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1. Introduction     

Pesticides are a group of chemicals made for the purpose of killing or otherwise deterring 
“pest” species. The word pesticides may refer to insecticides, fungicides, herbicides or other 
pest control formulations. Introduced in 1940s, organochlorine pesticides (OCPs) were 
widely used as insecticides in agriculture and pest control until research and public concern 
regarding the hazards of their use and adverse effects in the environment led to government 
restrictions and bans. Two International legally binding instruments have been negotiated 
and concluded: the Protocol to the regional United Nations Economic Commission for 
Europe Convention on Long Range Transboundary Air Pollution (CLRTAP) on Persistent 
Organic Pollutants (POPs), opened for signature in June 1998 and entered into force on 23 
October 2003 and the Stockholm Convention on POPs, opened for signature in May 2001 
and entered into force on 17 May 2004. Both these agreements identify POPs that should be 
banned and/or phased out or whose use or emissions should be restricted, they include 
industrial chemicals and by-products such as PCBs, hexachlorobenzene, dioxins and furans, 
and a number of OCPs such as aldrin, chlordane, DDT, dieldrin, endrin, heptachlor, 
hexachlorobenzene, mirex and toxaphene. All together are often called the “dirty dozen” 
(Stockholm Convention, 2004). The hexachlorocyclohexanes (HCHs) are covered by the 
UNECE Protocol but not the Stockholm Convention. For several listed substances, some 
limited use is allowed, for example DDT for fighting malaria. Despite the actions of these 
two Conventions, POPs are still present at high levels in the polar regions and will require 
vigilant action in the continuing implementation of the Conventions to prevent further 
contamination of these rich and productive ecosystems. 
OCPs are organic chemical substances which possess a particular combination of physical 
and chemical properties and once released into the environment they remain intact for long 
periods of time (from weeks to decades). They are persistent that is they resist to 
environmental degradation through chemical, biological and photolytic processes. They are 
toxic to both humans and wildlife and accumulate in the fatty tissue of living organisms 
(bioaccumulation), and are found at higher concentrations at higher levels of the food webs 
(biomagnification). They are subjected to long range transport (LRT) and can be found in 
remote regions, including Arctic and Antarctica, where they have never been used or 
produced (i.e.: Su et al., 2006; Bargagli, 2008; Corsolini, 2008; Rigét et al., 2010; Donaldson et 
al., 2010) 
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The transport of POPs in the Northern and Southern hemispheres is a well documented 
phenomenon. POPs are thought to be transported such long distances by a variety of 
processes including:  
- a process known as global distillation (Wania and Mackay, 1993; 1996), according to 

which POPs with sufficiently high vapour pressure evaporate from the warmer regions, 
(where they are used or released), and then move through the atmosphere, condense at 
colder and high latitudes, finally concentrating in Arctic and Antarctic. According to 
this process, POPs of higher volatility like HCHs may migrate faster towards the poles 
than those of lower volatility such as DDTs; 

- migration through ocean circulation;  
- deposition by means of wet (snow, rain, mist) or dry depositions (i.e. atmospheric 

processes (particle settling)) onto terrestrial and aquatic surfaces;  
- transport through migratory animals which are thought to offload their body burdens 

into polar ecosystems through their excretion and during body decomposition (Wania, 
1998). 

The fate and different transport routes of a POP are strongly influenced by its specific 
physical and chemical properties such as water solubility, vapour pressure (VP), Henry’s 
law constant (H), octanol-water partition coefficient (Kow) and the carbon-water partition 
coefficient (Koc). 

2. POPs in polar regions 

The polar regions are of great intrinsic value and vital importance for the conservation of 
biological diversity. 
Even though the Antarctic is still the region of the earth that is the least influenced by 
human activity, strict regulation is needed to maintain its untouched and pristine condition 
today. Most of the Antarctic region is situated south of 60°S latitude and is governed in 
accordance with the International legal regime of the Antarctic Treaty System. The Protocol 
on Environmental Protection to the Antarctic Treaty, which came into effect in 1998, 
designates Antarctica as an internationally important natural reserve devoted to peace and 
science, and provides a comprehensive environmental management regime. The Treaty area 
cover the continent itself as well as the archipelagos of the South Orkney Islands, South 
Shetland Islands, Peter Isalan, Scott Island and Balleny Island. Antarctica and the Southern 
Ocean are a remote region with no indigenous human population and no industrial and 
agriculture activities. Human impact is concerned largely with scientific investigations and 
the logistic operations in support of these. As a result of Antarctica’s designation as a Special 
Conservation Area, many countries that maintain research stations in Antarctica have 
improved management practises and developed strategies to reduce environmental 
disturbances. The protection of the Antarctic Environment is the primary responsibility of 
the Antarctic Treaty Parties and the release of POPs into the Antarctic environment is 
incompatible with the comprehensive approach of the Protocol. Therefore, the obligation to 
monitor the introduction of these substances is vested upon the Parties to the Protocol and 
practices have been improved and importation of specific POPs has been prohibited. 
However, LRT remains an important process by which POPs contaminate the Antarctic 
environment.  
In the last decades, extensive international cooperation has also been developed in several 
fields in the Arctic region as well. The Arctic Monitoring and Assessment Programme 
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(AMAP) is the first international programme to design and develop monitoring 
programmes to study the sources, transport mechanisms and pathways, levels, fate and 
behaviour of most of the groups of contaminants, including POPs, in the Arctic environment 
and its ecosystems (atmospheric, marine, terrestrial, humans). Further aims of the AMAP 
are to prevent releases of radioactive substances and emissions of other hazardous 
chemicals and provide scientific advice on actions to be taken in order to support Arctic 
governments in their efforts to take remedial and preventive actions relating to 
contaminants. AMAP is one of the six scientific Working Groups of the Arctic Council 
(Arctic Contaminants Action Program - ACAP, AMAP, Conservation of Arctic Flora and 
Fauna – CAFF), Emergency, Prevention, Preparedness and Response – EPPR), Protection of 
the Arctic Marine Environment - PAME and SDWG) a forum of cooperation between the 
eight Arctic countries (Canada, Greenland (Denmark), Finland, Iceland, Norway, Russia, 
Sweden and United States), and also between national governments and indigenous 
peoples. 
POPs are now distributed in the global environment and their accumulation of 
organochlorine pesticides in Northern and Southern latitudes has been extensively 
documented. In particular, HCHs have been extensively used throughout the world and this 
factor in combination with a relatively high vapour pressure, a low octanol-air partition 
coefficient, a low Hanry’s law constant and the highest water solubility of all 
organochlorines (Harner et al., 1999, Brubaker and Hites, 1998, Gregor and Gummer, 1989, 
Kucklick et al., 1991) is reflected in the relative abundance of these compounds in Arctic and 
Antarctic ecosystem compartments.  
Most of the associated literature focuses on the occurrence and levels of HCHs in air and on 

the study of air/water exchanges fluxes (UNECE, 1998; Hargrave et al.,1997), while only a 

little number of papers can be found dealing with water samples probably due to the 

difficulty involved in determination of very low concentrations of these contaminants in the 

Arctic and Antarctic seawaters. However seawater is an almost unique passage where 

pollutants transfer from the atmosphere or rivers to the shallow water. It is also a significant 

path way for OCPs accumulated in the plankton and therefore enter the terrestrial food 

webs of the polar regions (Cai et al., 2010). 

This review reports the levels, trends and distribution of HCHs in water and biota of both 
polar regions. The accumulation in marine organisms will be described; in particular, krill, 

fish, seabirds and seals will be considered. Moreover, the α-HCH enantiomeric composition 
in the Arctic and Southern oceans will be reviewed in order to evidence the presence of 
environmental biochemical processes. 

2.1 Hexachlorocyclohexanes 

Hexachlorocyclohexane (HCH), also known as benzene hexachloride (BHC), is one of the 
most widely studied pesticides with respect to its environmental fate and effects (Breivick et 
al., 1999). It is an organochlorine insecticide that is available in two commercial 
formulations: technical grade and lindane. 
Technical HCH was heavily used and it is an ubiquitous pesticide introduced in world war 

II and consists of a mixture of different isomers α-HCH (60-70%), β-HCH (5-12%), γ-HCH 

(10-15%), δ-HCH (6-10%) and ε-HCH (3-4%) (Kutz et al., 1991). Because of its low cost and 

high effectiveness, HCH was one of the most widely used insecticides in the world (Li, 

1998). The insecticidal properties of HCH were first discovered in Europe in 1941-1942, 
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however, in 1944 it was found that the γ-isomer is the only HCH isomer responsible for 

these properties (Hardie, 1964). Lindane is the γ -HCH (>99% pure) (UNEP, 2006). Lindane 

has been used as a broad-spectrum insecticide, which acts by contact, against a wide range 

of insects. Its main uses include treatment of seeds, on crops, in warehouses, in forestry, on 

domestic and agricultural animals, and for pest control of scabies and lice on humans 

(WHO, 1991). 

 
α-HCH β-HCH γ-HCH

Molecular weight 290.85 290.85 290.85

Structural code 

Axial/Equatorial

AAEEEE EEEEEE AAAEEE

Melting point (°C) 159.5 309.5 112.5

Boiling point (°C) 288 at 760 mmHg1 60 at 0.5 mmHg2 323.4 at 760 mmHg1

Vapour Pressure1 4.5 x 10-5 mmHg at 25°C 3.6 x 10-7 mmHg at 20°C 4.2 x 10-5 mmHg at 20°C

Henry's law constant3
LogHα= 10.13(±0.29)-3098(±84)/T LogHβ= 9.96(±0.23)-3400(±68)/T LogHγ= 10.14(±0.59)-3208(±161)/T

Log Kow
4

3.94 3.9 3.9

Log Koc
5

3.57 3.57 3.57  

Table 1. Physical and chemical properties of key HCHs (References: 1.HSDB, 2003; 2. Lide, 
1991; 3. Sahsuvar et al., 2003; 4. Shen et al., 2004; Willett et al., 1998; 5. Weiss, 1986) 

           
 

               (+)α-HCH                                                        (-)α-HCH 

 

 

 

      
 

                    β-HCH                                                          γ-HCH  

Fig. 1. Structure of the principal HCH isomers (α, β and γ ) 
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Because of the environmental and biological persistence of HCHs, many developed 

countries banned or restricted technical HCH usage since 1970s, a ban followed by many 

developing countries in 1980s (Voldner and Li, 1993). In 2009, an International ban on the 

use of lindane in agriculture was implemented under the Stockholm Convention on POPs. A 

specific exemption allows for it to continue to be used in second-line treatments for the head 

lice and scabies for 5 more years. 

Distribution, transportation and fate of HCHs in the environment is strongly influenced by 

the different physical and chemical properties of the various isomers and these are, to a 

great extent, responsible for the vast differences in the fates of the α, β and γ-isomers. 

The chemical structures and chemical-physical properties of the key HCHs are reported in 

Table 1 and Figure 1. 

2.2 Antarctica 
2.2.1 The marine environment 

The Southern Ocean occupies a belt between 55-70°S. The more southerly part of this zone is 

covered by sea ice for all or part of the year. Water temperatures vary very slightly in both 

time and space. Summer temperatures may be as high as 3-4°C in the northern part of the 

Southern Ocean, decreasing to slightly below zero close to the continent. The annual range 

of water temperature is typically only a few degrees. Despite this apparently hostile 

environment, the Southern Ocean supports a diverse biota, in strong contrast to Antarctic 

terrestrial ecosystems that is a cold desert. The region supports a number of fisheries, some 

of which are of global importance. 

2.2.2 HCHs in Antarctic seawater 

Relatively few investigations have been carried out to determine HCHs content in Antarctic 

seawater. The first HCHs data in seawater samples were reported by Tanabe et al. (1982a, b) 

who found the sum of HCHs ranging from 260 to 920 pg/L during an Antarctic supply 

voyage between Japan and the Syowa Research Station in 1980-1981. Similar total HCH 

concentrations (210-930 pg/L) were determined in seawater samples collected close to 

Syowa Station, not showing strong variations between samples collected under fast ice and 

at the outer margins of pack ice (Tanabe et al., 1983). Authors found mean α-HCH 

concentrations of 3.2 pg/L in 2002 and 1.41 pg/L in 2003-2004, showing little spatial and 

temporal variability during each sampling period. These values were lower than those 

measured in 1989-1990 (18-43 pg/L) (Iwata et al., 1993), 1997 (3.6-15 pg/L), 1997-1998 (5.1-28 

pg /L) (Jantunen et al., 2004), and 1999 (2-9.6 pg/L) (Lakaschus et al., 2002).  

Desideri et al. (1991) and Cincinelli et al (2009) measured the concentrations of HCHs in 
surface seawater samples collected at Terra Nova Bay in the spring-summer periods 1988-

1989 and 2003-2004, respectively. They found mean α-HCH concentrations of 129 (±42) and 

3.13(±0.89) pg/L, and mean γ-HCH concentrations of 562 (±335) and 7.11 (±1.22) pg/L, 
respectively. Desideri et al. (1991) found a mean of 147±25 pg/L of a-HCH  and 470±229 
pg/L of g-HCH in sea-ice samples and these values were higher than those measured in 
seawater samples; they hypothesized that POPs are accumulated during winter in the sea 
ice and then released into the seawaters during the seasonal ice melting, wich contribute to 
the Summer POP increasing concentration in the seawater. This hypothesis was also 
confirmed by Cincinelli et al. (2009), who found higher HCH concentrations in the seawater 

www.intechopen.com



 Pesticides - Formulations, Effects, Fate 

 

458 

samples collected at Terra Nova Bay than those measured later in the Ross Sea (α-HCH 

1.08±0.40 and γ-HCH 2.12±1.08), as well by Dickhut et al. (2005), who detected higher levels 

of γ-HCH in surface water collected during the early part of the summer in the vicinity of 
Palmer Station on the western Antarctic Peninsula in 2002. These authors found 

concentrations of α-HCH ranging from 1.65 to 4.54 (mean value 3.20±0.82) pg/L, and 

concentrations of γ−HCH ranging from 0.90 to 10.6 (mean value 4.09±4.08) pg/L in seawater 
samples. 

2.2.3 HCHs in Antarctic biota 

The scientific literature on the presence of HCH isomers in Antarctic organisms is very 

scarce, owing to the difficulty of collecting biotic samples in such an extreme environment, 

the distance from any part of the world, the very high cost of scientific expeditions and the 

need to be part of one of those to be allowed to reach the continent and collect organism 

samples, whose collection need special internationally valid permits released by a 

commission of the Antarctic Treaty. Moreover, data are often reported in different ways and 

thus no comparisons are allowed owing to different tissues, unit of measures (on a lipid, 

wet, or dry wt), chemicals analyzed, and species. The presence of HCHs in Antarctic marine 

organisms has been reported in few articles since 1960s.  

The presence of HCHs in krill (Euphausia superba) and in Emperor penguin (Aptenodytes 

forsteri) feathers was reported first by Sen Gupta et al (1996); they detected 141.3±9.8 - 

164±16.6 pg/g dry wt of α+γ-HCHs in krill, and 108.7±7.6 - 112.5±8.6 pg/g dry wt in 

penguin feathers collected in 1987 near the Indian Station Daksin Gangotri (70°05’S, 

12°00’E). They reported that the γ-isomer was the most abundant in both species. Twenty 

years later, Bengston-Nash et al. (2008) found 0.03 ng/g wet wt of HCHs; the most abundant 

isomers were α-HCH > β-HCH > δ-HCH (14.2, 9.3, and 6.9 pg/g wet wt, respectively). HCH 

concentrations in the Antarctic Peninsula were 0.009 ng/g lipid wt in samples collected in 

2001 (Chiuchiolo et al. 2004) and 0.25 ng/g wet wt (0.14-0.35 ng/g wet wt) in samples 

collected in 2005 at King George Is. (South Shetlands). Concentrations in krill samples 

collected in the Ross Sea were reported by Corsolini et al. (2006) and Cincinelli et al., (2009) 

and they were 0.28±0.04 ng/g wet wt and 0.11±0.07 ng/g wet wt, respectively. 

Notwithstanding the difference in the unit of measure, samples collected in 1980s seems to 

be more contaminated than those collected in the 2000s; moreover, the Indian Sector of the 

Southern Ocean showed lower levels than the Ross Sea in 2000s. 

Data in fish are very scarce. A paper reported 1.35±0.72 ng/g wet wt of ΣHCHs in the 

emerald rockcod (Trematomus bernacchi) muscle, where γ-HCH was the principal contributor 

(1.23±0.67 ng/g) (Corsolini et al., 2006). Usually β-HCH is stable in animals, but it is less 

volatile than α- and γ-HCH, thus it can reach the Polar Regions less easily than other HCH 

isomers, due to the global fractionation (Wania and Mackay, 1993). β-HCH concentration in 

Arctic atmosphere (Li et al., 2003) and in some species of seal and whale (Willett et al., 1998) 

is very low in comparison with the more volatile α- and γ-HCHs. Several industrial 

countries such as Canada, European Countries and the U.S. have banned HCHs since the 

1970s. However, a few developing countries from tropical belt continued to use Lindane 

(pure γ-HCH) until the 1990s (Li et al., 1996, 2003; Senthil Kumar et al., 2002); this would 

have influenced γ-HCH occurrence in Antarctic food webs.  
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The HCH contamination in seabirds will be discussed in reference to penguins; in fact, 
among seabirds, penguins spend all their life cycle in the Antarctic Ocean; other seabird 
species nest in Antarctica during Summer, but they overwinter northward, often in non-
Antarctic seawaters. Thus they can accumulate higher burdens of contaminants and they do 
not reflect exactly the contamination status of the Antarctic ecosystems (Corsolini, 2009). 
Penguins feed mainly on krill and they are a good indicator of HCH contamination; many 
different chemical families have been studies in various species since 1960s (for a review see 
Corsolini, 2009). Data of HCH presence in their tissues were first reported in 1985: Schneider 

et al. (1985) detected γ-HCH in Adélie penguin fat (Pygoscelis adéliae) (73 ng/g lipid wt), and 

Emperor penguin fat (26 and 118 ng/g lipid wt). The figure 2 shows the ΣHCH 
concentrations in Adélie, Chinstrap (Pygoscelis antarctica) and Gentoo (Pygoscelis papua) 
penguins from different regions of Antarctica and collected from 1988 to 2005. Levels ranged 
between below the detection limit in Adélie penguin muscle from King George Island to 5 
ng/g wet wt in blood of Gentoo penguin from the same area (Inomata et al., 1996). The 
minimum and maximum concentrations found ranged from 0.25 to 1.32 ng/g wet wt in 
Adélie penguin, from 0.17 to 2.28 ng/g wet wt in Chinstrap penguin, and from 0.1 to 5 ng/g 
wet wt in Gentoo penguin, showing a weak increase of concentration in Gentoo > Chinstrap 
> Adélie penguins. These penguin species nesting at King George Island share the same 
environment and have adopted a fine ecological segregation to reduce niche overlap and 
food competition (Trivelpiece et al., 1987). In fact, all the Pygoscelid species are usually very 
synchronous in nesting, while the breeding chronologies of these populations are 
asynchronous (Trivelpiece et al., 1987). Chicks hatched at approximately 2 week intervals, 
with Adélie penguin being the earliest and Chinstrap penguin the latest to hatch annually. 
Asynchronous breeding chronologies greatly reduce competition for food between species 
during chick rearing. At the same time, this asynchrony may affect the HCH accumulation; 
 

 

1.1

0

1

0.25
0.59

1.32

0.17 0.43

2.28

0.15
0.5

1
0.47

0.1

5

0.2

2.41

0

1

2

3

4

5

6

BS-

KGI

BS-

KGI

BS-

KGI

BS-

KGI

RS-

TNB

BS-

KGI

BS-

KGI

BS-

KGI

BS-

KGI

FI FI BS-

KGI

BS-

KGI

BS-

KGI

BS-

KGI

BS-

KGI

BS-

KGI

bloodmuscle liver egg egg egg blood egg egg muscle liver bloodmuscle liver blood egg egg

1989 1991 1991 1993 1995 2005 1989 1993 2005 1988 1988 1989 1991 1991 1991 1993 2005

1 2 2 3 4 5 1 3 5 6 6 1 2 2 2 3 5

ADPE CHPE GEPE

n
g

/g
 w

et
 w

t

 

Fig. 2. ΣHCH concentrations (ng/g wet wt) in tissues of Adélie (ADPE), Chinstrap (CHPE), 
and Gentoo (GEPE) penguins from King George Island (BS-KGI) and Falkland Islands (FI) 
(YoS = year of sampling; Refs = references: 1. Lara et al., 1990; 2. Inomata et al, 1996; 3. 
Wanwimolruk et al., 1999; 4. Corsolini et al., 2006; 5. Cipro et al., 2010; 6. de Boer et al., 1991). 
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in fact, large amounts of HCH pesticides are used in tropical and temperate regions during 

Summer, with resulting HCH increasing levels in the Antarctic environment in Summer and 

Autumn (Larsson et al., 1992). The seasonality of HCH transport to Polar Regions has 

already been reported, and it affects also the accumulation in Antarctic organisms (Sen 

Gupta et al., 1996; Corsolini et al., 2000). Interestingly, the HCH concentrations in Adélie, 

Chinstrap and Gentoo penguin eggs increased from 1993 (Wanwimolruk et al., 1999) to 2005 

(Cipro et al., 2010) (figure 3). This pattern may be due to the historical use of HCH-based 

pesticides worldwide and in particular in American, European and some Asiatic countries: 

after a massive use until the 1970s and 1980s, governments started to ban their use and 

production. First, levels continued to increase as a result of their global transport and 

dispersion, but then concentrations in biota showed a light decrease followed by the 

reduced use. The new increase observed at the end of 1990s can be as a result of a couple of 

reasons. The first reason can be the slow release of these chemicals from legal or illegal 

stocks. Secondly, the releases from the final sink as deep oceanic sediments and waters that 

may follow natural cycles in the marine ecosystems. Increasing concentration trends have 

been observed in other Antarctic species and also for other chemicals (Aono et al., 1997; 

Corsolini, 2009; Corsolini, 2011).  
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Fig. 3. ΣHCH concentrations (ng/g wet wt) in tissues of fur seal (Agazella), Weddell seal 
(Lweddelli), and elephant seal (Mleonina) from King George Island (BS-KGI), Livingston 
Island (BS-LI), and Elephant Island (BS-EI) (YoS = year of sampling; Refs = references: 1. 
Vetter et al., 2001; 2. Schiavone et al., 2009; 3. Miranda-Filho et al., 2007). 

There are few articles that report HCH levels in Antarctic seals. HCH were very low in the 
fur seal (Arctocephalus gazella) from King George Island, 0.04 ng/g wet wt, and in the 
Weddell seal (Leptonychotes weddelli), 0.014 ng/g wet wt (Vetter et al., 2001). HCH higher 
concentrations were reported in specimens of Weddell seal and elephant seal (Mirounga 
leonina). Schneider et al. (1985) detected 13 and 20 ng/g lipid wt in the Weddell seal blubber, 
and 39 and 103 ng/g lipid wt in the Crabeater seal blubber (Lobodon carcinophagus), collected 

in 1981. The β-HCH prevailed in samples of fur seal from Livingstone island, where the 
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isomer pattern abundance was β-HCH > α-HCH > γ-HCH > δ-HCH (Schiavone et al., 2009). 

The pattern was γ-HCH> α-HCH > β-HCH in the elephant seal (Miranda-Filho et al., 2007). 
A temporal trend of HCH concentration in Antarctic organisms is not evident mainly 
because of the paucity of data available. Extreme environments promote the selection of 
peculiar adaptations like the use of lipids to store energy, to protect against cold, to aid 
buoyancy in fish; the presence of this lipid component may affect the concentrations of 
lipophylic contaminants such as HCHs in relation to the season and period of the biological 
life cycle during which sampling is carried out. Therefore, HCH concentrations may vary 
depending on all such factors. Similar patterns have been reported also for other families of 
POPs in most of the species analyzed and collected in Antarctic seawaters (for a review see 
Corsolini et al., 2009). 

2.3 Arctic 
2.3.1 The marine environment 

The Arctic region can be defined as the area north of the Arctic circle (63°33’N). It covers an 
area of approximately 13.4 million km2 and large tracks of land are covered by glacial ice. 
The Arctic includes the Arctic Ocean and parts of Canada, Greenland, Russia, the United 
States (Alaska), Iceland, Norway, Sweden and Finland. The Arctic marine area includes the 
Arctic Ocean, the adjacent shelf seas (Beaufort, Chukchi, East Siberian, Laptev, Kara and the 
Barents Sea), the Northern Seas (Greenland, Norwegian and Iceland seas), the Labrador Sea, 
Baffin Bay, Hudson Bay, the Canadian Arctic Archipelago and the Bering Sea. The 
connection with the shallow Bering Sea occurs through the narrow Bering Strait, while the 
main connection with the Atlantic Ocean is via the deep Fram Strait and the Nordic Seas. 
The Arctic Ocean is divided into two deep basins, the Eurasian and the Canadian by the 
transpolar Lomonosov Ridge (AMAP 1998), extending as a submarine bridge about 1060 
miles from Siberia to the northwestern tip of Greenland. Parallel to it there are two shorter 
ridges: the Alpha Ridge on the North American side, defining the Canada and Makarov 
basins, and the mid-ocean ridge on the Eurasian side, defining the Nansen and Fram basins.  
Due to ice coverage the temperature of the Arctic Ocean is close to freezing point year 
round. Surface water salinities vary between 30-33 in the Arctic Ocean. The salinity is lower 
in the summer due to the input of freshwater from rivers and terrestrial ice melting (AMAP, 
1998). 
The Arctic ocean is considered a sink for global pollution because of the flow of oceanic and 

atmospheric currents. It is a fragile ecosystem threatened by land-based sources of pollution 

particularly POPs and heavy metals (Lystsov, 2006). Principal loadings of HCHs to the 

Arctic Ocean during the last decades occurred by atmospheric transport and air-water 

exchange, precipitation and riverine input, and migration through north flowing ocean 

currents (Li et al., 2004). However the relative inputs by these pathways varied over time 

and differed for the eastern and western sides of the Arctic Ocean which have been termed 

the North American Arctic Ocean (NAAO) and Eurasian Arctic Ocean (EAO) (Bidleman et 

al., 2007). 

2.3.2 HCHs in Arctic sea-water 

Seawater samples were collected from a few limited number of cruises under taken 
throughout the 1980s to 2000s in different regions of the Arctic Ocean. The most extensive 
database on HCH concentrations in Arctic seawater samples belongs to the Bering and 
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Chukchi Seas where several cruise expeditions occurred, mainly organised by Japan, USA, 
Canada and former USSR.  
An USSR/US investigation was begun in 1984 in the Bering and Chukchi Seas to study the 
transport of agricultural chemicals such as pesticides and other persistent pollutants 

(Chernyak et al., 1995). Results showed that α-HCH concentrations ranged from 810 to 1220 
pg/L on the transect from the Sea of Japan to the Bering Sea, and a trend of increasing 
concentration with increasing latitude was observed (r2= 0.88). This correlation is proved to 
be even stronger when average concentrations and latitudes from the Bering and Chukchi 
Seas and the Chirikov Basin were included in the regression (r2= 0.99) (Chernyak et al., 

1992), an increasing of with α-HCH concentrations from 800 pg/L in the South China Sea 

to 2500 pg/L in the Chukchi Sea. This trend for α-HCH concentration may reflect the effect 
of much colder surface water temperatures in the polar seas, because the Henry’s law 

constant of α-HCH decreases with decreasing water temperature, thus favouring deposition 

to the water phase. However the same trend was not observed for the γ- and β- isomers 
which ranged from 770 to 1150 pg/L and from 80 to 740 pg/L, respectively. 

Mean concentrations of α-HCH and γ-HCH of 7.1 and 0.8 ng/L, respectively, were reported 
by Patton et al. (1989) for four seawater samples collected over a depth of 1-10 m from the 
Ice island in the Beaufort Sea in June 1987. In the same area Hargrave et al. (1988) measured 

α-HCH levels in seawater samples at different depths and found average values of 4249 
pg/L at 0-60 m, 2030 pg/L at 75-200 m and 320 pg/L at a depth >200 m in May 1986, 
average values of 5430 pg/L at 0-60 m, 2230 pg/L at 75-175 m in August 1986 and average 
values of 2820 pg/L at 10 m and 1440 pg/l at 110 m in June 1987. In general, concentrations 
of HCHs were maximum in the upper 60 m layer with decreasing values towards greater 

depths. The observed vertical distribution of α-HCH and other OCPs observed in this study 
indicated a source in the upper low salinity surface layer, probably a direct exchange 
between atmosphere and ocean (sea ice). In fact, most relevant inputs of pesticides into the 
Arctic marine environment may be atmospheric, riverine and oceanic transport even if the 
relative importance of each of these sources is difficult to assess.  

Similar concentrations of ΣHCH (5-7 ng/L) in the Beaufort Sea were also reported by 
McDonald and McLaughlin (1993, 1994) for surface water samples collected between 1992 
and 1993. Graphical presentation of data in Mc Donald et al. (2000) indicated levels for both 
isomers of 0.4-0.8 ng/L. 
On the third Soviet-American Joint Ecological Expedition to the Bering and Chukchi Seas 

(August 1988), seawater samples were collected and analysed for OCPs. Average α-HCH 

concentrations in surface water samples were 2.4 ng/L, and average γ-HCH concentrations 
were 0.6 ng/L (Hinckley et al., 1991). In the same seas, Iwata et al (1993) collected seawater 
samples during the period between April 1989 and August 1990 reporting no differences 

between the mean concentration values of α-HCH (1.5 ng/L(range 1.2-1.9 ng/L) and 1.4 ng/L 

(range 1.3-1.6 ng/L)) and γ-HCH (0.190 ng/L (range 0.160-0.230 ng/L) and 0.180 ng/L (range 
0.150-0.220 ng/L)), in the Bering and Chukchi Seas, respectively. 
Paired air and water samples were collected at Resolute Bay (74°N, 95°W) in summer 1992 
to estimate the direction of gas exchange of HCHs and investigate possible loss processes in 

the water column (Bidleman et al. ,1995; Falconer et al., 1995). Average concentrations of α-

HCH and γ-HCH in ocean surface water were 4.75±0.9 and 0.44±0.11 ng/l, respectively. 

Water/air fugacity ratios were 1.03 for γ-HCH and 1.57 for α-HCH, indicating a slight 

potential for volatilization of α-HCH. The average concentration of the sum of α-HCH and 
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γ-HCH (5100 pg/L) (Bidleman et al., 1995; Falconer et al., 1995) was higher than values from 
Bering Sea and Chukchi Sea (1600 -3400 pg/L) reported by Iwata et al.(1993) and Kawano et 

al.(1988) (mean α-HCH 2800 pg/L, γ-HCH 610 pg/L).  
During August-September 1993 a joint Russian –US expedition to the Bering Sea and 
Chukchi Sea took place and surface water samples (from 1 to 2 m) were collected from 21 
sites. Highest water concentrations were observed for HCH in open waters north and south 

of the Bering strait, both regions being similar (α-HCH 2.2 ng/L and lindane 0.35 ng/L) 

(Strachan et al., 2001). The water-air fugacity for the HCHs indicated that α-HCH is 

degassing in both Bering and Chukchi Seas while γ-isomer is degassing in Bering Sea but it 
is close to equilibrium in the Chukchi Sea (Strachan et al., 2001). 
In the summers of 1993 and 1994, seawater samples from the surface layer (40–60 m) were 
collected to determine the spatial distribution of organochlorine pesticides on expeditions 
that crossed the Arctic Ocean from the Bering and Chukchi Seas to the North Pole, to a 
station north of Spitsbergen, and then south into the Greenland Sea (Jantunen and 

Bidleman, 1998). In the upper 40 m of the northern Chukchi Sea, α-HCH and γ-HCH 
averaged 2.06±0.48 ng/L and 0.43±0.09 ng/L. In the polar mixed layer (60 m) of the western 

Arctic Ocean α-HCH and γ-HCH averaged 2.42±0.23 ng/L and 0.47±0.11 ng/L. 
Concentrations were 2–3 times lower than these means at two stations near Spitsbergen and 

one station in Greenland Sea, averaging 0.87±0.22 ng/L for α-HCH and 0.20±0.03 ng/L for 

γ-HCH. Thus, HCHs in the upper 40–60 m increased from the Chukchi Sea to the pole, and 
then decreased toward Spitsbergen and Greenland Sea.  
Similar results were found by Harner et al. (1999) who measured HCH concentrations in 
seawater samples collected during a cruise abroad the Swedish icebreaker “Oden” in July-
September 1996 and found mean concentrations in surface water of 910 pg/L (range 350-

1630 pg/L) for α-HCH and 270 pg/L (range 120-400 pg/L) for γ-HCH. Both HCHs 

increased with latitude between 74°-88°N (r2= 0.58 and 0.69 for α-HCH and γ-HCH, 
respectively). Same authors also observed that mean surface concentrations of HCHs in the 
eastern Arctic ocean were lower than those in the western Arctic.  
Further water samples from the Bering and Chukchi Seas were collected and analysed by 
Yao et al. (2002) during the first Chinese Arctic Research Expedition from July to September 
1999. They investigated the distribution and composition of organochlorine pesticides 
(including HCHs, heptachlor, heptachlor epoxide, aldrin, endosulfan I, p,p’-DDE, dieldrin, 
endrin, p,p’-DDD, endosulfan II, p,p’-DDT, endrin aldehyde, and endosulfan sulphate) and 

found that the most abundant pesticide in the Arctic seawater was α-HCH, whose 

concentration was usually one or two magnitude grade greater than other contaminants. α-
HCH concentrations ranged between 156 and 683 pg/L and between 157 and 662 pg/L in 

the Bering Sea and Chukchi Sea, respectively. The average of ΣHCHs (α, β, γ, δ) was nearly 
equal in the Bering Sea (mean concentration 412.7 pg/L) and in the Chukchi Sea (mean 
concentration 445.8 pg/L), showing no latitudinal difference of these two regions. 
Compared with previously reported studies, concentrations of OCPs in these regions were 

much lower than the levels in the last decades. The α/γ-HCH ratio was 5.0±1.8 and 3.4±1.0 
for the Bering and Chukchi Seas, respectively, which indicated the different pesticide 

composition in these regions. The ratio of α/γ in Bering Sea suggested a technical HCH  
mixture indicating that OCPs were mostly transported from the low latitude. However the 

observed low α/γ ratio observed in the Chukchi Sea might imply the presence of a possible 
emission source of lindane nearby this region. 
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Hexachlorocyclohexanes (HCHs) in the surface water of the Canadian Archipelago and 
south Beaufort Sea were measured in summer 1999 (Bidleman et al., 2007). Overall 

concentrations of HCH isomers were in order of abundance: α-HCH (ranging between 1.1 

and 5.4, mean value 3.5±1.2 ng/L) > γ-HCH (ranging between 0.19 and 0.45, mean value 

0.31±0.07 ng/L) > β-HCH (ranging between 0.056 and 0.16, mean value 0.10±0.03 ng/L). 

Concentrations also varied latitudinally for α-HCH and γ-HCH (p < 0.002) but not for β-
HCH.  
A recent study reports HCHs data collected on the FS Polarsten during the cruise ARKXX in 

the North Atlantic and Arctic Ocean in 2004 (Lohmann et al., 2009) and shows the α-HCH 
concentrations near 1 pg/L in many samples < 80°N to mostly >20 pg/L above 80°N. The 

concentrations of γ-HCH were generally lower than α-HCH ranging from <1 to 20 pg/L. 
These authors confirmed that concentrations of HCHs have continued to decline in the last 
few years. 
The most recent data on HCHs concentrations in Arctic ocean are presented by Cai et al. 
(2010), who successfully applied the new analytical method developed by Qiu and Cai 
(2010) based on the combination of solid phase extraction and headspace solid phase 
microextraction (HS-SPME), for the determination of 17 ultra trace OCPs. Surface seawater 
samples were collected during the third Chinese Arctic expedition cruise from July to 
September 2008 on board the R/V “Xuelong” The track covered the Japan sea, Okhotsk sea, 
Bering sea and the zone to the North of the Bering Strait including the Chukchi sea, 
Canadian Basin and Arctic ocean. Cai et al. (2010) found that among the organochlorine 

pesticides, HCHs, especially α-HCH and γ-HCH, were the most predominant in the Arctic 
surface water body as found by other authors (Iwata et al., 1993; Chernyak et al., 1995; 
Jantunen et al., 1995; Yao et al., 2002; Weber et al., 2006). This trend might be attributable to 
the higher historic usage of HCHs compared to the other investigated compounds (Li and 
McDonald, 2005). In the Bering Sea, the surface water concentrations were found to be 0.065-

0.2671 ng/L for α-HCH, 0.0775-0.8075 ng/L for β− HCH and 0.0725-0.7175 ng/L for γ-HCH. 

Respect to concentrations values reported earlier for this area, γ-HCHs values reported by 
Cai et al (2010) showed a level comparable to that reported in 1999, but a slightly decreasing 

trend was observed for α-HCH. Water samples collected in the western Arctic Ocean 

presented concentrations of 2.07-2.63 ng/L and 0.33-070 ng/L for α-HCH and γ-HCH, 

respectively. Results for α-HCH in the Chukchi Sea (0.0583-0.3926 ng/L) were slightly lower 

than those in 1999 (Yao et al., 2002) while γ-HCH concentration level were fairly comparable 

indicating that a state of equilibrium of γ-HCH was achieved recently. β-HCH showed 
higher concentrations respect to previous data in the Chukchi Sea and authors (Cai et al., 
2010) attributed this result to the extremely low sensitivity of detection which could lead to 
higher error in the integration of the peak area.  

2.3.3 HCHs in Arctic biota 

The POP presence in Arctic organisms has been investigated during the last decades and 
many articles have been published in international scientific journals. The easier access to 
the area with respect to the Antarctic region is responsible of the high number of studies on 
Arctic biotic ecosystems. The interest in this polar region increased when the presence of 
very high concentrations of POPs was detected in those human populations that live the 
further north lands of Europe, Asia and America (for a comprehensive study see the AMAP 
Report 2009, AMAP, 2009). In the framework of the AMAP, many researches have been 
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carried out. Recently, reviews of POP presence and trends in the Arctic have been published 
(Muir et al., 2010). The occurrence of HCHs in the Arctic organisms will be examined in the 
same classes reported for the Antarctic organisms, that is pelagic crustaceans (krill), fish, 
seabirds, and seals, in order to allow a discussion.  

Borgå et al. (2005) reported 26.1±2.3 ng/g lipid wt of ΣHCHs in the Arctic krill Thysanoessa 

inermis. The isomer abundance followed the pattern α-HCH > δ-HCH > β-HCH (α-HCH 

made up more than 60% of the ΣHCHs); samples were collected in 1999 in the Greenland 
Sea and NW and NE of Svalbard Islands. The extracted organic matter in these samples was 

10.7±0.4. The comparison with concentrations in Antarctic krill showed a higher 
concentration in Arctic krill. These two species of Euphausiacea are important species in 
their trophic webs being food of many species of fish, seabirds, seals, and whales. 
Fish species collected in the Arctic region and analyzed for HCHs were mostly the Arctic 

cod (Arctogadus glacialis), the Polar cod (Boreogadus saida), the Greenland halibut 

(Reinhardtius hippoglossoides), and others. ΣHCH concentrations in Polar cod muscle from the 

Canadian Arctic were 90.2±13.7 ng/g lipid wt (Moisey et al., 2001), 40±3.2 ng/g lipid wt 

(Hoekstra et al., 2003), and 10 ng/g lipid wt (Kelly et al , 2008); concentrations in the 

Greenland halibut muscle were as 81 ng/g lipid wt in (Fisk et al., 2002), and 53 ng/g lipid 

wt in Greenland shark (Somniosus microcephalus) liver (Fisk et al., 2002). Levels in Polar cod 

were of the same order of magnitude, but a decreasing trend can be observed during 2000s. 

Sinkkonen et al. (2000) analyzed Polar cod liver in specimens collected from 1987 to 1998 in 

the Norwegian Arctic and they detected 4-23.3 ng/g lipid wt of α-HCH and 2.9-8.1 ng/g 

lipid wt of δ-HCH. Their decreasing trend were very significant (p = 0.001) during this time 

span; these Authors reported that α-HCH concentrations declined faster than those of δ-

HCH, in agreement with observations for Arctic air and water (Li et al., 1998; Bidleman et 

al., 1995; Jantunen and Bidleman, 1995). The HCH isomer abundance were α-HCH > β-HCH 

> δ-HCH in Polar cod (Sinkkonen et al., 2000; Moisey et al., 2001) and δ-HCH > α-HCH > β-

HCH in the Antarctic T. bernacchi (Corsolini et al., 2006). These patterns could be interpreted 

as an indication that the use of technical HCH (containing 60-70% of α-HCH) has decreased 

faster than that of pure lindane (Li et al., 1998). Li et al. (1998) reported that there were two 

significant drops of HCH concentrations in the Arctic air: in 1982-1983 and in 1990-1992 and 

they followed the ban of technical HCH use in China (1983), India and ex-Soviet Union 

(1990). This decrease was not followed by a decrease of α-HCH concentrations in Arctic 

seawater. These speculations might help to interpret the different patterns found in Arctic 

and Antarctic fish. In fact, chemical concentrations and patterns in the two polar regions 

might be influenced by the air mass movement and the different use of HCHs in the two 

hemispheres, in agreement with the model proposed by Wania et al. (1999), suggesting that 

levels in the Southern Ocean are higher than those in tropical seas. Anyway, α- and δ-HCH 

were reported to be decreasing in the Arctic (Rigét et al., 2010). 

A study on the occurrence of HCH in several species of seabirds from the Northwater 

Polynia (NOW) reported ΣHCH concentrations in various species: 222±19.9 ng/g lipid wt in 

dovekie, 84.5±9.6 ng/g lipid wt in thick-billed murre, 285±46.7 ng/g lipid wt in black 

guillemot, 47.3±6.3 ng/g lipid wt in black-legged kittiwake, 442.7±51.9 ng/g lipid wt in 

glacous gull, 143.0±32.7 ng/g lipid wt in ivory gull, 65.1±5.8 ng/g lipid wt in northern 

fulmar (Moisey et al., 2001). These Authors reported the α, β and γ-isomer patterns of 

abundance was β-HCH > α-HCH > δ-HCH in all these species.  
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Concentrations of ΣHCHs collected from 1975 to 2003 were 2.0±0.4 – 5.7±0.7 ng/g wet wt in 

northern fulmars, 4.0±0.4 – 7.7±0.6 ng/g wet wt in black-legged kittiwake, and 9.2±1.3 – 

18.6±2.0 ng/g wet wt in thick-billed murre (Braune, 2007 a, b). The isomer abundance 

patterns were α-HCH > β-HCH in northern fulmar and thick-billed murre collected from 

1975 to 1993, and β-HCH > α-HCH in northern fulmar and thick-billed murre collected in 
1998 and 2003, and in black-legged kittiwake. Braune (2007 a, b) noted significantly 

increasing concentrations of β-HCH in northern fulmars and thick-billed murres, and ΣHCH 

in black-legged kittiwakes and northern fulmars; the increasing ΣHCH concentrations in the 

northern fulmars and black-legged kittiwakes were owed to β-HCH. 

Other articles reported ΣHCH levels ranging from <1-170 ng/g lipid wt (white-winged 
scoter and common eider: Kelly et al., 2008; herring gull, common guillemot, Atlantic puffin, 
and black-legged kittiwake: Helgason et al., 2008; black guillemot: Vorkamp et al. 2004; 
northern fulmar:  Knudsen et al., 2007; glacous gull: Verrault et al., 2005; peregrine falcon: 
Vorkamp et al. 2009), and 24-80 ng/g wet wt (northern fulmar, glacous-winged gull, and 
tufted puffin: Ricca et al., 2008). Concentrations exceeding 100 ng/g lipid were detected in 
black guillemot eggs from east Greenland (Vorkamp et al., 2004), glacous gull plasma from 
Svalbard Islands (Verrault et al., 2005), and ivory gull eggs from Canada (Braune et al., 

2007a, b). A decreasing or stable temporal trend of ΣHCHs, α−, β-, and δ-HCH 
concentrations during the last decade was reported in all these species except fulmar and 
thick-billed murre eggs, and the rate of decrease varied among species and geographical 
areas (Rigét et al., 2010).   
Pinnipeds may accumulate high amount of chemicals and different concentrations in their 

tissues are often evident and depending on their diet. ΣHCH concentrations in seal blubber 

were 150.5±13.1 ng/g lipid wt in ringed seal collected in the NOW in 1998 (Moisey et al., 
2001), 145 ng/g lipid wt in specimens from the Canadian Arctic (Kelly et al., 2008), and 

190±50 ng/g lipid wt in the same species collected in 1999-2000 (Hoekstra et al., 2003). 
Lower concentrations were detected in ringed seal from Greenland: 67 ng/g lipid wt 
(Vorkamp et al., 2004) and 40 ng/g lipid wt (Vorkamp et al., 2008). Vetter et al. (2001) 

reported ΣHCH concentrations in three species of Arctic seals and in three species of 
Antarctic seals: they were 659 ng/g wet wt in grey seal from the Baltic Sea, 5-11 ng/g wet wt 
in grey seal from Iceland, and 181 ng/g wet wt in harp seal from the North Sea. Values 
found in samples from Iceland were of the same magnitude than those found in Antarctic 
species (Weddell seal = 14 ng/g lipid wt, fur seal = 4 ng/g wet wt, elephant seal = not 

detected). The concentrations of ΣHCHs and HCH α, β and γ-isomers were reported to be 
decreasing in ringed seals (Rigét et al., 2010). Riget et al. (2008) reported annual decreases in 
ringed seals from East and West Greenland from 1986 to 2006 that were 9.1–11.7%, 1.4–3.9% 

and 6.0–6.4% for α, β and γ-HCH, respectively. δ-HCH was the less abundant isomer both in 
West Greenland juvenile seals (4.95 ng/g lipid wt in 1995 and 1.91 ng/g lipid wt in 2002) 
and in East Greenland juvenile seals (7.89 ng/g lipid wt in 1986 and 2.57 ng/g lipid wt in 
2006); adult seals showed larger temporal variation (9.3 ng/g lipid wt in 1994 and 2.7 ng/g 
lipid wt in 2002).  

2.4 Enantiomer fraction of α-HCH in Antarctic and Arctic marine environment 

α-HCH is a chiral compound and thus exists in two enantiomers forms. Enantiomers are 
stereoisomers in which the atoms are arranged such that the molecules are mirror images of 
each other. The two enantiomers can rotate polarized light in different directions. Two 
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principal metrics are used for reporting enantiomer composition of chiral POPs. The 
enantiomer ratio (ER) and the enantiomer fraction (EF). Most earlier studies used ER, 
consisting in the separation of these enantiomers by GC and subsequent calculation of the 
peak area or height  ratio of the (+) ad (-) enantiomers. The ER ranges from zero to infinity, 
with a racemate having an ER of 1. The EF, now more commonly used, is defined as the ratio 
of the (+)enantiomer to the sum total enantiomer concentrations. EF ranges between zero to 
infinity with a racemic value of 0.5. EF are preferred to ER as the EF is bounded and a 
deviation from the racemic value in one direction is the same as in the other (Harrad, 2009).  
Chirality has been used to detect, characterize and differentiate biotic and abiotic 
transformation processes. Biotic processes such as microbial degradation, enzymatic 
processes or biological uptake may be enantioselective, causing the observed ER or EF to 
vary from the racemic value of 1.0 or 0.5, respectively; while abiotic processes such as 
hydrolysis and photolysis are not enantioselective (Helm, 2000) and affect both enantiomers 
of achiral compound in the same way. 

The enantiomer composition of α-HCH in Antarctic seawater samples is not well 
documented; in fact only Jantunen et al. (2004) studied the influence of latitude on EF ratio 
on seawater samples collected during the South African National Antarctic Expedition 
(December 1997 – February 1998). Same authors reported EF values ranging from 0.477 to 
0.515 and evidenced a significant regression of EF versus latitude (R2=0.28, p≤0.005) with a 
slight preferential tendency to degradate of (-) enantiomer at the lower latitudes (EF ≥0.500), 
versus racemic or depletion of the (+) enantiomer (EF≤0.500) at the higher latitudes.  

Enantiomeric fractions of chiral α-HCH in Antarctic biota were studied by Corsolini et al. 

(2006). They reported average EF values of 0.44±0.01, 0.49±0.01 and 0.58±0.04 in krill, 
emerald rockcod and Adélie penguin eggs, respectively. According to these results, these 
authors suggested enantioselective biotrasformation at lower trophic animal, with a 

decrease in the (+)α-HCH enantiomer compared to the (-)α-HCH. The (+)α-HCH 
contribution increased by 14% from lower to the higher trophic level (from krill to penguin): 
the proportion of the (+) enantiomer increased from 44% to 58%, suggesting an 

enantioselective biotransformation up the food web. Accumulation of (+)α-HCH in the 
higher trophic levels was already reported for marine mammals and polar bear (Iwata et al., 
1998; Wiberg et al., 2000; Kallenborn and Huhnerfuss, 2001). 

There has been an extensive analysis of α-HCH enantiomer composition in the Arctic Ocean.  
Falconer et al. (1995) found ER of 0.93 ± 0.06 in Resolute Bay in August –September 1992, 

showing that the (+) enantiomer was depleted in seawater and suggesting a microbial 

degradation of HCHs. A microbial degradation was also observed in seawater samples 

collected on a cruise along the Eastern Arctic Ocean in July-September 1996 (Harner et al., 

1999), where the ER values ranged between 0.72 to 0.94 (mean value 0.87± 0.06) in surface 

water and decreased with depth. 

The ER of α-HCH ((+)-α -HCH /(-)- α -HCH) in Arctic seawater was reported by Jantunen 
and Bidleman (1996, 1997), who found ER generally > 1.00 in the Bering-Chukchi Seas, 

indicating preferential degradation of (-)α -HCH, whereas depletion of the (+)α -HCH in the 
Arctic Ocean and Greenland Sea, with ERs < 1.00. One hypothesis to explain this different 
enantiomer depletions could be due to the different microbial populations in these regions. 
Although generally HCHs are measured in the dissolved fraction, levels of HCHs in water 
were high enough to allow ER values to be measured on the filters of the large volume 
samples. The results showed different enantioselective degradation in the dissolved and 
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particulate phase suggesting that different microbial populations are involved in these two 

phases. Authors also noted that ERs for α-HCH decreased with depth (Jantunen and 
Bidleman 1996, 1997) as observed by Harner et al. (1999) in the Eastern Arctic ocean, where 
the ER ranged from 0.72 to 0.94 (mean 0.87 ±0.06) in 21 surface water samples indicating 

selective degradation of (+)α-HCH and microbial degradation was suggested as the major 
removal process of HCHs from the water column. The reversal of enantiomer preference 
observed respect to the early 1990s could be due to changes in microbial degradation in the 
water column with subsequent changes over time leading to consistent enrichment of the (-
)enantiomer (Harrad, 2009). 
Tracer studies have determined that the “ventilation age” of the 250-1000 m water in the 
Nansen Basin of the eastern Arctic Ocean is in the range of 12-20 years (Wallace et al., 1992). 
The ventilation age is the time since the water was at the surface and able to exchange gases 
with the atmosphere. This information, combined with measurements of HCH 
concentrations in 1996 (Harner et al. 1999) and 1979 (Gaul et al., 1992), allows us to estimate 
the removal rates from the water column, which are due to microbial degradation, 
hydrolysis and sedimentation. The latter is negligible, and microbial degradation is 3-10 
times faster than hydrolysis (Harner et al. 1999). 
In a recent paper, Lohmann et al. (2009) found depletion of the (+) enantiomer, with EFs 
ranging from 0.432-0.463, and increased from west to east in the Archipelago.  

3. Conclusions  

The concentration levels of α- and γ-HCH in surface waters of Antarctica are much lower 
(by 1-2 orders of magnitude) than those in the Arctic, due to the remoteness of this continent 
from populated and industrial regions relative to the Arctic. A decreasing trend was 

observed for α-HCH and γ-HCH concentration in both Arctic and Antarctic oceans, 
corresponding to the global bans on HCHs. However the recent declining usage and 

atmospheric inputs of α-HCH isomer have caused the exchange to reverse, and made the 

Arctic ocean a source of α-HCH to the atmosphere rather than the major sink for LRT of it.  
A comparison between levels and trends in Arctic and Antarctic biota indicates higher 
contamination levels in the Arctic organisms in relation to the geographical isolation of the 
Antarctic continent and Southern Ocean, which make difficult for chemicals to reach this 
region. It might be that the global transport to Antarctica and equilibrium between phases of 
HCHs follow different mechanisms of time scale in the two Polar Regions; Antarctica could 
show a delay in the chronological steps that characterize the HCH distribution globally and 
in the marine ecosystems. The Arctic is showing a decreasing temporal trend of 
contamination followed the peak occurred in the past years and in relation to the great HCH 

use/production and following ban. Thus, a decreasing or stable temporal trend of ΣHCHs, 

α−, β−, and δ-HCH concentrations during the last decade was reported in seawater and 
most of the studied species, and the rate of decline varied among species and geographical 
areas.  
By comparing available data, it emerges a different pattern in the Antarctica where a 
temporal trend is not clearly recognizable, owing to the paucity of data and unevenness of 
report features and style. In this regard, compared to the Arctic, it could be hypothesized a 
slight delay in the transport, accumulation, and decrease of HCH in the southern polar 
region, that can be an effect of the geography and of the chemical transport pathways, that 
affect the distribution on the marine ecosystems.  
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