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1. Introduction 

Two principles for coordination of large-scale systems, namely Interaction Prediction 
Principle and Interaction Balance Principle were postulated by Mesarovic et al. [1], [2] to 
provide guidance in synthesizing structures for multi-level or hierarchical control of large-
scale systems and obtain the optimal solution. Hierarchical structures are feasible structures 
which reduce the complexity of large-scale control systems and improve the solution 
through decomposition, coordination and parallel processing [3]-[6]. In two-level 
hierarchical approaches, the overall system is first decomposed into several interactive sub-
systems, at the first level, where the optimization problem is redefined for each one of them. 
The interactions between these sub-systems, at the first level, and the coordinator, at the 
second level, called the coordination parameters, are used so that the overall solution is 
obtained. In compare to centralized approaches, where the whole problem is considered for 
the solution at once, the computational efforts in hierarchical approaches are based on sub-
problems, having smaller order, requiring less computational time, in addition to the 
coordination strategy. 
The Goal Coordination based on Interaction Balance Principle approach of Mesarovic et al. 
has already been applied to large-scale systems and the results are reported in [3]- [5]. In 
applying  the  Interaction  Balance Principle, the supremal controller modifies the infimal 
(i.e. first-level) performance functions, compares the interface inputs  (interactions) 
demanded by the infimal controllers and those which actually occur, then provides new 
performance modifications whenever the error is observed as being outside the acceptable 
bounds. A brief description of the Goal Coordination and Interaction Balance Principle is 
presented in the following section. Although a more detailed discussion of this principle can 
be found in [1] ,[2] and also, voluminous literature on large-scale systems theories and 
applications including survey articles, textbooks and monographs can be found in  [6]-[12]. 
Based on Interaction Balance Principle, a new goal coordination scheme, as a foundation for 
intelligent coordination of large-scale systems is postulated in this chapter. The approach is 
formulated in an intelligent manner such that it provides the update of the coordination 
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parameters so to reduce the coordination errors directly and improve the convergence rate 
of the solution. The proposed scheme is a neuro-fuzzy based reinforcement learning 
approach which can be used to synthesize a new supervisory coordination strategy for  the 
overall two-level large-scale systems, in which the sub-systems, at the first level of 
hierarchy, and also the overall process control objectives are considered as optimization 
problems. So with the aim of optimization, the control problem is first decomposed into m 
sub-problems at the first level, where each sub-problem can be solved using a neuro-
regulator. The neural networks which are capable of learning and reconstructing non-linear 
mappings could also be used for modeling each corresponding sub-system. By using the 
new methodology which is based on a Fuzzy Goal Coordination System and Reinforcement 
Learning; using TSK model, a critic vector and the gradient of the interaction errors 
(difference between the actual interactions and the optimum calculated interaction values) 
and also their rate of changes, appropriate change of coordination parameters are generated 
at the second level and the coordination of the overall large-scale system is done. The 
proposed scheme results in faster reduction of the interaction errors, which finally vanish to 
zero.  
This chapter is organized into several sections. In Section 2, the problem formulation and 

control problems are defined. Also a brief review of the classical Goal Coordination and 

Interaction Balance Principle is presented.  In Section 3, decomposition of the overall large-

scale system into m sub-problems and modelling each corresponding subsystem is done. In 

Section 4, the first level sub-problems are solved with neuro-regulators, and in Section 5, the 

new Fuzzy Goal Coordination System based Reinforcement Learning is presented to 

generate the appropriate change of coordination parameters. In Section 6, the efficacy and 

advantages of the proposed approach is demonstrated in an open-loop power system 

consisting of a synchronous machine connected to an infinite bus bar through a transformer 

and a transmission line. It is shown how the convergence of the interaction errors exceeds 

substantially those obtained using the classical goal coordination method. Finally, Section 7 

contains some concluding remarks. 

2. Statement of the problem 

As it was mentioned in the Introduction, two cases arise as how the coordination might be 

effected and the infimal control problems can be defined. In this chapter, a new approach for 

coordination of large-scale systems based on Interaction Balance Principle, which is more 

convergent than the previously suggested classical methods, has been presented. 

2.1 Goal coordination and Interaction Balance Principle 

Let B be a given set such that each β in B specifies, for each i=1,…, m, a performance 

function Giβ :Ui × Zi × Xi → V which is a modification of the original Gi. Let the mapping giβ 

be defined on Ui × Zi  in terms of Pi and GiB. For each β in B, the infimal control problems is 

to find a pair ( )ˆ ˆ
i piU ,Z  in Ui × Zi such that 

 ( ) (ˆ ˆ )
×

=i β i pi i β i ig U ,Z min g U ,Z
i i

U Z

, (1) 

where minimization is over both sets Ui and Zi ;  the interface inputs are treated as free 
variables. Let β in B be given; let ( ) , ...., )ˆ ˆ (β β1 mZ Z  be the interface inputs required by the 
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infimal controllers to achieve local optimum; let ( ) , ...., )(β β1 mZ Z  be the interface inputs that 
occur if the control ( )  [ ( ) , ...., )]ˆ ˆ ˆ (β β β= 1 mU U U  is implemented, then the overall optimum is 
achieved if the actual interface inputs are precisely those required by local optimization  

 ( )  Z )ˆ (β β=i iZ  (2) 

for each i = 1 , … , m (Interaction Balance Principle). If the Interaction Balance principle 
applies, the supremal control problem is to find β  in B such that ˆ ( ) ( ) 0i i ie Z B Z B= − = , for 
each  i = 1 , … , m. The application of the Interaction Balance Principle is shown in Fig. 1.  
 

β β

P1 P

C C1 2

2

C 0

ee 1 2

Z Z1 2
(   )(   )β β

Z1(   ) (   )Z2β βˆ ˆ

U Uˆ ˆ
2

1 β β(   ) (   )

 

Fig. 1. Application of Interaction Balance Principle for coordination of two sub-problems. 

Now, let us suppose that we have a general non-linear dynamic system described by the 
following state space equation 

 ( )[ ] [ ] [ ]+ =X k 1 F X k ,U k  (3a) 

 [0] oX X=  (3b) 

where X is the state vector, U is the control vector and F is a continuously double 
differentiable analytical vector function which is going to be replaced by 2m neural models  
to describe  the  actual  dynamics  of  m  sub-systems  and their interactions. The initial state 
Xo is also assumed to be known. 
Now, the problem is to find U which minimizes the cost function given by  

 [ ]( ) [ ] [ ]( )1
0

1 ,
n

n k
k

J G X n G X k U k+
=

= + +∑  (4) 

where Gk  is in general, a scalar non-linear function of its arguments. 

3. Decomposition of the overall problem into m sub-problems  

Let us assume that the overall system comprises of m interconnected sub-systems. We 
assume that the sub-systems themselves can be described by non-linear state space 
equations of the following form  
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 [ 1] ( [ ], [ ], [ ])i i i i iX k F X k U k Z k+ =  (5a) 

 0[0]i iX X=  (5b) 

where Xi  is the state, Ui  is the control and Zi  is the interaction input of the ith sub-system 
that is assumed to be a non-linear function of the states of the m sub-systems 

 1[ ] ( [ ]) ( [ ],... , [ ])i i i mZ k H X k H X k X k= =  (6) 

In Goal Coordination method, it is necessary for non-linear functions Hi to be separable. So 
the interaction variables iZ  must be defined in such a way that iH  functions to be 
separable, i.e. 

 1
1

[ ] ( [ ], ... , [ ]) ( [ ])
m

i i m ij j
j

Z k H X k X k H X k
=

= =∑  (7) 

The interaction relations which can be expressed as Z[k] = H(X[k]) are considered to be the 
optimization constraints. So the Lagrangian can be defined as 

 [ ]( ) [ ] [ ]( ) [ ] [ ]( )
1

1
0 0

1 , [ ] ( )
n n

T
n k

k k

L G X n G X k U k k Z k H X kβ
+

+
= =

= + + + −∑ ∑  (8) 

where β[k]’s are the Lagrange multipliers that we refer to them as the coordination 
parameters. Now, since the interaction function H(X[k]) is separable, the Lagrangian can be 
decomposed as  

 
1

m

i
i

L L
=

=∑  (9a) 

where 

 ( )
1

1

0 0 1

[ 1], [ 1] ( [ ], [ ], [ ]) [ ] [ ] [ ] ( [ ])
n

n n m

i i i i ik i i i i i j ji i

k k j

L G X n Z n G X k U k Z k k Z k k H X kβ β
+

+

= = =

= + + + + −
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑ ∑  (9b) 

So the overall problem can be decomposed into m first level sub-problems of the following 
form 

 

( )
1

0, ,

1

0 1

min [ 1], [ 1] ( [ ], [ ], [ ])

[ ] [ ] [ ] ( [ ])

n

i i i

n

i i i i ik i i i
kX U Z

n m

i i j ji i
k j

L G X n Z n G X k U k Z k

k Z k k H X kβ β

+
=

+

= =

= + + +

⎛ ⎞
⎜ ⎟+ −
⎜ ⎟
⎝ ⎠

∑

∑ ∑
 (9b) 

. . [ 1] ( [ ], [ ], [ ])i i i i is t X k F X k U k Z k+ =  

 0[0]i iX X=  (10) 

and also one second level problem expressed as: 
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Updating the coordination parameters [ ]i kβ  such that the interaction errors; Zi[k] – Hi (Xi[k] 
, … , Xm[k]) , become zero (Interaction Balance Principle). 
Remark. In general, H(.) can be considered as a function of X[k] and U[k]. 

3.1 Modeling the corresponding sub-systems with neural networks 
It should be noted that the dynamics of each sub-system and its interactions which are 
denoted by Fi and Hij , respectively, could also be replaced by neural network models. So in 
this case, they can be denoted by NFi  and  NHij , respectively.   

 [ ] ( [ ] [ ] [ ]) ( [ ] [ ] [ ])+ = Δi i i i i i i i iX k 1 F X k ,U k ,Z k NF X k ,U k , Z k  (11) 

 ( [ ])Δ ( [ ] [ ]) ( [ ])[ ]
=

= =∑
m

i i i 1 m ij j

j 1

Z k H X k NH X k ,...,X k NH X k  (12) 

The first step in identification of the sub-systems is to provide the training data using the 
actual system. To generate the training data, random inputs are applied to the actual system 
and the resulting state values, in addition to the input data are used for training the neural 
models.  

4. Optimizing the first level sub-problems with neuro-regulators 
In this approach, the first level sub-problems could be optimized with neuro-regulators [13]. 
The optimal control and interaction of each sub-system will be generated by non-linear 
feedback functions of the following forms 

 [ ] ( [ ], )i Ui i UiU k NR X k W= ;  0,1,...,k n=  (13) 

 [ ] ( [ ], )i Zi ZiZ k NR X k W= ;  0,1,..., 1k n= +  (14) 

where UiNR and ZiNR  could be considered as multilayer perceptron (MLP) neural networks, 
and UiW and ZiW  are their parameters including weights and biases, respectively.   
Now, the new Lagrangian Li can be defined as follows 

 

( )

( )

1
0

1

0 1

0

0

[ 1], [ 1] ( [ ], [ ], [ ])

[ ] [ ] [ ] ( [ ])

[ ] [ 1] ( [ ], [ ], [ ])

[ ]( [ ] ( [ ]; ))

[ ]( [ ] ( [ ];

n

n

i i i i ik i i i
k

n m

i i j ji i
k j

n

i i i i i i
k

n

Ui i Ui i Ui
k

Zi i Zi i Z

L G X n Z n G X k U k Z k

k Z k k H X k

k X k F X k U k Z k

k U k NR X k W

k Z k NR X k W

β β

λ

μ

μ

+
=

+

= =

=

=

= + + +

⎛ ⎞
⎜ ⎟+ −
⎜ ⎟
⎝ ⎠

+ + −

+ −

+ −

∑

∑ ∑

∑

∑
1

0

))
n

i
k

+

=
∑

 (15) 

where λi[k] , μUi[k] and μZi[k]  are the Lagrange multipliers.  
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Thus, the necessary conditions for optimality become   

  [ ] [ ] 0
[ ] [ ] [ ]
i ik ik

i Ui
i i i

L G F
k k

U k U k U k

∂ ∂ ∂ λ μ
∂ ∂ ∂

= − + = ;  0,1,...,k n=  (16) 

 1 [ 1] 0
[ 1] [ 1]

nii
Zi

i i

GL
n

Z n Z n

∂∂ μ
∂ ∂

+= + + =
+ +

 (17) 

 [ ] [ ] 0
[ ] [ ] [ ]
i ik ik

i Zi
i i i

L G F
k k

Z k Z k Z k

∂ ∂ ∂ λ μ
∂ ∂ ∂

= − + = ;  0,1,...,k n=  (18) 

 1 1[ ] [ 1] 0
[ 1] [ 1] [ 1]

nii Zn
i Zi

i i i

GL NR
n n

X n X n X n

∂∂ ∂λ μ
∂ ∂ ∂

+ += + − + =
+ + +

 (19) 

 [ 1] [ ] [ ] [ ] 0
[ ] [ ] [ ] [ ] [ ]

i ik ik U k Zk
i i U i Zi

i i i i i

L G F NR NR
k k k k

X k X k X k X k X k

∂ ∂ ∂ ∂ ∂
λ λ μ μ

∂ ∂ ∂ ∂ ∂
= + − − − − = ;  1,2,...,k n=  (20) 

where 

 ( [ ], [ ], [ ])ik i i i piG G X k U k Z k=  (21) 

 ( [ ], [ ], [ ])ik i i i piF F X k U k Z k=  (22) 

 ( [ ]; )U k U k i UiNR NR X k W=  (23) 

 ( [ ]; )Zk Zk i ZiNR NR X k W=  (24) 

Now to train the neuro-regulators; NRUi and NRZi , based on preceding optimality conditions, 

the following algorithm can be suggested 

1.        Choose initial small values for neuro-regulator parameters, namely WUi   and    WZi . 

2.        Using initial state 0iX  and equations (3), (13) and (14), find the values of 

 [1], [2],..., [ 1]i i iX X X n + , [0], [2],... , [ ]i i iU U U n , and [0], ... , [ 1]i iZ Z n +  . 

3.        Calculate [ ]i kλ , [ ]Ui kμ , [ ]Zi kμ  for , 1, ... ,0k n n= − , by using the following necessary 

 conditions , backward in time; 

 1[ 1]
[ 1]

ni
Zi

i

G
n

Z n

∂
μ

∂
++ = −
+

 (25) 

 1 1[ ] [ 1]
[ 1] [ 1]

ni Zn
i Zi

i i

G NR
n n

X n X n

∂ ∂λ μ
∂ ∂

+ += − + +
+ +

 (26) 

 [ ] [ ]
[ ] [ ]
ik ik

Ui i
i i

F G
k k

U k U k

∂ ∂μ λ
∂ ∂

= − ;   , 1 ,... ,0k n n= −  (27) 
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 [ ] [ ]
[ ] [ ]
ik ik

Zi i
i i

F G
k k

Z k Z k

∂ ∂μ λ
∂ ∂

= − ;   , 1 ,... ,0k n n= −  (28) 

 [ 1] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
ik U k Zk ik

i i Ui Zi
i i i i

F NR NR G
k k k k

X k X k X k X k

∂ ∂ ∂ ∂λ λ μ μ
∂ ∂ ∂ ∂

− = + + − ;  , 1 ,... ,1k n n= −  (29) 

4. Calculate i

Ui

L

W

∂
∂

 and i

Zi

L

W

∂
∂

 for , 1 ,... ,0k n n= −  , using [ ]Ui kμ  and [ ]Zi kμ  

 
0

[ ]
n

i Uk
Ui

Ui Uik

L NR
k

W W
μ

=

∂ ∂
=

∂ ∂∑  (30) 

 
0

[ ]
n

i Zk
Zi

Zi Zik

L NR
k

W W
μ

=

∂ ∂
=

∂ ∂∑  (31) 

5. Update WUi and WZi , by adding i
Ui U

Ui

L
W

W

∂η
∂

Δ = −  and   i
Zi Z

Zi

L
W

W

∂η
∂

Δ = −  to the prior 

values of WUi and WZi .  

6. If  i i

Ui Zi

L L

W W

∂ ∂ ε
∂ ∂

+ <  stop the algorithm, else go to step (2). 

Remark. We should indicate that, in case the use of neural networks and neuro-regulators 
are not of interest, then the modelling and optimization process at the first level, can be 
easily done using the same approach as explained in Ref. [14]-[16]. 

5. Reinforcement Learning  

To evaluate the operation of the fuzzy goal coordination system, with the use of 
reinforcement learning, we define a critic vector [17] and develop a method to train the new 
coordination strategy. The training is based on minimizing the energy of the critic vector. In 
this approach, we use both the errors and the rate of errors to increase the speed of 
convergence of the coordination algorithm. 

5.1 Designing the critic vector 

The critic vector includes m critic signals, where each of them evaluates the operation of the 
corresponding sub-system.  The  value  of each  critic  signal  is  in  the  range of [-1 , 1] and 
is expressed by a fuzzy system of  the following form 

 [ ] ( [ ], [ ]) ;     1,2,... ,i i i ir k R e k d k i m= =#  (32) 

where iR#  is the fuzzy system, [ ]ie k  is the interaction error and [ ]id k  is the rate of error, 
defined by 

 [ ] [ ] [ ]i i ie k Z k Z k∗= −  (33a) 

 ( ) ( ) ( 1)[ ] [ ] [ ] - [ ]l l l
i i i id k d k e k e k −=5  (33b) 

also l  is the iteration index. 
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The fuzzy system iR#  can now be defined by the fuzzy sets and rules as follows; 

 
1 1 1

( , )

           

                                                  

                                                  

                                                  

r R e d

if e is E and d is D then r R

=

=
⋅ ⋅
⋅ ⋅
⋅

#

# #

         M M Mif e is E and d is D then r R

⋅

=# #

 (34) 

where jR  is a  real value in the range of 

 1 1jR− ≤ ≤  ;  1,2,...,j M=  (35) 

The relation of r with e and d can also be given by the following fuzzy inference system 

 
1

1

( ) ( )

( , )

( ) ( )

M

j j j
j

M

j j
j

E e D d R

r R e d

E e D d

μ μ

μ μ

=

=

⋅

= =
⋅

∑

∑
#

 (36) 

where jEμ  and  jDμ  are  the  membership  functions  of jE and jD , respectively. 

5.2 Updating the coordination parameters  

To update the coordination parameters, we use a fuzzy system that calculates the variation 

of the coordination parameters as follows 
 

 [ ] ( [ ], [ ])k S e k d kβΔ =  (37) 

 

where S is a fuzzy system based on Takagi-Sugeno-Kang (TSK) model [18], [19]  and in this 

case, is defined by the fuzzy sets and rules as follows; 
 

 

1 1 1 1 1

( , )

                                                                          

                                                                          

       

s S e d

if e is A and d is B then s a e b d c v

=

= + +
⋅ ⋅
⋅ ⋅
⋅                                                                    

N N N N Nif e is A and d is B then s a e b d c v

⋅

= + +

 (38) 
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where 

 [ 1 1 .... 1 ]T
m

v =
,*-*.

. (39) 

Also jA  and jB  are the m dimensional fuzzy sets, expressed as 

 1 2 ...j j j jmA A A A= × × ×  (40) 

 1 2 ...j j j jmB B B B= × × ×  (41) 

where their membership functions are given by    

 1 1 2 2( ) ( ) ( ) ( )j j j jm mA e A e A e A eμ μ μ μ= ⋅ ⋅ ⋅A  (42) 

 1 1 2 2( ) ( ) ( ) ( )j j j jm mB d B d B d B dμ μ μ μ= ⋅ ⋅ ⋅A  (43) 

also 

 1 2[ , ,..., ]Tme e e e=  (44) 

 1 2[ , ,..., ]Tmd d d d= , (45) 

where jkAμ  and jkBμ  are the membership functions of jkA  and jkB , respectively. 

Moreover,  ja  , jb  and jc   are real constant parameters. 

To summarize, the relation of s  with e  and d  is given by the following fuzzy inference 

system; 

 
1

1

( ) ( ). ( )

( , )

( ) ( )

N

j j j j j
j

N

j j
j

A e B d a e b d c v

s S e d

A e B d

μ μ

μ μ

=

=

⋅ + +

= =
⋅

∑

∑
 (46) 

5.3 Training the fuzzy goal coordination system 

The aim of training is to minimize the energy of the critic vector related to the system 

parameters; ja  , jb  and jc  , where 

 
1

0

1
[ ] [ ]

2

n
T

k

E r k r k
+

=
= ∑  (47) 

also 

 1 2[ ] [ [ ], [ ],..., [ ] ]Tmr k r k r k r k=  (48) 

Now to update the fuzzy system parameters, we use the following updating rule 
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1

0

[ ]
. [ ]

Tn

k

E r k
W r k

W W

∂ ∂η η
∂ ∂

+

=

Δ = − = − ∑  (49) 

where η is the training rate coefficient, and W can be considered as each of the fuzzy system 
parameters, given by 

 ;, , 1,2,...,j j jW a b c j N= =  (50) 

Now, using the chain rule, we can write 

 
[ ] [ ] [ ] [ ] [ ]

[ ] [ ]

r k r k e k r k d k

W e k W d k W

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

= ⋅ + ⋅  (51) 

So to calculate the right side of this equation, we need to calculate  

and
[ ] [ ] [ ] [ ]

, ,
[ ] [ ]

r k e k r k d k

e k W d k W

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

, where  

 1

1

( [ ]). ( [ ])

[ ] ( [ ], [ ])

( [ ]). ( [ ])

M

j i j i j
j i

i i i M
i

j i j i
j

E e k D d k R
NUM

r k R e k d k
DEN

E e k D d k

μ μ

μ μ

=

=

= =
∑

∑
# 5

 
. (52)

 

Hence, we have  

 1 1

2

( [ ]). ( [ ]) ( [ ]) ( [ ])
[ ]

[ ]

M M

j i j i j i j i j i
j ji

i i i

E e k D d k R NUM E e k D d k
r k

e k DEN DEN

μ μ μ μ
∂
∂

= =

′ ′

= −
∑ ∑

 (53) 

and 

 1 1

2

( [ ]) ( [ ]) ( [ ]). ( [ ])
[ ]

[ ]

M M

j i j i j i j i j i
j ji

i i i

E e k D d k R NUM E e k D d k
r k

d k DEN DEN

μ μ μ μ
∂
∂

= =

′ ′

= −
∑ ∑

 (54) 

where (.)jEμ ′  and (.)jDμ ′  denote the derivatives of the corresponding membership 

functions, respectively. Therefore 

 

1

1

2

2

[ ]

[ ]

[ ]

[ ][ ]

[ ]

[ ]

[ ]

0

0 m

m

r k

e k

r k

e kr k

e k

r k

e k

∂
∂

∂
∂∂

∂

∂
∂

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

D
 (55) 
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and 
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D
 (56) 

The gradient of the interaction errors related to the system parameters is also given by  

 
[ ] [ ][ ] [ ]

[ ] [ ]
[ ]

k ke k e k
D k T k

W k W W

∂ β ∂ β∂ ∂
∂ ∂ β ∂ ∂

Δ
= ⋅ = Δ  (57) 

where 
[ ]

[ ]
[ ]

e k
D k

k

∂
∂ β

5 , as given in Appendix.    

Now in order to calculate  
[ ]k

W

∂ β
∂
Δ

, since we have 
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1

( [ ]) ( [ ])( [ ] [ ] )
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∑
 (58) 

Thus we get 

 
( [ ]). ( [ ]) [ ][ ] j j

j

A e k B d k e kk

a DEN

μ μ∂ β
∂
Δ

=  (59) 

 
( [ ]). ( [ ]) [ ][ ] j j

j

A e k B d k d kk

b DEN

μ μ∂ β
∂
Δ

=  (60) 

 
( [ ]). ( [ ])[ ] j j

j

A e k B d k vk

c DEN

μ μ∂ β
∂
Δ

=  , (61) 

where [ ]e k  and [ ]d k  are the values in the previous iteration i.e., ( 1)[ ] le k −  and ( 1)[ ] ld k −  . 

Now to calculate  
[ ]d k

W

∂
∂

 , since we have 

 ( ) ( ) ( 1)[ ] [ ] [ ]l l ld k e k e k −= −  , (62a) 
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according to the definition of [ ]T k , we get 

 ( ) ( 1)[ ]
[ ] [ ]l ld k

T k T k
W

∂
∂

−= −  (62b) 

So we can  calculate 
E

W

∂
∂

 .  

The fuzzy system parameters can now be updated using the following updating rule 

 
1

0

[ ]
[ ]

Tn

k

E r k
W r k

W W

∂ ∂η η
∂ ∂

+

=
Δ = − = − ∑  (63a) 

where 

 , , ; 1,2,... , .j j jW a b c j N= =  (63b) 

Now, considering W as the fuzzy system parameters, we can update the coordination 
parameters with the following rule 

 [ ] ( [ ], [ ]; )k S e k d k WβΔ =  (64) 

where W is the updated value, given by 

 ( 1) ( ) ( 1)l l lW W W+ += + Δ  (65) 

Thus, we can write 

 
( 1) ( ) ( 1)

( ) ( ) ( ) ( 1)

[ ] [ ] [ ]

[ ] ( [ ] , [ ] ; )

l l l

l l l l

k k k

k S e k d k W

β β β

β

+ +

+

= + Δ

= +
 (66) 

The various steps of the new coordination algorithm based on Interaction Balance Principle 
using Fuzzy Goal Coordination System based Reinforcement Learning, can now be 
summarized as follows:  

1. Choose initial values for  β   and W.  
2. Solve the first level sub-problems using neuro-regulators (or the gradient technique, as 

described in [14], [15]).  

3. Calculate the gradient matrices 
e∂

∂ β
and [ ]D k . Then update W and consequently update 

the coordination parameters  β , using the Fuzzy Goal Coordination System. 
4. Calculate the sum-squared error. If it is smaller than a small constant stop the 

algorithm, else go to step (2). 
The new goal coordination strategy based on Fuzzy Goal Coordination System, Neural 
Modeling, Neuro-Regulators and Reinforcement Learning is shown in Fig. 2. 

6. Simulation results 

The application of this approach is demonstrated on an open-loop power system, consisting 
of a synchronous machine connected to an infinite bus bar through a transformer and a 
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transmission line. For this system, Iyer and Cory [20], [4] have derived a sixth order non-
linear dynamical model. The optimization problem is to minimize a cost function of the 
following form 

 
1

22

0

( [ ] ) ( [ ] )
2

fK

f fQ R
k

T
J X k X U k U

−

=

⎡ ⎤= − + −⎢ ⎥⎣ ⎦∑  (67) 

where Q and R  are the weighting matrices, with appropriate dimensions and definiteness. 
Now, the system can be decomposed into two sub-systems of orders 4 and 2, respectively, 
using the following sate vectors 

 1 2 3 41[ ] [ [ ] [ ] [ ] [ ]]TX k X k X k X k X k=  (68) 

 5 62[ ] [ [ ] [ ]]TX k X k X k= , (69) 
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Fig. 2. Intelligent goal coordination strategy based on fuzzy goal coordination system and 
reinforcement learning.  
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Fig. 3. Optimal control actions of sub-systems 1 and 2. Solid: The new goal coordination 
approach; Dot: classical method. 

and four neural networks, as represented below, to model these two sub-systems and their 
interaction generators 

 
11 11 1 1[ 1] ( [ ], [ ], [ ], )FX k NF X k U k Z k W+ Δ  (70) 

 
22 22 2 2[ 1] ( [ ], [ ], [ ], )FX k NF X k U k Z k W+ Δ  (71) 

 
111 1 2[ ] ( [ ], [ ], )HZ k NH X k X k WΔ  (72) 
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222 1 2[ ] ( [ ], [ ], )HZ k NH X k X k WΔ  (73) 

In this example, for describing the fuzzy system iR# defined in (34) and also the Fuzzy Goal 
Coordination System defined in (38), triangular membership functions are used for fuzzy 
sets jE and jD , and also Gaussian membership functions are used for fuzzy sets jA and jB , 
respectively. 
The resulting optimum control actions, state trajectories and the plot of the norm of the 
interaction errors, using the proposed approach and the classical goal coordination method 
are all shown in Figs. 3-5. 
The results of using the goal coordination approach based on the proposed intelligent 
coordination strategy shows that the interaction errors vanish rapidly. The advantage of this 
method is its faster convergence rate in compare to the classical method. This is mainly 
because of using the new strategy which the update of the coordination parameters directly 
causes the reduction of the coordination error with the fuzzy goal coordination system 
based reinforcement learning. 
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Fig. 4. Optimal state trajectories of sub-system 1. Solid: The new goal coordination approach; 
Dot: classical method. 

7. Conclusion 

In this chapter, a new intelligent approach for goal coordination of two-level large-scale 
control systems is presented. At the first level, sub-systems are modelled using neural 
networks, while the corresponding sub-problems are solved using neuro-regulators. Fuzzy 
Goal Coordination System based Reinforcement Learning is also used at the second level, to 
coordinate the overall large-scale control system. The fuzzy goal coordination system learns 
its dynamics through minimization of an energy function defined by a critic vector. The 
minimization process is done using the gradient of interaction errors, while in addition, both 
the critic vector and fuzzy goal coordination system use the variation of errors (rate of 
errors) to update their  parameters. 
As it can be seen, the proposed goal coordination approach, in compare to the classical one, 
results in much faster reduction of the interaction prediction errors.  
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Fig. 5. Optimal state trajectories of sub-system 2. Solid: The new goal coordination approach; 
Dot: classical method. 
 

 

Fig. 6. Comparison between the norm of interaction errors using the proposed approach and 
the classical method. Solid: The new goal coordination approach; Dot: classical method. 
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With an extended version of the model coordination approach presented in [21], and the 
proposed goal coordination strategy of this chapter, the interaction prediction approach 
(mixed method) [22], [23], can also be extended to a new intelligent interaction prediction 
strategy. 

8. Appendix 

In the sequel, the elements of the matrix e
D

β
∂
∂

5  will be calculated  

 
*e Z Z

β β β
∂ ∂ ∂

= −
∂ ∂ ∂

 (74) 

where, 
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and 
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Now using the optimization of the first level, we have 
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where the corresponding variations can also be written as  

 

0

0

0

x x x x x
i i i i i

i i i i
i i i i

u u u u u
i i i i i

i i i i
i i i i

i i i i i
i i i i

i i i i

z z z z
i i i i

i i i
i i i

L L L L L
X U Z

X U Z

L L L L L
X U Z

X U Z

L L L L L
X U Z

X U Z

L L L L
X U

X U

λ λ λ λ λ

δ δ δλ δ δβ
λ β

δ δ δλ δ δβ
λ β

δ δ δλ δ δβ
λ β

δ δ δλ
λ

∂ ∂ ∂ ∂ ∂
+ + + + =

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂
+ + + + =

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂
+ + + + =

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂
0

z
i

i
i

L
Z

Z
δ δβ

β

⎧
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪ ∂
⎪ + =

∂⎪⎩

 (79) 

www.intechopen.com



A Reinforcement Learning Approach to  
Intelligent Goal Coordination of Two-Level Large-Scale Control Systems   

 

55 

or equivalently,  
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which can be summarized as 
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In (83), the matrices 11iM , 12iM , 21iM , 22iM , 31iM , 11ZiT , 21ZiT , 31ZiT , 2i jTβ , 3i jTβ  and 

ZiD  can be find in Appendix of [22]. 
Now using (7), we can write 
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also iZδ  can be written as 

www.intechopen.com



 Advances in Reinforcement Learning 

 

56 

 [ ]0 0 0

i

i
i

i

i

X

U
Z I

Z

δ
δ

δ
δλ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (85) 

Therefore, by using the following definitions 
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and using (81), (84) and (85), for each subsystem, we obtain 
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Now, for the overall system we have 
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and using (89), it can be concluded that 

 ( ) 1vv vV L L βδ δβ
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Therefore, by substituting (91) in (89), we obtain 

 
( )

( )

1
*

1

v vv v

v vv v

Z H L L

Z I L L

β

β

δ δβ

δ δβ

−

−

⎧ = −⎪
⎨
⎪ = −⎩

 (92) 

and as a result 
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Finally,  
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