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1. Introduction 

In general, human understand phenomena by considering causalities when they face any 
problem. In fact, many causal-based applications and solutions have been proposed in 
keeping with theoretical development. 
For instance, in industrial domain, Furuta et al. proposed a training support system for plant 
operation in which trainee's knowledge is represented as two-layered model of task 
hierarchy and qualitative causality (1998). In medical domain, Thang et al. proposed a 
medical diagnosis support system based on oriental diagnosis knowledge (2006). In their 
approach, the causality among some subject’s symptoms and their diagnostic outcome is 
described by using RBF neural network. Nakajima et al. proposed a generic health 
management framework named Human Health Management Technology which is applied to 
not only human being but also manufacturing process, energy consumption management, 
and so forth (2008b). In addition, Hata et al. suggested a concept named Human Health Care 
System of Systems which focus on health management, medical diagnosis, and surgical 
support. In the concept, the human health management technology is discussed from view 
point of system of systems engineering (2009). Thus, causality acquisition and its utilization 
among complex systems has a quite important role in optimal management. 
On another front, from a viewpoint of theoretical development, lots of causal analysis 
theories have been proposed (Bishop, 2006). Bayesian network describes statistical causality 
among phenomena observed from certain managed systems, and the statistical causality 
provides inference and reasoning functions (Pearl, 2001). Graphical model visualizes 
causality among components in complex systems (Miyagawa, 1991). Fuzzy logic helps 
intuitive representation of causality which is experts’ tacit knowledge (Zadeh, 1996). 
As mentioned above, causal analysis theories and their applications and solutions in many 
domains have been improved for long time. However, causal analysis for designing sensors 
is not discussed enough yet. Thus, in this chapter, a role of causal analysis in biomedical 
sensing is discussed. 
In the rest of this article, in section 2, the importance of human-machine collaboration in causal 
analysis is described. In the section, problems which we address in this chapter is defined. In 
section 3, a human-machine collaborative causal analysis is proposed. Then, in section 4 and 5, 
two kinds of biomedical sensing which employ the human-machine collaborative causal 
analysis are demonstrated, that is, visceral fat measurement and heart rate monitoring. 
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2. Problem definition and related works 

In this section, the importance of human-machine collaboration in causal analysis is 
discussed from a viewpoint of requirements for practical biomedical sensing. And, problem 
definitions are discussed. 

2.1 Requirements for biomedical sensing from a viewpoint of practical use 

Considering practical usage, biomedical sensing has to be easy to use. In addition, it should 
be non-invasive, low-intrusive, and unconscious regarding consumers’ home usage. For 
instance, X-ray CT is not available at home because of its X-ray exposure. 
In addition, biomedical sensing is required to have not only measurement accuracy but also 
transparent measurement theory because it provides users with feeling of security besides 
informed consent (Marutschke et al., 2010). However, measurement accuracy becomes 
worse while measurement theory becomes too simplified. Thus, the satisfaction of accuracy 
and transparency should be considered while experts design certain biomedical sensing 
equipments. 
Regarding the above-mentioned problem, a new designing process of biomedical sensing is 
proposed which employs causal analysis based on human-machine collaboration. In the 
next section, the human-machine collaboration is discussed, and its importance described. 

2.2 Human-machine collaboration 

As means for representing causality, many theories have been proposed, that is, Bayesian 
networks, graphical modeling, neural networks, fuzzy logic, and so forth. Additionally, as 
means for modeling cause-effect structure, lots of learning theories have been studied 
considering the characteristics of each theory (Bishop, 2006; Zadeh, 1996). Particularly, 
Bayesian network and graphical modeling are utilized for a variety of applications in the 
broad domain, due to transparency of the causality (Pearl, 2001). 
These previous works show two primary approaches to causality analysis: one for 
generating causality based on experts' knowledge and then optimizing the causalities by 
using actual datasets, and the other for automatically processing a measured dataset and 
then modeling causalities based on the trend and statistics from the data. The former is 
based on experts' knowledge and has an advantage in understandability of the causality, but 
needs sufficient knowledge on a certain target system and much more efforts for modeling 
such a system with many components. Conversely, the latter provides subjective causality 
obtained from datasets and has an advantage of not requiring any knowledge from experts, 
but sometimes has difficulty in understanding the causality. Here, there could be another 
approach that makes use of benefits of both in order to effectively model causalities by using 
experts' knowledge during working with machines. This idea is considered an effort to 
achieve goals through human-machine collaboration (Tsuchiya et al., 2010). 

2.3 Problems to be solved and related works 

According to the above discussion in section 2.2, the causal representation process and its 
framework for causality acquisition based on human-machine collaboration has an 
important role in practical causality acquisition. Regarding causality acquisition process and 
its framework based on human-machine collaboration, a similar study has been shown in 
Knowledge Discovery in Databases (KDD) processes (Fayyad et al., 1996). KDD defined the 
process of knowledge discovery and data mining techniques. Nadkarni has proposed a 
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learning method with causal maps which is practically applicable in Bayesian networks, and 
then dividing the cause-effect structure into D-maps and I-maps considering independency 
among the causality (2004). Gyftodimos represented causality in a hierarchical manner and 
proposed a set of frameworks regarding the representation and inference for 
understandable relationships (2002). Tenenbaum et al. showed that a following process is 
effective for learning and inference in the target domain; treating the fundamental principle 
of the domain as something abstract, structuring it, and fitting the structure into the final 
measured data (2006). The authors proposed that hierarchical representation of causality 
among components which are obtained from certain target systems (Tsuchiya et al., 2010). 
These studies have indicated that conceptualization of components is effective for acquiring 
significant causality. Thus, in the following section, an effective causal analysis process for 
practical biomedical sensing is proposed. 

3. Practical causal analysis for biomedical sensing 

To solve the problems which defined in the previous section, the proposed process 
represents a causality of target components with a conceptual model and evaluates the 
independency of the conceptual causality by employing experts’ knowledge. Then, feature 
attributes and cause-effect structure are prepared in each independent subset of the 
causality. Finally, whole cause-effect structures of each subset are integrated, and the 
integrated cause-effect structure is fitted to the actual dataset. These process is executed via 
human-machine collaboration. 
In the following, the detailed steps of the above causal analysis are determined. 
Step 1. Illustration of conceptual causality based on measurement principle 
The intuitive causality among components in the target system is represented by a directed 
graph based on experts’ knowledge. The represented intuitive causality is determined 
conceptual causality. 
Step 2. Causal decomposition based on experts’ knowledge 
The conceptual causality defined in Step 1 is decomposed into independent subsets by 
employing experts’ knowledge including design information about the target system. 
Step 3. Practical cause-effect structure formulation via human-machine collaboration 
Firstly, in each subset of the conceptual causality, feature extraction is executed by 
combining components, multiplying by itself, and so forth. In the next, cause-effect structure 
among the prepared feature attributes is formulated. Then, the cause-effect structures are 
integrated according to the conceptual causality. And feature selection is conducted if 
necessary. At last, components in formulated cause-effect structures are optimized by using 
actual dataset. 
In the following section 4 and 5, the proposal causal analysis process is applied to two kinds 
of biomedical sensing. 

4. Visceral fat measurement by using bioelectric impedance 

In the 21st century, declining birth rate and growing proportion of elderly people develop 
into more serious social problems in advanced nations. Not only solving the labor power 
reduction but also extending healthy life expectancy are the important challenge which 
human beings should address. In terms of the issue, primary prophylaxis has got lots of 
attention as an important activity to prevent lifestyle-related diseases. 
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According to such a social problems, metabolic syndrome has been recognized in advanced 
nations. Currently, the waist circumference, blood pressure, blood sugar, and serum lipid 
are evaluated for the primary screening whether the person is diagnosed with metabolic 
syndrome at the medical checkups. Here, the purpose of waist circumference is for 
screening visceral fat accumulation since it is well known that visceral fat area at abdominal 
level is strongly related to lifestyle-related diseases (Matsuzawa, 2002). However, the waist 
circumference reflect not only visceral fat but also subcutaneous fat, organs, and so forth. 
Thus, more accurate screening method is desired. On another front, in major hospitals, X-
ray CT image processing at abdominal level is the gold standard (Miyawaki et al., 2005). 
However, X-ray CT has a serious problem of X-ray exposure. 
Thus, non-invasive and low-intrusive visceral fat measurement is desired. 

4.1 Measurement principle 

Fig. 1 shows a X-ray CT image at abdominal level, and the visceral fat is located in the light 
grey area in Fig. 1. Therefore, the objectives of visceral fat measurement is to estimate the 
square of the light grey area. 
 

 

Fig. 1. Body composition at abdominal level 

To measure the visceral fat area non-invasively, biomedical impedance analysis (BIA) has been 
employed (Gomi et al., 2005; Ryo et al., 2005; Shiga et al., 2007). BIA is famous for its 
consumers’ healthcare application, that is, body composition meters, and has been studied by 
lots of researchers (Deurenberg et al., 1990; Composition of the ESPEN Working Group, 2004). 
Considering each body composition in Fig. 1, the impedance of lean body is low since muscle 
comprised in lean body involves much water, and the impedance of visceral fat and 
subcutaneous fat are high. Thus, each area of body composition could be estimated 
independently by taking advantage of the impedance characteristics of each body 
composition. 
The basic idea of visceral fat measurement via BIA is that the visceral fat area (VFA) Sv is 
estimated by reducing subcutaneous fat area (SFA) Ss and lean body area (LBA) Sl from 
abdominal cross-section area (CSA) Sc. This idea is illustrated in Fig. 2, and is formulated in 
equation (1). 
 

 

Fig. 2. Visceral fat measurement principle 

 Sv =Sc −Ss −Sl    (1) 

where Sv, Sc, Sl are visceral fat area, subcutaneous fat area, and lean body area respectively. 
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4.2 System configuration 

In accordance with the measurement principle, the visceral fat measurement equipment is 
implemented. The equipment obtains human’s body shape and two kinds of electrical 
impedance at abdominal level. 
At the beginning of measurement, the equipment measures human’s body shape as shown 
in Fig. 3 and 4. Obtained a and b are body width and depth at abdominal level respectively. 
 

 

Fig. 3. Body shape measurement procedure 
 

 

Fig. 4. Body shape information 

In the next, the equipment measures two kinds of electrical impedance at abdominal level. 
Eight paired electric poles are placed on surroundings of the abdominal as shown in Fig. 5. 
And an weak current, 250 μA with 50 kHz, is turn on between subject’s wrist and ankle as 
shown in Fig. 6. Then, eight impedances are obtained via eight paired poles, and their 
average is determined as Zt. 
 

 

Fig. 5. Eight paired electric poles placed on surroundings of abdominal 
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After that, in the same manner, an weak current is turn on subject’s surface at abdominal 
level via eight paired poles. And, eight impedances are obtained via eight paired poles as 
shown in Fig. 7, and their average is determined as Zs. 
 

 

Fig. 6. Impedance Zt measurement procedure 

 

 

Fig. 7. Impedance Zs measurement procedure 

As a result, body shape a and b, two kinds of impedance Zt and Zs are acquired by using the 
implemented equipment. 

4.3 Causal analysis via human-machine collaboration 

Firstly, the actual dataset of 196 subjects was prepared before the following causal analysis. 
The dataset consists of 101 males and 95 females at age 49.0 ± 11.3 for males and 49.6 ± 11.3 
for females. Two kinds of impedance Zt, Zs and body shape information a and b are 
calculated by using the visceral fat measurement equipment. In addition, VFA Sv , LBA Sl , 
SFA Ss , and CSA Sc are obtained by X-ray CT image processing as reference. 
Step 1.  Illustration of conceptual causality based on measurement principle 
According to measurement principle and the equipment system configuration, the 
relationship among the set of obtained four components a, b, Zt, Zs and three kinds of body 
composition Sl, Ss, Sc is illustrated with a conceptual causality as shown in Fig. 8.  
 

 

Fig. 8. Conceptual causality in visceral fat measurement 

Step 2. Causal decomposition based on experts’ knowledge 
At first, according to the measurement principle, the causality among body composition is 
independent from four component obtained via the equipment. Thus, the subset consist of 
body composition is decomposed from conceptual causality. In the next, since Sc doesn’t 

www.intechopen.com



Practical Causal Analysis for Biomedical Sensing Based on Human-Machine Collaboration 

 

555 

affect a and b directly, the subset consist of Sc, a, and b is decomposed from conceptual 
causality. In the same manner, the subset related to Ss and Sl is decomposed respectively. As 
a result, the conceptual causality is decomposed into four subsets in Fig. 9. 
 

 

Fig. 9. Decomposed conceptual causality in visceral fat measurement 

Step 3. Practical cause-effect structure formulation via human-machine collaboration 
According to equitation (1) and the decomposed conceptual causality in Fig. 9, the cause-
effect structure is formed in equation (2). 

 1 2 3( , ) ( ) ( , , )v c l t s sS f a b f Z f a b Zα α α ε= + + +#  (2) 

Then, by assuming that the body shape at abdominal level is ellipse, feature attributes a2, b2, 
ab, (a2 + b2)1/2, 1/Zt, Zsa2, Zsb2, and Zs(a2+b2)1/2 are prepared (Yoneda et al., 2008). By 
replacing the corresponding terms in equation (2) with these attributes, the following cause-
effect structure can be acquired as shown in equation (3). 

 2 2 2 2 1/2
1 2 3 4 51 / ( )v t s s sS ab Z Z a Z b Z a bβ β β β β ε= + + + + + +#  (3) 

where βi are regression coefficients and ε is an error term. However, considering the 
complexity in the shape of the abdomen, it is not always true that employing all of the 
feature attributes included in equation (3) could result in over estimation. Thus, from the 
statistical viewpoint, we perform feature selection by employing Akaike Information 
Criterion (Akaike, 1974). As a result, the cause-effect structure in equation (4) is obtained. 

 
2

1 2 3 41 /v t s sS ab Z Z b Z abγ γ γ γ ε= + + + +#
 (4) 

where γi are regression coefficients and ε is an error term. 

4.4 Experimental result and discussion 

To compare performance, a experts’ knowledge-based measurement model is prepared 
(Shiga et al., 2007), and is fitted to the sample dataset which is described in the previous 
section. 
Table 1 shows comparison of accuracy of visceral fat measurement. In Table 1, EM and ESD 
indicate the mean of absolute errors and the standard deviation of estimated errors 
respectively, and R is the correlation between the X-ray CT reference and the estimated value. 
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According to the results, the improved estimation model provides higher performance in 
EM by 3.73 cm2, in ESD by 5.03 cm2, and R by 0.063. Thus, the proposed causality analysis 
process is proven to have enough performance to model a practical cause-effect structure. 
 

 EM  [cm2] ESD  [cm2] R 

Experts’ knowledge-based model 20.369 26.702 0.826 

Human-machine collaboration 16.638 21.676 0.889 

Table 1. Visceral fat estimation performance comparison 

5. Heart rate monitoring in sleep by using air pressure sensor 

Among vital-signals, heart rate (HR) provides important information of humans’ health 
transit such as an early stage of cardiac disease (Kitney & Rompelman, 1980). In addition, 
HR variability provides information of autonomic nerve activity (Kobayashi et al., 1999). 
Considering such values, continuous HR monitoring would have a quite important role in 
daily life. Thus, it is pretty important for us to measure our HR continuously to know its 
changes in our daily life. 
Considering human’s activities of livelong day, sleep has a high proportion. In addition, 
human being is in resting state in sleep. Thus, wealth of heart rate variability in sleep 
provides much information about human’s health condition. 
Currently, in a medical domain, an electrocardiography (ECG) is the gold standard for 
measuring HR variability accurately. However, ECG restricts human’s free movement since 
many poles are put on body. Thus, ECG is hard to be used in sleep. 
Thus, a low-intrusive and non-invasive continuous heart rate monitoring in sleep on lying 
on the bed is desired. 

5.1 Measurement principle 

To solve such a problem, HR monitoring equipment by using an air pressure sensor (APS) has 
been developed (Hata et al., 2007; Yamaguchi et al., 2007; Ho et al., 2009; Tsuchiya et al., 2009). 
Considering sleep condition, heartbeat causes pressure change of back. Thus, the basic idea 
of measuring heart rate monitoring is to extract heartbeats from pressure change of back. 
However, pressure change of the body is caused not only heartbeat but also roll-over, 
respiration, snore, and so forth. Thus, a new method to extract heartbeats from pressure 
change on back is required. 
 

 

Fig. 10. Heart rate monitoring equipment 

www.intechopen.com



Practical Causal Analysis for Biomedical Sensing Based on Human-Machine Collaboration 

 

557 

5.2 System configuration 
The HR monitoring equipment measures body pressure variability xAPS via an APS to 
extract HR variability from the obtained pressure variability. Fig. 10 shows the configuration 
of the equipment. The APS composed of air tube, and is set under human’s back on the bed. 
The characteristics of APS is drawn in Fig. 11. APS record pressure change at 100Hz, and 
quantizes pressure change into 1024 level via A/D convertor. 
 

 

Fig. 11. Air pressure sensor characteristics 

In HR monitoring, the heartbeats are detected and the HR variability xHR is extracted from 
heartbeat intervals. 

5.3 Causal analysis via human-machine collaboration 
Firstly, the actual dataset of 8 subjects was prepared before the following causal analysis. 
The detailed profile of each subject is shown in Table 2. 
 

Subject Age [yrs] Height [cm] Weight [kg] Gender 

A 23 175 76 Male 

B 23 171 68 Male 

C 23 165 50 Male 

D 25 171 56 Male 

E 22 180 92 Male 

F 22 172 55 Male 

G 23 170 62 Male 

Table 2. Profile of subjects 

Each subject lied on bed for 10 minutes, and ECG is obtained for each subject while HR 
monitoring equipment measured pressure change of back. 
Step 1. Illustration of conceptual causality based on measurement principle 
According to the measurement principle, the conceptual causality among heartbeat xHB, 
body movement xMV, respiration xRSP, obtained air pressure xASP, and heart rate xHR is 
illustrated in Fig. 12. 
In addition, according to the knowledge on heart rate that heart rate is defined by the 
interval of heartbeat, the conceptual causality is modified as shown in Fig. 13. It shows that 
HR variability is calculated from R-R interval RR like ECG when R-waves R. 
Step 2. Causal decomposition based on experts’ knowledge 
Since the HR extraction from R is generalized, the causality shown in Fig. 13 is decomposed 
into two parts as shown in Fig. 14. They consist of the causality for generalized HR 
extraction, and the causality for R extracted from xASP. 
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Fig. 12. Conceptual causality in heart rate monitoring via air pressure sensor 

 

 

Fig. 13. Conceptual causality in heart rate monitoring 

 

 

Fig. 14. Decomposed conceptual causality in heart rate monitoring 

Step 3. Practical cause-effect structure formulation via human-machine collaboration 
As for R extraction from pressure change, the pressure change involves not only heartbeat 
but also respiration and body movement. Because of the nature of the signals, it could be 
difficult to determine the precise position of R-waves R by autocorrelation function and 
peak detection method. In this study, fuzzy logic is employed to formulate the knowledge 
about heartbeat. 
Firstly, full-wave rectification is applied to xASP, and the result signal is determined as xFRA. 
Then, the fuzzy logic based on the knowledge about RR is applied to the pre-processed 
pressure changes. These fuzzy rules are described in the following. 
 

Knowledge 1 : The large pressure change is caused by heartbeat. 
Knowledge 2 : Heartbeat interval does not change significantly. 

 
According to the knowledge on heartbeat characteristics, the fuzzy rules are denoted in the 
following. 
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Rule 1 : IF xi is HIGH, THEN the degree of heartbeat point μAmp is HIGH. 

Rule 2 : IF ti is CLOSE to T ,THEN the degree of heartbeat point μInt is HIGH. 
 

Where μAmp(i) is the membership function of Rule 1, xi is pre-processed pressure change, ti is 

the sampling point of obtained pressure change, T  is the average of heartbeat intervals that 

calculated by using previous ten heartbeats, and μInt(i) is the membership function of Rule 2. 

Then, the membership functions respond to the fuzzy rules are illustrated in Fig. 15 and 16, 

and formulae  are equations (5)–(7) and (8), (9). 
 

 

Fig. 15. Membership function for evaluating degree from viewpoint of amplitude 
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Fig. 16. Membership function for evaluating degree from viewpoint of heartbeat interval 
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Finally, μi is calculated by multiplying μAmp and μInt and the location with maximum μi is 
determined as heartbeat xHB as formulated in equation (10). 

 μ(i) = μAmp(i) * μInt(i) (10) 

5.4 Experimental result and discussion 

In this experiment, the proposed heart rate monitoring based on human-machine 
collaboration is compared with conventional typical method that is based on autocorrelation 
functions and peak detection and one with proposed method by using fuzzy logic. Table 3 
shows correlations between HR changes obtained from the ECG and those obtained from 
the heart rate monitoring equipment. 
The results indicate that the method of fuzzy logic achieved higher performance for all of 
the subjects. In particular, the correlation to ECG for the subject A and E is over 0.97, which 
is extremely high. 
 

R Subject 

Human-machine collaboration Autocorrelation functions-based 

A 0.973 0.703 
B 0.807 0.389 
C 0.754 0.621 
D 0.872 0.699 
E 0.972 0.658 
F 0.844 0.677 
G 0.737 0.346 

Avg 0.851 0.585 

Table 3. HR monitoring performance comparison 

 

 

Fig. 17. Heartbeat count vs. R-R interval against subject B 

In the following, the some of detailed HR monitoring results are discussed. 
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Fig. 15-18 shows the result for subject B and E where horizontal axis and virtual axis are 
heartbeat count and R-R interval respectively, and the blue line and red line is the R-R 
interval variability obtained by using the HR monitoring equipment and ECG respectively. 
According to the results for subject B and E, the result of HR monitoring is quite similar to 

ECG’s one. In addition, in Fig. 17, the HR monitoring could detect the significant R-R 

interval occurred around 200 beats. 

 

 

Fig. 18. Heartbeat count vs. R-R interval against subject E 

6. Summaries and conclusions 

This chapter has introduced a causal analysis based on human-machine collaboration for 

practical biomedical sensing. In the proposed method, the cause-effect structure is 

actualized in three steps. Firstly, experts illustrate the conceptual causality among 

components which are obtained from sensing target. In the next step, the conceptual 

causality is decomposed into independent subset by employing experts’ knowledge. Then, 

feature attributes are prepared by using components, and each subset is formulated. At last, 

the formulae of each subset is integrated and optimized by using actual dataset obtained 

from sensing target. 

Additionally, two applications of practical biomedical sensing have been presented; visceral 

fat measurement based on bioelectrical impedance analysis and heart rate monitoring by air 

pressure sensor. 

In the case of visceral fat measurement, the conceptual causality was constructed by using 

experts’ knowledge of the relationship among two kinds of bioelectrical impedance, body 

shape and body composition and the cause-effect structure was realized by fitting 196 

subjects’ dataset. According to the comparative experimental results, the measurement 

accuracy was improved in keeping with its measurement transparency. 

In case of heart rate monitoring, the conceptual causality among air pressure sensor, R-

wave, R-R interval and heart rate was constructed by using experts’ knowledge on 

electrocardiograph. Then, the conceptual causality is decomposed into two subset, that is, 

the causality which describes heart rate extraction from heartbeat and the one among air 

pressure sensor, heartbeat, respiration, and body movement. According to the experimental 

result, the accuracy improvement was confirmed by comparing with the typical heart rate 

extraction used in the electrocardiograph. 

According to the above two application, the proposal causal analysis based on human-

machine collaboration is useful to realize practical biomedical sensing. 
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