size of the field was 15×15. There were 10 pieces of trash and five 
agents. An agent moves to the one square of relative position in 1 step. And, each agent has 
the ability of perceiving the condition of the environment of the circumference of 2 squares. 
It is called a task that the trash is picked up.  The reward is given, when each agent picked 
up the trash. And, action-value function Q is shared between each agents.  
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Fig. 7. Comparison policies 

The effect of ε-greedy policies and softmax policies on the learning of the agent is shown in 
the Figure 7. The task completion step decreases with the increase of the learning step, when 
ε-greedy policies were used. However, it reversely increases on the task completion step, 
when the softmax policies were used. This is because the action value to each direction is 
equalized with the increase of the learning step, and the difference of the probability moved 
to the each direction decreased using the softmax policies. 
The effects of step-size parameter, reward size and discount-rate parameter in update Q-
factor were examined. 
The step-size parameter shows which degree is renewed when the learning-value function is 
updated. It is a small positive fraction which influences the rate of learning. The range of the 

step-size is from 0.1 to 1. Learning results of different step-size α = 0.1, 0.4 and 0.7 were 
shown in Figure 8. In Figure 8, when step-size α is 0.4, there are smaller tasks completion 
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steps than α is 0.1. However, in Figure 8, the learning has not been very much stabilized in 
the time of step-size 0.7. From this fact, it was proven that it can not skillfully learn when the 
step-size too is greatly set.  
The reward size is a value given when the agent picked up a trash. It is shown in Figure 9 as 
a result of the learning as the reward size is set to 10, 100 and 1000. In this Figure, it was 
proven that the reward size does not affect the learning. Then in this chapter, we use the 
same reward size value for all experiments. It seems to be important to give the reward than 
its value. 
The discount rate shows the degree of reference of Q-factor in next state. The learning 
results are shown in Figure 10 as the discount rate was set from 0.1 to 0.9. It was proven that 
it could not learn skillfully, when the discount rate is too small. 
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Fig. 8. Step-size comparison 
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Fig. 9. Comparison of reward size 
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Fig. 10. Comparison of discount rate 

5. Disaster relief multi-agent systems using Q-learning 

In this section, we concentrate on an application of Multi-agent systems to disaster relief 
using Q-learning. We constructed a simplified disaster relief multi-agent system and 
acquired action rules by Q-learning. We then observe how the autonomous agents obtain 
their action rules and examined the influence of the learning situations on the system. 
Moreover, we discuss how the system was influenced by learning situation and the view 
information of the agent. 

5.1 Disaster relief multi-agent systems 

We consider the “disaster relief” problem, in which the injured are placed on a field of fixed 
size and agents must rescue the injured persons as fast as possible. It aims to rescue the 
injured person efficiently as the whole system when the agent is achieving own target. This 
can be considered as a multi-agent system (Xie & Okazaki, 2008). 

5.2 Representation of the perceived environment 

An agent has constant view in the disaster relief multi-agent system. The agent can perceive 
the surrounding environment and can recognize other agents and injured individuals 
within its range of vision. When an agent has a visual field N, it is assumed that the agent 
can move N steps.  
An example within the range of vision is shown in Figure 11 Agent 1’s visual field is 2, and 
Agent 1 can recognize two injured individuals within its visual field.  
In the disaster relief multi-agent system, in order to handle visual field information that the 
agent receives from the environment by reinforcement learning, it is necessary that pattern 
is provided of visual field information by replacing with the numerical value. The agent 
expresses the information of other agents and injured individuals within its visual field 
range numerically and arranges this information in a fixed order. This string is called the 
visual field pattern.  
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■ ①
■

 
 

Fig. 11. Range of vision of an agent 
 
 

 

Fig. 12. Creation of visual field information pattern 

The technique for creating the pattern of the visual field information is shown in Figure 12. 

First, Agent 1 perceives the relative position of the other agents and injured individuals in a 

fixed order, and the coordinates of Agent 1 are assumed to be (0, 0). In this example, the 

relative positions and patterns are as follows: 

at (-2,0)  an injured person (P) >> -20P 

at (0,-2)  an injured person (P) >>0-2P 

at (+1,-1)  other agent 2 (A) >>1-1A 

The string -20P0-2P1-1A is the visual field pattern in proportion to recognized visual field 

information that there are some injured individuals and other agents. Here, the visual field 

range is limited to 9. Compared to the case in which the information of all masses in the 

visual field range is acquired, there is the merit in which the string of the visual field pattern 

shortens on this technique.  

In reinforcement learning, the wider the range of the vision pattern, the more information 
can be recognized. However, reinforcement learning has some disadvantages in that the 
number of states of the visual field pattern increase and the learning speed is decreased.  

position of agent 1 is centered at (0,0)

visual filed pattern:  -20P0-2P1-1A

coordinate (-2, 0)    P (injured) 

coordinate (0, -2)    P (injured) 

coordinate (1, -1)    A (agent 2)

X

Y

➁
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5.3 Experiment and discussion 

In the disaster relief multi-agent system constructed using Q-learning, experiment and 

consideration are carried out by changing the learning conditions. One movement of the 

agent is set to correspond to one step, and all agents are assumed to move simultaneously. 

The action value functions are shared between agents. In all of the experiments, the field 

size is 10×10, the number of rescue agents is three, the step size α is 0.1, the discount rate γ is 

0.9, the probability ε is 0.1, and the number of iterations is 100. 

5.3.1 Effect of number of learning iterations 

The relationship between the number of steps, which depended on the rescue, and the 

number of injured individuals that are rescued varied with the number of learning iterations 

of the agent, as shown in Figure 13. Figure 13 shows the learning results for 10, 100, 1,000, 

and 10,000 learning iterations. There were 10 injured individuals and three agents. In one 

step, each agent moves one square to an adjacent position, namely, up, down, right, or left. 

The visual field of each agent is 2. 

The horizontal axis shows the number of individuals rescued, and the vertical axis shows 

the number of steps, which depends on the specific conditions of the rescue. As the number 

of learning iterations increases, the number of steps required in order to effect a rescue 

decreases. This is an effect by the learning of agents. Moreover, the number of steps required 

to effect rescue increased rapidly, when the number of injured individuals exceeded eight. 

Since there is no information that agent is obtained and agents choose the random action, 

when the injured were in visual field outside of all agents. 
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Fig. 13. Effect of number of learning iterations 

5.3.2 Density of the injured 

The relationship between number of steps required for rescue and the rescue rate of injured 

individuals is shown in Figure 14, where the injured of the different density were arranged. 

The number of learning iterations is 10,000, the visual field is 3, and number of injured 

individuals is 5, 10, and 20. 
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Fig. 14. Effect of density of injured 

In Figure 14, the horizontal axis shows the rescue rate, i.e., the ratio of the number of 
individuals rescued to the total number of injured individuals in the entire field. The 
experimental results revealed that the number of steps necessary to effect a rescue increased 
as the number of injured individuals increased. The frequency with which the rescue agent 
moves on the field is considered to have increased as the number of injured individuals 
increased. 

5.3.3 Visual field range 

When the visual field range of the agent is changed, the relationship between the number of 
individuals rescued and the number of steps required for rescue is shown in Figure 15. The 
experimental conditions assume that the number of iterations if 10,000, the number of 
injured is 10, and the visual field range is varied as 2, 3, and 4. 
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Fig. 15. Effect of visual field range 
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This figure shows that the fewest steps in which all injured individuals could be rescued 
occurred when the visual field range was 4. This is because the visual field range of the 
rescue agent is wide, and the situation in which injured individuals are located outside the 
visual fields of all rescue agents rarely occurs. However, in some cases, a visual field range 
of 2 allowed the quickest rescue when the number of injured individuals was small. The 
reason for this is that the visual field pattern number decreased, because the visual field 
range is narrow, and a more accurate action value function could be obtained. Moreover, it 
became a result of combining both characteristics of visual field range 2, 4 in visual field 
range of 3. 

5.3.4 Acquisition of the cooperation action rule 

It is possible that the agent efficiently rescued after it carried out Q-learning because the 
cooperation action was accurately carried out between agents. To confirm the cooperative 
behavior of agents, a number of action rules acquired from the action value function were 
examined after 10,000 learning iterations (Figure 16).  
In this Figure, agents are denoted by ● symbols, and the injured individuals are denoted by 
■ symbols. In rule 1, for Agent 1, the probability of moving to the left, where nearest injured 
individual 1 is located, increased most. However, in rule 2, the probabilities of moving 
toward the bottom and the right, where an injured individual 2 is located, were highest, 
because another agent, Agent 2, is positioned near the other injured individual 1. As a result, 
Agent 1 performed a cooperation action. 
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Fig. 16. Example of an action rule 

6. Conclusions 

In this chapter, we attempted to acquire a cooperative action rule for agents through the use 
of a GA and Q-Learning, and carried out an application of Multi-agent system to disaster 
relief by Q-Learning. 
We used two representation methods to describe individual agents and to learn cooperative 
action through a GA. We used the GA based on the fact that each agent acts cooperatively 
by learning to finish trash collection as fast as possible without any indication. However, 
further research on the individual evaluation of GA and crossover methods is required. The 
rule and individual of the present study are intended to learn the most efficient action in 
response the arrangement of the field by repeating tasks using the same arrangement. 
However, this makes the learned rules less efficient if the arrangement of the field is 
different than that used in training. At this stage, we were not able to determine clearly 
whether agents engaged in cooperative action.  
We use the Q-Learning based on the fact that the action-value is high when agents will act 
cooperatively, and each agent acts cooperatively by learning to finish trash collection as fast 
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as possible without any indication. The task completion step decreases with the increase of 
the learning step, when ε-greedy policies were used. However, it reversely increases on the 
task completion step, when the softmax policies were used. This is because the action value 
to each direction is equalized with the increase of the learning step, and the difference of the 
probability moved to the each direction decreased using the softmax policies. In present, the 
number of states is very large because all the environments where the agent appeared under 
learning are used. In future research, we intend to improve the representation methods of 
action rule to solve that problem. 
In the disaster relief multi-agent system, the number of steps required to effect the rescue of 
an injured individual decreased with the increase in the number of learning iterations. This 
is considered to be the effect of the learning of agents. However, the number of steps, which 
depends on the rescue situation, increased rapidly when the number of injured individuals 
in the field decreased. When the injured individuals are outside the visual field of all rescue 
agents, there is no information available to the agents, and so the agents perform random 
actions. The effect of density and visual field range of the injured individuals on the system 
was also examined. The number of environment patterns becomes large because, at present, 
all of the environments that the agent considers during learning are considered. In the 
future, the number of environment patterns should be decreased. 
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