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1. Introduction 

At present time image fusion is widely recognized as an important tool and has attracted a 

great deal of attention from the research community with the purpose of searching general 

formal solutions to a number of problems in different applications such as medical imaging, 

optical microscopy, remote sensing, computer vision and robotics. 

Image fusion consists of combining information from two or more images from the same 
sensor or from multiple sensors in order to improve the decision making process.  
Fused images from multiple sensors, often called multi-modal image fusion system, include at 

least, two image modalities ranging from visible to infrared spectrum and they provide several 

advantages over data images from a single sensor (Kor & Tiwary, 2004). An example of this 

can be found in medical imaging where it is common to merge functional activity as in single 

photon emission computed tomography (SPECT), positron emission tomography (PET) or 

magnetic resonance spectroscopy (MRS) with anatomical structures such as magnetic 

resonance image (MRI), computed tomography (CT) and ultrasound, which helps improve 

diagnostic performance and surgical planning (Guihong et al., 2001, Hajnal et al., 2001). 

An interesting example of single sensor fusion can be found in remote sensing, where 

pansharpening is an important task that combines panchromatic and multispectral optical 

data in order to obtain new multispectral bands that preserve their original spectral 

information with improved spatial resolution. 

Depending on the merging stage, common image fusion schemes can be classified into three 
categories: pixel, feature and decision levels (Pohl & van Genderen, 1998). Many fusion 
schemes usually employ pixel level fusion techniques but since features, that are sensitive to 
human visual system (HVS), are bigger than a pixel and they exist in different scales, it is 
necessary to apply multiresolution analysis which improves the reconstruction of relevant 
image features (Nava et al., 2008). Moreover, the image representation model used to build 
the fusion algorithm must be able to characterize perceptive-relevant image primitives. 
In the literature several methods of pixel level fusion have been reported using a 

transformation to perform data fusion, some of these transformations are: intensity-hue-

saturation transform (IHS), principal component analysis (PCA) (Qiu et al., 2005), the 
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discrete wavelet transform (DWT) (Aguilar et al., 2007, Chipman et al., 1995, Li et al., 1994), 

dual-tree complex wavelet transform (DTCWT) (Kingsbury, 2001, Hill & Canagarajah, 2002), 

the contourlet transform (CW) (Yang et al., 2007), the curvelet transform (CUW) (Mahyari & 

Yazdi, 2009), and the Hermite transform (HT) (Escalante-Ramírez & López-Caloca, 2006, 

Escalante-Ramírez, 2008). In essence, all these transformations can discriminate between 

salient information and constant or non-textured background. 

Of all these methods, the wavelet transform has been the most used technique for the fusion 
process. However, this technique presents certain problems in the analysis of signals of two 
or more dimensions, examples of these are the points of discontinuity that cannot always be 
detected, and its limitation to capture directional information. The contourlet and the 
curvelet transforms have shown better results than the wavelet transform due to their multi-
directional analysis, but they require an extensive orientation search at each level of the 
decomposition. In contrast, the Hermite transform provides significant advantages to the 
process of image fusion. First, this image representation model includes some of the more 
important properties of the human visual system such as the local orientation analysis and 
the Gaussian derivative model of primary vision (Young, 1986), it also allows 
multiresolution analysis, so it is possible to describe the salient structures of an image at 
different spatial scales, and finally, it is steerable, which allows efficiently representing 
oriented patterns with a small number of coefficients. The latter has the additional 
advantage of reducing noise without introducing artifacts. 
Hereinafter, we assume the input images have negligible registration problems, thus the 
images can be considered registered. The proposed scheme fuses images at the pixel level 
using a multiresolution directional-oriented Hermite transform of the source images by 
means of a decision map. This map is based on a linear dependence test of the Hermite 
coefficients within a fixed windows size; if the coefficients are linearly dependent, this 
indicates the existence of a relevant pattern that must be present in the final image. 
The proposed algorithm has been tested on both multi-focus and multi-modal image sets 
producing results that ovecome results achieved with other methods such as wavelets (Li et 
al., 1994), curvelets (Donoho & Ying, 2007), and contourlets (Yang et al., 2008, Do, 2005). In 
addition to this, we used other decision rules proving that our scheme best characterized 
important structures of the images at the same time that the noise was reduced. 

2. The Hermite transform as an image representation model 

The Hermite transform (HT) (Martens 1990a, Martens 1990b) is a special case of polynomial 
transform, which is used to locally decompose signals and can be regarded as an image 
description model. The analysis stage involves two steps. First, the input image L(x,y) is 
windowed with a local function ω(x,y) at several equidistant positions in order to achieve a 
complete description of the image. In the second step the local information of each analysis 
window is expanded in terms of a family of orthogonal polynomials. The polynomials 
Gm,n-m(x,y) used to approximate the windowed information are determined entirely by the 
window function in such a way that the orthogonality condition is satisfied: 

 ( ) ( ) ( )2
, ,, , ,m n m l k l nk mlx y G x y G x y dxdyω δ δ

+∞ +∞

− −
−∞ −∞

=∫ ∫  (1) 

for n, k=0,1,…,∞;  m=0,…,n  y  l=0,…,k; where δnk denotes the Kronecker function. 
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The polynomial transform is called Hermite transform if the windows used are Gaussian 
functions. The Gaussian window is isotropic (rotationally invariant), separable in Cartesian 
coordinates and their derivatives mimic some processes at the retinal or visual cortex of the 
human visual system (Martens, 1990b, Young, 1986). This window function is defined as 
follows 

 ( )
2 2

2 2

1
, exp

2 2

x y
x yω

πσ σ
⎛ ⎞+

= −⎜ ⎟
⎝ ⎠

 (2) 

In a Gaussian window function, the associated orthogonal polynomials are the Hermite 
polynomials, which are defined as 

 ( )
( )

,

1
,

2 ! !
n m m n m mn

x x
G x y H H

n m m σ σ− −
⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠−

 (3) 

where Hn(x) denotes the nth Hermite polynomial. 
The original signal L(x,y), where (x,y) are the pixel coordinates, is multiplied by the window 
function ω(x-p,y-q) at the positions (p,q) that conform the sampling lattice S. By replicating 
the window function over the sampling lattice, we can define the periodic weighting 
function as 

 ( ) ( )
( ),

, ,
p q S

W x y x p y qω
∈

= − −∑  (4) 

This weighting function must be a number other than zero for all coordinates (x,y). 
Therefore,  

 ( ) ( ) ( ) ( )
( ),

1
, , ,

, p q S

L x y L x y x p y q
W i j

ω
∈

= − −∑  (5) 

In every window function, the signal content is described as the weighted sum of 
polynomials Gm,n-m(x,y) of m degree in x and n-m in y. In a discrete implementation, the 
Gaussian window function may be approximated by the binomial window function and in 
this case, its orthogonal polynomials Gm,n-m(x,y) are known as Krawtchouck’s polynomials. 
In either case, the polynomial coefficients Lm,n-m(p,q) are calculated convolving the original 
image L(x,y) with the analysis filters Dm,n-m(x,y) = Gm,n-m(-x,-y)ω2(-x,-y), followed by 
subsampling at position (p,q) of the sampling lattice S. That is, 

 ( ) ( ) ( ), ,, , ,m n m m n mL p q L x y D x p y q dxdy
+∞ +∞

− −
−∞ −∞

= − −∫ ∫  (6) 

The recovery process of the original image consists of interpolating the transform 
coefficients with the proper synthesis filters. This process is called inverse transformed 
polynomial and is defined by 

 ( ) ( ) ( )
( )

, ,
0 0 ,

ˆ , , ,
n

m n m m n m
n m p q S

L x y L p q P x p y q
∞

− −
= = ∈

= − −∑∑ ∑  (7) 
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The synthesis filters Pm,n-m(x,y) of order m and n-m, are defined by 

 ( ) ( ) ( )
( )

,
,

, ,
,

,

m n m
m n m

G x y x y
P x y

W x y

ω−
− =   (8) 

for m=0,…,n ,  and  n=0,…,∞ 

2.1 The steered Hermite transform 
The Hermite transform has the advantage of high-energy compaction by adaptively steering 
the HT (Martens, 1997, Van Dijk, 1997, Silván-Cárdenas & Escalante-Ramírez, 2006). 
Steerable filters are a class of filters that are rotated copies of each filter, constructed as a 
linear combination of a set of basis filters. The steering property of the Hermite filters 
explains itself because they are products of polynomials with a radially symmetric window 
function. The N +1 Hermite filters of Nth-order form a steerable basis for each individual 
Nth-order filter. Because of this property, the Hermite filters at each position in the image 
adapt to the local orientation content. 
Thus, for orientation analysis, it is convenient to work with a rotated version of the HT. The 

polynomial coefficients can be computed through a convolution of the image with the filter 

functions Dm(x)Dn_m(y). They are separable in spatial and polar domains, and their Fourier 

transform can be expressed as ωx=ωcosθ and ωy=ωsinθ, in polar coordinates, then 

 ( ) ( ) ( ) ( ),m x n m y m n m nd d g dω ω θ ω− −=  (9) 

where dn(ω) is the Fourier transform for each filter function expressed in radial frequency, 
given by 

 ( ) ( )
21

exp
42 !

n n
d j

n

ωσω ωσ
⎛ ⎞

= − −⎜ ⎟
⎝ ⎠

 (10) 

and the orientation selectivity for the filter is expressed by 

 ( ), cosm n m
m n m

n
g sen

m
θ θ θ−

−

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (11) 

In terms of orientation frequency functions, this property of the Hermite filters can be 
expressed by 

 ( ) ( ) ( ), 0 , 0 ,
0

n
n

m n m m k n k k
k

g c gθ θ θ θ− −
=

− =∑  (12) 

where cnm,k(θ0) is the steering coefficient.  
The Hermite filter rotation at each position over the image is an adaptation to local 

orientation content. Fig. 1 shows the HT and the steered HT over an image. For the 

directional Hermite decomposition, first, a HT was applied and then the coefficients were 

rotated toward the estimated local orientation, according to a criterion of maximum oriented 

energy at each window position. This implies that these filters can indicate the direction of 

one-dimensional pattern independently of its internal structure. 
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Fig. 1. The discrete Hermite transform (DHT) and the steered Hermite transform over an 
image 

The two-dimensional Hermite coefficients are projected onto one-dimensional coefficients 

on an axis that makes an angle θ with the x axis, this angle can be approximated as θ=L01/L10, 

where L01 and L10 are a good approach to optimal edge detectors in the horizontal and 

vertical directions respectively. 

2.2 The multiresolution directional oriented HT 
A multiresolution decomposition using the HT can be obtained through a pyramid scheme 

(Escalante-Ramírez & Silván Cárdenas 2005). In a pyramidal decomposition, the image is 

decomposed into a number of band-pass or low-pass subimages, which are then 

subsampled in proportion to their spatial resolution. In each layer the zero order coefficients 

are transformed to obtain -in a lower layer- a scaled version of the above. Once the 

coefficients of Hermite decomposition of each level are obtained, the coefficients can be 

projected to one dimension by its local orientation of maximum energy. In this way we 

obtain the multiresolution directional-oriented Hermite transform, which provides 

information about the location and orientation of the structure of the image at different 

scales. 

3. Image fusion with the Hermite transform 

Our approach aims at analyzing images by means of the HT, which allows us to identify 

perceptually relevant patterns to be included in the fusion process while discriminating 

spurious artifacts. As we have mentioned, the steered HT allows us to focus energy in a 

small number of coefficients, and thus the information contained in the first-order rotated 
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coefficient may be sufficient to describe the edge information of the image in a particular 

spatial locality. If we extend this strategy to more than one level of resolution, then it is 

possible to obtain a better description of the image. However, the success of any fusion 

scheme depends not only on the image analysis model but also on the fusion rule, therefore, 

instead of choosing for the usual selection operators based on the maximum pixel value, 

which often introduce noise and irrelevant details in the fused image, we seek a rule to 

consider the existence of a pattern in a region defined by a fixed-size window. 

The general framework for the proposed algorithm includes the following stages. First a 

multiresolution HT of the input images is applied. Then, for each level of decomposition, the 

orientation of maximum energy is detected to rotate the coefficients, so the first order 

rotated coefficient has most edge information. Afterwards, taking this rotated coefficient of 

each image we apply a linear dependence test. The result of this test is then used as a 

decision map to select the coefficients of the fused image in the multiresolution HT domain 

of the input images. If the original images are noisy, the decision map is applied on the 

multiresolution directional-oriented HT. The approximation coefficients in the case of HT 

are the zero order coefficients. In most multifocal and multimodal applications the 

approximation coefficients of the input images are averaged to generate the zero order 

coefficient of the fused image, but it always depends on the application context. Finally the 

fused image is obtained by applying the inverse multiresolution HT. Fig. 2 shows a 

simplified representation of this method. 

3.1 The fusion rule 
The linear dependence test evaluates the pixels inside a window of ws x ws, if those pixels 

are linearly independent, then there is no relevant feature in the window. However, if the 

pixels are linearly dependent, it indicates the existence of a relevant pattern. The fusion rule 

selects the coefficient with the highest dependency value. A higher value will represent a 

stronger pattern. A simple and rigorous test for determining the linear dependence or 

independence of vectors is the Wronskian determinant. The dependency of the window 

centered at a pixel (i,j) is described in 

 ( ) ( ) ( )2, , ,
ss

s s

j wi w

A A A
m i w n j w

D i j L m n L m n
++

= − = −

= −∑ ∑  (13) 

where LA(m, n) is the first order steered Hermite coefficient of the source image A with 

spatial position (m,n). The fusion rule is expressed in (14). The coefficient of the fused HT is 

selected as the one with largest value of the dependency measure. 

 ( ) ( ) ( ) ( )
( ) ( ) ( )

,     , ,
,

,     , ,
A A B

F
B A B

L i j si D i j D i j
L i j

L i j si D i j D i j

⎧ ≥⎪= ⎨ <⎪⎩
 (14) 

We apply this rule to all detail coefficients and in the most of the cases average the zero 

order Hermite coefficients as (15). 

 ( ) ( ) ( )00 00 00

1
, , ,

2F BA
i j L i j L i jL ⎡ ⎤= +⎣ ⎦  (15) 
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Fig. 2. Fusion scheme with the multiresolution directional-oriented Hermite transform 

4. Image fusion results 

The proposed algorithm was tested on several sets of multi-focus and multi-modal images, 
with and without noise degradation. Fig. 3 shows one of the multi-focus image sets used 
and the results of image fusion achieved with the proposed method using different decision 
rules. In these experiments, we used a Gaussian window with spread σ=√2, a subsampling 
factor T=2 between each pyramidal level and four decomposition levels. The window size 
for linear dependence test, maximum with verification of consistency and saliency and 
match measurement (Burt & Kolczynski, 1993), was 3 x 3. 
Fig. 4 shows other multi-focus image sets that uses synthetic images. The results of image 
fusion were achieved with different fusion methods using linear dependence as decision 
rule. In these experiments, we used a Gaussian window with spread σ=√2, a subsampling 
factor T=2 between each pyramidal level and three decomposition levels; the wavelet 
transform used was db4 and in the case of the contourlet transform, the McClellan 
transform of 9-7 filters were used as directional filters and the wavelet db4 was used as 
pyramidal filters. The window size for the fusion rule was 3 x 3. The results were zoomed 
with the purpose to better observe the different methods performance. 
On the other side, Figs. 5, 6 and 7 show the application in medical images comparing with 
other fusion methods, all of them using the linear dependence test with a window size of 3 x 
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3. All the transforms have two decomposition levels; the wavelet transform used was db4 
and in the case of the contourlet transform, the McClellan transform of 9-7 filters were used 
as directional filters and the wavelet db4 was used as pyramidal filters. 
In Fig. 7, Gaussian noise with σ=0.001 was introduced to the original images in order to 
show the efficiency of our method in noisy images. 

5. Quality assessment of image fusion algorithms 

Digital image processing involves many tasks, such as manipulation, storing, transmission, 
etc., that may introduce perceivable distortions. Since degradations occur during the 
processing chain, it is crucial to quantify degradations in order to overcome them. Due to 
their importance, many articles on the literature are dedicated to develop methods for 
improving, quantifying or preserving the quality of processed images. For example, Wang 
and Bovik (Wang, et al, 2004) describe a method based on the hypothesis that the HVS is 
highly adapted for extracting structural information, and they proposed a measure of 
structural similarity (SSIM) that compares local patterns of pixel intensities that have been 
normalized for luminance and contrast. In (Nava, et al, 2010; Gabarda & Cristóbal, 2007) two 
quality assessment procedures were introduced based on the expected entropy variance of a 
given image. These methods are useful in scenarios where there is no reference image, 
therefore they can be used in image fusion applications. 
Quality is an image characteristic, it can be defined as ``the degree to which an image satisfies 
the requirements imposed on it'' (Silverstein & Farrell, 1996) and it is crucial for most image 
processing applications, because it can be used to compare the performance of the different 
systems and to select the appropriate processing algorithm for any given application. Image 
quality (IQ) can be used in general terms as an indicator of the relevance of the information 
presented by an image. A major part of research activity in the field of IQ is directed towards 
the development of reliable and widely applicable image quality measure algorithms. 
Nevertheless, only limited success has been achieved (Nava, at al, 2008). 
A common way to measure IQ is based on early visual models but since human beings are 
the ultimate receivers in most applications, the most reliable way of assessing the quality of 
an image is by subjective evaluations. There are several different methodologies for 
subjective testing which are based on the idea how a person perceives the quality of images, 
and so it is inherently subjective (Wang, et al, 2002). 
The subjective quality measure, mean opinion score (MOS), provides a numerical indication 
of the perceived quality. It has been used for many years, and it is considered the best 
method for image quality. The MOS metric is generated by averaging the results of a set of 
standard, subjective tests, where a number of people rate the quality of image series based 
on the recommendation ITU-T J247  (Sheikh, el al, 2006). MOS is the arithmetic mean of all 
the individual scores, and can range from 1 (worst) to 5 (best). 
Nevertheless, MOS is inconvenient because it demands human observers, it is expensive 
and usually too slow to apply in real-time scenarios. Moreover, quality perception is 
strongly influenced by a variety of factors that depend on the observer. For these reasons, it 
is desirable to have an objective metric capable of predict image quality automatically. The 
techniques developed to assess image quality must depend on the field of application 
because it determines the characteristics of the imaging task we would like to evaluate. 
Practical image quality measures may vary according to the field of application and they 
should evaluate overall distortions. However, there is no single standard procedure to 
measure image quality. 
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Fig. 3. Results of image fusion in multi-focus images, using multiresolution directional-
oriented HT. a) and b) are the source images, c) fused image using absolute maximum 
selection, d) fused image using maximum with verification of consistency, e) fused image 
using saliency and match measurement and f) fused image using the linear dependency 
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Fig. 4. Results of image fusion in synthetic multi-focus images, using the dependency test 
rule and different analyze techniques. a) and b) are the source images, c) HT, d) wavelet 
transform, e) contourlet transform and f) curvelet transform 
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Fig. 5. Results of image fusion in medical images, using the dependency test rule and 
different analyze techniques. a) CT, b) MR, c) HT, d) wavelet transform, e) contourlet 
transform and f) curvelet transform 
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Fig. 6. Results of image fusion in medical images, using the dependency test rule and 
different analyze techniques. a) RM, b) PET, c) HT, d) wavelet transform, e) contourlet 
transform and f) curvelet transform 
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Fig. 7. Results of image fusion in medical images, using the dependency test rule and 
different analyze techniques. a) CT, b) MR, c) HT, d) wavelet transform, e) contourlet 
transform and f) curvelet transform. Images provided by Dr. Oliver Rockinger 
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Objective image quality metrics are based on measuring physical characteristics and they 

intend to predict perceived quality accurately and automatically. It means, that they should 

predict image quality that an average human observer will report. One important fact on 

this issue is the availability of an “original image“, which is considered to be distortion-free 

or perfect quality. Most of the proposed objective quality measures assume that the 

reference image exists and they attempt to quantify the visibility error between a distorted 

image and a reference image. 

Among the available ways to measure objective image quality, the mean squared error 

(MSE) and peak signal-to-noise ratio (PSNR) are widely employed because they are easy to 

calculate and usually they have low computational cost, but such measures are not 

necessarily consistent with human observer evaluation (Wang & Bovik, 2009). Both MSE 

and PSNR reflect the global properties of the image quality but they are inefficient in 

predicting structural degradations. Ponomarenko in (Ponomarenko, et al, 2009) evaluated 

correspondence of HVS with MSE and PSNR (0.525) where ideal value is 0.99. This shows 

that the widely used metrics PSNR and MSE have very low correlation with human 

perception (correlation factors are about 0.5). 

In many practical applications, image quality metrics do not always have access to a 

reference image. However, it is desirable to develop measurement approaches that can 

evaluate image quality blindly. Blind or non--reference image quality assessment turns out 

to be a very difficult task, because metrics are not related to the original image (Nava, et al, 

2007).  

In order to quantitatively compare the different objective quality metrics, we evaluated our 

fusion results with several methods, including the traditional as well as some of the more 

recent ones that may correlate better with the human perceptive assessment. Among the 

first ones, we considered the PSNR and the MSE, and for the second group we used the 

measure of structural similarity (SSIM), the Mutual information (MI) and the Normalized 

Mutual Information (NMI) based on Tsallis entropy (Nava et al, 2010). In experiments with 

no reference image (ground truth) was available, metrics based on mutual information were 

used. 

PSNR is a ratio between the maximum possible power of the reconstructed image and the 

power of the noise that affects the fidelity of the reconstruction, this is 
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where F(i,j) denotes the intensity of the pixel of the fused image and R(i,j) denotes the 

intensity of the pixel of the original image. 

The MSE indicates the error level between the fused image and the ideal image (ground 

truth), the smaller value of MSE indicates the better performance of the fusion method. 
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The SSIM (Wang et al., 2004) compares local patterns of pixel intensities that have been 
normalized for luminance and contrast and it provides a quality value in the range [0,1].  

 ( )
( ) ( )2 2 2 2

2 2
,

R F

RF R F R F

R F R F

SSIM R F
σ μ μ σ σ
σ σ σ σμ μ

=
+

 (18) 

Where μR is the original image mean and μF the fused image mean; σ is the variance and σRF 
is the covariance. 
MI has also been proposed as a performance measurement of image fusion in the absence of 
a reference image (Wang et al., 2009). Mutual information is a measurement of the statistical 
dependency of two random variables and the amount of information that one variable 
contain about the other. The amount of information that belongs to image A contained in the 
fused image is determined as follows: 
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where PF and PA are the marginal probability densisty functions of images F and A 
respectively, and PFA is the joint probability density funtion of both images.Then, mutual 
information is calculated by 

 ( ) ( ), ,AB
F FA F A FB F BMI MI I I MI I I= +  (20) 

Another performance measurement is the Fusion Symmetry (FS) defined in equation (21), it 
denotes the symmetry of the fusion process in relation to the two input images. The smaller 
the FS is, the better the fusion process performs. 
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The NMI  (Nava et al 2010) is defined as  
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MAXq(F,A,B) is a normalization factor that represents the total information. 
At first glance, the results obtained in Fig. 3 were very similar, thought quantitatively it is 

possible to verify the performance of the proposed algorithm. Table 1 shows the HT fusion 
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performance using a ground truth image and different fusion rules, while that Table 2 

compares the performance of different fusion methods with the same reference image and 

the same fusion rule.  

 

Fusion Rule MSE PSNR SSIM MI 

Absolute maximum 4.42934 41.6674 0.997548 5.535170 

Maximum with verification of 
consistency 

0.44076 51.6886 0.999641 6.534807 

Saliency and match measurement 4.66043 41.4465 0.996923 5.494261 

Linear dependency test 0.43574 51.7385 0.999625 6.480738 

Table 1. Performance measurement of Fig. 3 using a ground truth image by the 
multiresolution directional-oriented HT using different fusion rules 

 

Fusion Method MSE PSNR SSIM MI NMI 

Hermite Transform 0.43574 51.7385 0.999625 6.480738 0.72835 

Wavelet Transform 0.76497 49.2944 0.999373 6.112805 0.72406 

Contourlet Transform 1.51077 46.3388 0.998464 5.885111 0.72060 

Curvelet Transform 0.88777 48.6478 0.999426 6.083156 0.72295 

Table 2. Performance measurement of Fig. 3 using a ground truth image applying the fusion 
rule based on linear dependency with different methods 

Tables 3 and 4 correspond to tables 1 and 2 for the case of Fig. 4. 

 

Fusion Rule MSE PSNR SSIM MI 

Absolute maximum 54.248692 30.786911 0.984670 3.309483 

Maximum with verification of 
consistency 

35.110012 32.676494 0.989323 3.658905 

Saliency and match measurement 38.249722 32.304521 0.989283 3.621530 

Linear dependency test 33.820709 32.838977 0.989576 3.659614 

Table 3. Performance measurement of Fig. 4 using a ground truth image by the 
multiresolution directional-oriented HT with different fusion rules 
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Fusion Method MSE PSNR SSIM MI NMI 

Hermite Transform 33.820709 32.838977 0.989576 3.659614 0.23967 

Wavelet Transform 128.590240 27.038724 0.953244 2.543590 0.24127 

Contourlet Transform 156.343357 26.190009 0.945359 2.323243 0.23982 

Curvelet Transform 114.982239 27.524496 0.952543 2.588358 0.24024 

Table 4. Performance measurement of Fig. 4 using a ground truth image applying the fusion 
rule based on linear dependency with different methods 

From Figs. 5, 6 and 7, we can notice that the image fusion method based on the Hermite 
transform preserved better the spatial resolution and information content of both images. 
Moreover our method shows a better performance in noise reduction.  
 

Fusion Method MIFA MIFB MIFAB FS 

Hermite Transform 1.937877 1.298762 3.236638 0.098731 

Wavelet Transform 1.821304 1.202295 3.023599 0.102363 

Contourlet Transform 1.791008 1.212183 3.003192 0.096368 

Curvelet Transform 1.827996 1.268314 3.096310 0.090379 

Table 5. Performance measurement of Fig. 5 (CT/RM) applying the fusion rule based on 
linear dependency with different methods 

 

Fusion Method MIFA MIFB MIFAB FS 

Hermite Transform 1.617056 1.766178 3.383234 0.022038 

Wavelet Transform 1.626056 1.743542 3.369598 0.017433 

Contourlet Transform 1.617931 1.740387 3.358319 0.018232 

Curvelet Transform 1.589712 1.754872 3.344584 0.024691 

Table 6. Performance measurement of Fig. 6 (RM/PET) applying the fusion rule based on 
linear dependency with different methods 

6. Conclusions 

We have presented a multiresolution image fusion method based on the directional-oriented 
HT using a linear dependency test as fusion rule. We have experimented with this method 
for multi-focus and multi-modal images and we have obtained good results, even in the 
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presence of noise. Both subjective and objective results show that the proposed scheme 
outperforms other existing methods. 
The HT has proved to be an efficient model for the representation of images because 
derivatives of Gaussian are the basis functions of this transform, which optimally detect, 
represent and reconstruct perceptually relevant image patterns, such as edges and lines. 
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