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1. Introduction    

The constant demand for new, effective therapeutic agents has triggered intensive research 

in the field of diverse antimicrobials of natural origin. These compounds are synthesized by 

all forms of life and have important biomedical and biotechnological properties, and are 

thus widely considered a potential solution to the growing problem of resistance to 

conventional antibiotics, fungal infection and life-threatening diseases. 

Among these molecules, lipopeptides represent a unique class of bioactive secondary 

metabolites with increasing scientific, therapeutic and biotechnological interest. The 

principal representative of the anionic lipopeptide family is surfactin, which is produced by 

bacterium Bacillus subtilis. This most potent known biosurfactant (i.e. surface-active 

compound of microbial origin), was named surfactin due to its exceptional surface activity. 

Since its discovery (Arima et al., 1968) and the identification of its molecular structure as a 

macrolide lipopeptide (Kakinuma et al., 1969) it has been best recognized for its high 

amhiphilicity and strong tendency for self-aggregation (Ishigami et al., 1995). Due to these 

characteristics it shows remarkable surface-, interface- and membrane-active properties, 

resulting in a number of promising biological activities, which are of great relevance in 

health care and biotechnology. These properties make surfactin a candidate drug for the 

resolution of a number of global issues in medicine (Banat et al., 2010; Cao et al., 2010), 

industry (Nitschke & Costa, 2007; Abdel-Mawgoud et al., 2008) and environmental 

protection (Mulligan, 2009). 

2. Structure and physicochemical properties 

Surfactin (M.W. 1036 Da), an amphipathic cyclic lipopeptide, is constituted by a 

heptapeptide (ELLVDLL) with the chiral sequence LLDLLDL interlinked with ǐ-hydroxy 

fatty acid of the chain lengths 12 to 16 carbon atoms to form a cyclic lactone ring structure 

(Fig. 1). Hydrophobic amino acid residues are located at positions 2, 3, 4, 6 and 7, while the 

glutamyl and aspartyl residues, located at positions 1 and 5 respectively, introduce two 

negative charges to the molecule. Several surfactin isoforms usually coexist in the cell as a 

mixture of several peptidic variants with a different aliphatic chain length (Hue et al., 2001; 

Bonmatin et al., 2003; Tang et al., 2007). The pattern of amino acids and ǐ-hydroxy fatty 

acids in the surfactin molecule depends not only on the producing bacterial strain involved, 

but also on the type of culture conditions.  

www.intechopen.com



 Biomedical Engineering, Trends, Research and Technologies 

 

306 

 

Fig. 1. Primary structure of surfactin 

The molecular assembly of surfactin in an aqueous solution and the conformation of the 
molecules in aggregates condition its physicochemical activities and biological properties. 
Surfactin adopts a ǐ-turn, forming a ǐ-sheet with a characteristic horse-saddle conformation, 
which is probably responsible for its broad spectrum of biological activities, even at such low 
concentrations. The ǐ-turn may be formed by an intramolecular hydrogen bond, whereas the 
ǐ-sheet may depend on an intermolecular hydrogen bond (Bonmatin et al., 1994; Han et al., 
2008; Zou et al., 2010). The two charged side-chains are gathered on the same side and form a 
“claw”, providing a polar head opposite to the hydrophobic domain (Tsan et al., 2007). 
The three-dimensional structure of surfactin (Fig. 2) was determined via a high-resolution 
1H NMR combined with molecular imaging techniques. On one side of the molecule, 
residues 2 and 6 face each other in the vicinity of the acidic Glu-1 and Asp-5 side chains, 
which define a minor polar domain (Bonmatin et al., 1995). On the opposite side, residue 4 
faces the connection of the lipidic chain constituting a major hydrophobic domain, which 
includes the side-chains of residues 3 and 7 to a lesser extent, accounting for its amphiphilic 
nature and its strong surfactant properties (Tsan et al., 2007). Below the critical micelle 
concentration (CMC), the lipidic chain should extend freely in solution but it strongly 
participates in hydrophobic interactions in supramolecular structures such as lipid micelles 
or oligomers at the air/water interface (Peypoux et al., 1999).  
 

 

Fig. 2. Three-dimensional structure of surfactin peptide moiety. Backbone atoms are shown 
in grey. The heavy atoms of amino acid residues (1 to 7) are shown. Pale grey represents 
hydrophobic residues 2, 3, 4, 6, 7 and the attachment of the lipidic chain. Acidic residues 1 
and 5 are in black and dark grey respectively (Peypoux et al., 1999).  
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Surfactin lowers the surface tension of water from 72 mN.m-1 to 27 mN.m-1 at a 

concentration as low as 10 µmol/l (Heerklotz & Seelig, 2001). The critical micelle 

concentration varies depending on the methods and experimental conditions used, but 

reaches values of 7.5 – 20 µmol/l (Morikawa et al., 2000; Shen et al., 2010b; Zou et al., 2010), 

which is about two orders of magnitude smaller than those of most other detergents. 

Consequently, the consumption of surfactin in practical applications can be lower by several 

orders when compared with chemical surfactants.  

Surfactin has a strong self-assembly ability to form micelles, and these micelles tend to form 

larger aggregates. Surfactin micelles are inhomogeneous with regard to size distribution 

with different configurations. The aggregation number of sphere-like micelles is much 

smaller than that of conventional surfactants, i.e. 11 (Zou et al., 2010) or 20 (Shen et al., 2009). 

The structure of the micelle is of the core-shell type, with the hydrocarbon chain and the 

hydrophobic residues forming the core of the micelle (Shen et al., 2009). However, different 

types of micelles with up to 170 surfactin molecules forming spherical, ellipsoidal and/or 

cylindrical structures were also found (Heerklotz & Seelig, 2001; Zou et al., 2010).  

3. Surfactin-membrane interactions  

Recognition of the interaction between surfactin and membrane is an essential prerequisite 

to understanding its biological activity. Amphiphilic surfactin molecules destabilize the 

membrane and disturb its integrity (Bernheim & Avigad, 1970). Since this early observation 

was made, many excellent studies have focused on the description of the surfactin-

membrane bilayer system, documenting its exceptional complexity (see parts 3.1., 3.2.). The 

hypothetical mechanisms of the interactions of surfactin with membrane structures exhibit a 

complex pattern of effects, such as insertion into lipid bilayers, chelating of mono- and 

divalent cations, modification of membrane permeability by channel formation or membrane 

solubilisation by a detergent-like mechanism.  

Surfactin penetrates into the lipid membrane through hydrophobic interactions, thus 

influencing both the order of hydrocarbon chains and the membrane thickness. Upon this 

primary collision, the peptide cycle then shows conformational changes, which further 

facilitate the process of interaction (Maget-Dana & Ptak, 1995). Following the incorporation 

of surfactin into the membrane, the dehydration of the phospholipid polar head groups 

occurs, perturbing the local lipid packing and strongly compromising bilayer stability, i.e. 

its barrier properties. A key step for membrane destabilization and leakage is the 

dimerisation of surfactin into the bilayer. These structural fluctuations may well explain the 

primary mode of the antibiotic action and the other important biological effects of this 

lipopeptide (Carrillo et al., 2003). 

3.1 Impact of surfactin nature 

The extent of perturbation of the phospholipid bilayer correlates with the concentration of 
surfactin. In a model dimyristoylphosphatidylcholine (DMPC) bilayer system disintegration 
occurs in three stages. At low concentrations (up to 4 mol%), surfactin penetrates readily 
into the outer leaflet of the membrane within the head group and part of the adjacent 
hydrophobic chain region (Shen et al., 2010b). Here it is miscible with the phospholipids, 
forming mixed micelles. After it reaches a threshold level, the lipopeptide forms domains 
segregated within the phospholipid bilayer, i.e. pores in the membrane, and the lipid bilayer 
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is progressively disrupted into sheet-like lamellar membrane fragments due to increasing 
strains in the membrane caused by further uptake of surfactin molecules (up to 10 mol%). 
Finally, at a surfactin concentration higher than 10 mol%, thread-like micelles of 6.5 nm in 
diameter were detected which tended to organize into loops of various sizes (Kell et al., 
2007; Boettcher et al., 2010; Liu et al., 2010; Shen et al., 2010a).  
Surfactin-membrane interactions can also be described via the quantification of the local 
surfactin-to-lipid mole ratio within the membrane Rb. This parameter determines the 
concentration of membrane-bound detergent and the lipid concentration. Membrane 
leakage starts at Rb ~ 0.05 with an aqueous surfactin concentration of 2 μmol/l. The 
permeabilising activity of surfactin is thus stronger by one order of magnitude than that of 
detergents such as Triton X-100, which solubilises the membrane at about Rb ~ 0.6. At higher 
concentrations, i.e. Rb ~ 0.15, surfactin-rich clusters are formed in the membrane, inducing 
leaks. Membrane lyses or solubilisation to micelles begin at Rb ~ 0.22 and a concentration of 
9 μmol/l (Heerklotz and Seelig, 2007). Periodic variations of fluid, surfactin-rich regions and 
gel lipid-rich domains within the bilayer membrane result in the formation of stable 
nanoripple structures with intriguing potential in biomedical and biotechnological 
applications (Brasseur et al., 2007; Kell et al., 2007; Banat et al., 2010).  
Membrane penetration by surfactin is facilitated by the presence of cations (Maget-Dana & 
Ptak, 1995). The Glu-1 and Asp-5 acidic residues form a tailored “claw”, which can easily 
stabilize a surfactin-Ca2+ 1:1 complex via an intramolecular bridge (Maget-Dana & Ptak, 
1992). This effect of Ca2+ ions on the surfactin conformation promotes the deeper insertion of 
lipopeptide into the membrane (Grau et al., 1999). Surfactin can also drive mono- and 
divalent cations through an organic barrier, divalent cations being transported with greater 
efficiency (Thimon et al., 1992). The selective affinity can be correlated with the partial 
neutralization of the two acidic residues at the air/water interface in the presence of Na+ or 
K+, whereas Ca2+ induces a complete neutralization (Maget-Dana & Ptak, 1992). One 
physiological result of surfactin cation chelation is the inhibition of the cyclic AMP 
phosphodiesterase activity (Hosono & Suzuki, 1983). The presence of counterions such as 
Na+, Li+, K+, Mg2+ and Ca2+ increases the surface activity of surfactin and reduces its CMC. 
These ions decrease electrostatic repulsions between the surfactin head groups and enhance 
the formation of micelles (Li et al., 2009a; Li et al., 2009b). 
The cyclic nature of the peptide moiety and the number of negative charges, as well as the 
fatty acid chain length, play a significant role in lipopeptide activity. Variations both in the 
peptide and lipid moiety of the surfactin molecule can profoundly modulate the structure-
function relationship. Within the large hydrophobic domain, position 4 showed a high 
contribution as the L-Val4/L-Ile4 substitution induced a 2-fold decrease in CMC and a 
substantial gain in monolayer stability at the air/water interface (Bonmatin et al., 1995). The 
loss of cyclic nature weakens the degree of surfactin binding. With regards to the effect of 
the surfactin acyl chain length, the longer the acyl chain, the better its insertion into the lipid 
bilayer (Razafindralambo et al., 2009). Higher surface activity was observed with a C14 acyl 
chain, while antiviral properties were stronger when the C15 chain prevailed in surfactin 
(Bonmatin et al., 2003; Eeman et al., 2006). The membrane activity of surfactin has also been 
shown to increase with the number of ionic charges of the polar head (Francius et al., 2008). 

3.2 Impact of target membrane composition 

Several in vitro studies have demonstrated the impact of lipid composition on surfactin-
membrane interaction and its penetration into the target bilayer; however the mechanism 
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has so far not been described in detail. Both the polar heads and fatty acid chains play a role 
in the formation of complexes of surfactin with phospholipids. Surfactin perturbs more 
strongly membranes containing phospholipids with a shorter chain length (Grau et al., 1999). 
These data were also confirmed for the model monolayer system using atomic force 
microscopy (AFM). This method has become an additional, powerful tool in the 
investigation of the organization of lipid monolayers and bilayers and the monitoring of 
their interaction with membrane active peptides, such as surfactin. As the biological activity 
of surfactin is directly related to its interaction with membranes, understanding the mixing 
behaviour and domain formation of this molecule within lipid monolayers and bilayers is 
an important challenge (Deleu et al., 2001; Brasseur et al., 2008). 
Polar headgroup composition profoundly affects the interfacial behaviour of surfactin. The 
miscibility of surfactin with dipalmitoylated (DP) phospholipids decreases in the order 
phosphatidylcholine > phosphatidylethanolamine > phosphatidylserine (PC>PE>PS). These 
surfactin-phospholipid interactions are modulated by not only the volume of the 
phospholipid headgroups (Bouffioux et al., 2007), but also their electrostatic properties and 
shape (Buchoux et al., 2008). The inverted-cone conformation of surfactin tends to counter-
balance the ability of cone-shaped phosphatidylethanolamine molecules to form a 
hexagonal phase, thereby promoting surfactin stabilization in the membrane. In the case of 
DPPS, surfactin decreases the electrostatic repulsions between the negative headgroups of 
DPPS through the large surfactin peptide cycles that result in DPPS-surfactin stability (Grau 
et al., 1999; Carrillo et al., 2003). 
Regarding phospholipid chain lengths, the miscibility between surfactin and phospholipids 
is higher for shorter chain lengths in the order DMPC (dimyristoyl) > DPPC (dipalmitoyl) > 
DSPC (distearoylphosphatidylcholine), i.e. 14, 16 and 18 carbon atoms (Bouffioux et al., 
2007). On the other hand, the fact that lipid chains are in a fluid or gel phase does not appear 
to be important, in contrast to other antimicrobial peptides, such as melittin (Buchoux et al., 
2008). 
There is still some uncertainty regarding the role played by the presence of a negative 
charge on the phospholipid polar head, which, according to Maget-Dana and Ptak (Maget-
Dana & Ptak, 1995) gives rise to electrostatic shielding, preventing the peptide cycle of 
surfactin from coming close to the phospholipid headgroups. The presence of a net negative 
charge in the phospholipid monolayer promotes the immiscibility of surfactin into the lipid 
matrix, therefore favouring surfactin self-assembly. By contrast, this phenomenon is the 
basis of the pore-forming activity of surfactin in membranes with a significantly high 
amount of anionic lipids, such as bacterial membranes and some cancer cells (Eeman et al., 
2006). A hypothetical model has been proposed for membrane lyses based on charge 
repulsions between surfactin negative charges and the lipid head group negative charges. 
This leads to a local increase in membrane curvature and the complete destabilization of the 
planar membrane, i.e. its direct lyses (Buchoux et al., 2008).  
All of the above findings were obtained in vitro on model monolayers or bilayers. By 
contrast, no research deals with the interaction of surfactin with real membrane 
phospholipids or even intact membranes, where proteins play a crucial role. Our results 
show subsequent accumulation of cardiolipin (CL) in the B. subtilis cytoplasmic membrane 
during the stationary phase of growth, when surfactin is synthesized. Such an increase in 
CL, which is regarded as a stress phospholipid stabilizing the membrane bilayer, may 
therefore support membrane integrity. Additionally, CL bearing two negative charges could 
prevent the anionic surfactin from coming close to the surface of the membrane bilayer.   
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However, the putative relation between the surfactin production and the extensive 
membrane reconstruction would require further analysis (Seydlova & Svobodova, 2008a). 

4. Biological and physiological relevance of surfactin 

B. subtilis initiates the synthesis of secondary metabolite surfactin through the onset of the 
stationary growth phase when the culture is becoming short of nutrients and oxygen. Under 
these famine conditions the cells also activate other survival strategies, such as antibiotic 
production, sporulation, genetic competence development and the production of 
extracellular degradative enzymes. Therefore it is reasonable that surfactin or antibiotic 
synthesis in general provide at least some benefits for the producer, otherwise it would not 
retain in nature (Stein, 2005).  
Lipopeptides are amongst the most frequently produced B. subtilis antibiotics. Several 
possible roles have been proposed for these compounds, such as participation in the 
acquisition of hydrophobic water-insoluble nutrients and influencing the attachment or 
detachment of bacteria to and from surfaces (Rosenberg & Ron, 1999). Surfactin is required 
for raising the fruiting-body-like aerial structures on the surface of B. subtilis colonies, where 
the spores are preferentially developed (Branda et al., 2001). On the other hand, it inhibits 
the aerial hyphal growth of Streptomyces coelicolor, suggesting a possible ecological role 
(Straight et al., 2006). These properties probably contribute to the survival of B. subtilis in its 
natural habitat.  
Surfactin plays a key role in the induction and development of biofilms, i.e. highly 
structured multicellular communities that adhere to surfaces and constitute the majority of 
bacteria in most natural ecosystems and are also responsible for many health and industrial 
problems (Stanley & Lazazzera, 2004). Cells within biofilms are more resistant to biocides 
and antibiotics; part of this resistance is attributed to the protection provided to the self-
produced extracellular matrix, which encases the cells (Lopez et al., 2009b). Swarming, 
motility in colonies of B. subtilis cells, is conditioned by proteins encoded by swrA, swrB, 
swrC and efp genes (Kearns et al., 2004) and is strictly dependent on the production of 
surfactin, which reduces surface tension and allows spreading (Kinsinger et al., 2005).  Its 
secretion is stimulated by potassium ions (Kinsinger et al., 2003). Recent improvements in 
time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging have enabled the 
demonstration of surfactin distribution and its precise localization within a swarming 
colony. Secreted surfactin diffuses freely from the mother colony to the periphery of the 
swarm and forms a gradient (Debois et al., 2008). This gradient generates surfactant waves, 
i.e. surface-tension gradients on which the colony spreads outward (Angelini et al., 2009). 
Laboratory strains such as B. subtilis 168, which fail to produce surfactin, do not exhibit 
swarming motility (Julkowska et al., 2005; Patrick & Kearns, 2009).  
Within biofilm, cells differentiate from a predominantly unicellular motile state to a 
genetically identical mixture of cell types with distinct phenotypes. Cells exhibit specialized 
functions such as sporulation, matrix production, genetic competence, production of 
surfactin, cannibalism toxins or exoproteases (Kolter, 2010; Lopez & Kolter, 2010). The 
formation of these multicellular communities involves extensive intercellular communication 
via the recognition of and responding to small, secreted, self-generated molecules, i.e. 
quorum sensing. This also applies to surfactin, which does not trigger multicellularity acting 
as a surfactant, but rather as autoinducer or a signalling molecule for quorum sensing. It 
causes potassium leakage across the cytoplasmic membrane, which leads to the activation of 
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protein kinase KinC, affecting the expression of genes involved in the synthesis of the 
extracellular matrix. This represents a previously undescribed quorum-sensing mechanism 
(Lopez et al., 2009a).  
Extracellular surfactin signalling is unidirectional. Surfactin production is triggered in a 
small subset of cells responding to another signalling molecule ComX, which is synthesized 
by most cells in the population. Surfactin then acts as a paracrine signal that leads to 
extracellular matrix production in a different subpopulation of cells, which can then no 
longer respond to ComX and therefore cannot became surfactin producers (Lopez et al., 
2009d). The blockage of signalling molecules caused by the extracellular matrix has been 
reported in eukaryotes to define the distinct cell fates in morphogenesis. These results 
indicate that bacteria display attributes of multicellular organisms. 
In the same undifferentiated subpopulation of cells, surfactin can trigger not only the 
production of extracellular matrix but also cannibalism, as a mechanism to delay 
sporulation. Cannibal cells secrete Skf (sporulation-killing factor) and Sdp (sporulation-
delaying factor) toxin systems while at the same time expressing self-resistance to these 
peptides. The nutrients released from the sensitive siblings promote growths of matrix 
producers and their DNA can be taken up by competent cells that originate from the 
fraction of surfactin producers. The coordinated expression of cannibalism and matrix 
production can result in a fitness advantage in natural habitats by providing both protection 
and an effective tool to compete for the same resources with neighbouring bacteria (Lopez et 
al., 2009c).  
The developmental pathways controlling sporulation, cannibalism and matrix production 
are strongly interconnected – they are activated by the same master regulatory protein 
Spo0A, which can be phosphorylated by the action of different kinases (KinA-E) and 
presumably therefore different levels of phosphorylation can be reached. Higher levels are 
necessary to trigger sporulation, whereas lower levels activate matrix production and 
cannibalism (Fujita et al., 2005).  
In our experiments (unpublished data) we determined an interval of sublethal surfactin 
concentrations that modify the growth of B. subtilis 168 that does not produce surfactin. 
Unexpectedly, two different effects, dependent on surfactin concentration, were discovered 
that either inhibit or even stimulate the growth of B. subtilis 168, the former concentration 
being higher than the latter. When an exponentially growing B. subtilis culture is exposed to 
exogenously-added surfactin on a nutrient agar plate, the growth stops for a time and is 
restored with a decreased growth rate in inhibitory concentration, whereas the stimulatory 
concentration accelerates growth and results in a higher final density of the population. The 
observations mentioned in the above paragraph led us to speculate that a low concentration 
of surfactin may induce both matrix production, which protects the cells from the 
deleterious effect of surfactin, and cannibalism that provides the population with nutrients 
released from killed siblings. Although this hypothesis has yet to be verified, it is apparent 
that some optimum surfactin concentration benefits the population as a whole. 

5. Potential biomedical applications 

The high demand for new chemotherapeutics driven by the increased drug resistance of 
pathogenes has drawn attention to the use of biosurfactants as new antimicrobial agents 
(Seydlova & Svobodova, 2008b). Surfactin exhibits a wide range of interactions with target 
cell membranes and has potential for various medical applications. Besides its antifungal 
and antibacterial effects (Thimon et al., 1992), surfactin can also inhibit fibrin clot formation 
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(Arima et al., 1968), inhibits platelet and spleen cytosolic phospholipase A2 (PLA2) (Kim et 
al., 1998) and exhibits antiviral (Kracht et al., 1999) and antitumor activities (Kameda et al., 
1974). Another interesting property of surfactin is that high surfactin concentration affects 
the aggregation of amyloid ǐ-peptide (Aǐ(1-40)) into fibrils, a key pathological process 
associated with Alzheimer’s disease (Han et al., 2008). 
Resistance is generally rare against all lipopeptides and the development of a well-defined 
resistance mechanism has been suggested to be unlikely (Barry et al., 2001). The explanation 
for this can be found in the complex chemical composition of membranes. The single-
component modification of this target structure can hardly cause resistance to surfactin. 
Therefore, lipopeptide molecules with their unusual structures, which act rapidly on 
membrane integrity, rather than on other cell targets, are of growing interest in modern 
medicine and might hold promise for the development of a new generation of antibiotics 
(Goldberg, 2001). 
This is of particular importance at a time when multi-resistant pathogens overcoming the 
last-resort drugs, including methicillin and vancomycin, pose a growing threat (Singh & 
Cameotra, 2004). These antibiotics are used not only in the therapy of nosocomial infections 
caused by enterococci and Staphylococcus aureus (Yoneyama & Katsumata, 2006) but also in 
the therapy of community-acquired methicillin resistant S. aureus (caMRSA), which is much 
more aggressive than its hospital relatives due to having a particular preference for the 
young and healthy (Hadley, 2004). The recent detection of Enterobacteriaceae with the New 
Delhi Metallo-ǐ-lactamase (NDM-1) enzyme, which makes bacteria resistant to the main 
classes of antibiotics used in the treatment of Gram-negative infections, is alarming (Yong et 
al., 2009). Furthermore, most isolates carried the blaNDM-1 gene on plasmids, which are 
readily transferable (Kumarasamy et al., 2010).  

5.1 Antibacterial, anti-inflammatory and antifungal effects 

It has long been asserted that the antibacterial properties of anionic antimicrobial peptides 
are limited due to the repulsive forces between their negative charge and the negatively 
charged surface of the bacterial surface. Nevertheless, a number of recent studies show 
inhibitory effects against different bacteria of high medical, environmental or agricultural 
importance. 
Lipopeptide biosurfactants produced by B. subtilis R14 (Fernandes et al., 2007) and the 
marine  Bacillus circulans (Das et al., 2008) share a lot of surfactin characteristics and were 
found to be active against multidrug-resistant bacteria such as Proteus vulgaris, Alcaligenes 
faecalis, Pseudomonas aeruginosa, Escherichia coli and methicillin-resistant Staphylococcus 
aureus. The minimal inhibitory (MIC) and minimal bactericidal (MBC) concentrations used 
were much lower than those of the conventional antibiotics tested in the same time (Das et 
al., 2008).  
The increasing trend to limit the use of chemical food preservatives has generated 
considerable interest in natural alternatives. It has been observed that a lipopeptide 
substance containing surfactin is able to damage the surface structure of spores of the 
recognized food-borne bacterium B. cereus, leading to their disruption (Huang et al., 2007). 
Other results showed that E. coli in milk had high sensitivity to a mixture of surfactin with 
fengycin and can be sterilised by five orders of magnitude even at the temperature of 5.5 °C 
(Huang et al., 2008). Similar promising observations were made using a combination of 
surfactin with another lipopeptide iturin to sterilise Salmonella enteritidis in meat (Huang et 
al., 2009). The same antimicrobial peptides were also successful in the antifungal effect 
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against Penicillium notatum (Huang et al., 2010). This is of particular relevance in order to 
ensure food safety. 
A culture broth containing surfactin was used to selectively control bloom-forming 
cyanobacteria, which cause environmental problems due to the production of malodorous 
compounds and toxins in eutrophic lakes. The surfactin-containing broth inhibited the 
growth of Microcystis aeruginosa and Anabaena affinis at a concentration at which chemical 
surfactants such as Tween 20, Span 80 and Triton X-100 had no effect (Ahn et al., 2003). 
Environmentally-friendly solutions are still needed for application in agriculture. It has been 
found that surfactin and iturin synergistically exhibit an antifungal effect against the fungal 
pathogen Colletotrichum gloeosporioides, causing damage to crops around the world (Kim et 
al., 2010). These lipopeptides are less toxic and show better reduction and control of 
phytopathogens than agrochemicals (Souto et al., 2004; Chen et al., 2008; Kim et al., 2010). In 
another study a mixture of surfactin and iturin disintegrated the cell wall of the gram-
negative phytopathogen Xanthomonas campestris (Etchegaray et al., 2008). Surfactin was also 
shown to display antimicrobial activity against Paenibacillus larvae, an extremely contagious 
and dangerous pathogen of honeybees (Sabate et al., 2009). 
Surfactin is known to inhibit phospholipase A2, involved in the pathophysiology of 
inflammatory bowel disease, which is related to ulcerative colitis and Crohn’s disease. Oral 
administration of a natural probiotic B. subtilis PB6 secreting surfactin in a rat model with 
TNBS-induced (trinitrobenzene sulfonic acid) colitis suppressed the colitis, significantly 
lowering the plasma levels of pro-inflammatory cytokines and significantly increasing anti-
inflammatory cytokine (Selvam et al., 2009). Lipopeptide production by probiotic Bacillus 
strains is one of the main mechanisms by which they inhibit the growth of pathogenic 
microorganisms in the gastrointestinal tract (Hong et al., 2005). 
Several recent studies have revealed the impact of surfactin in silencing the inflammatory 
effect of lipopolysaccharide (LPS) interaction with eukaryotic cells. Compounds that inactivate 
LPS activity have potential as new anti-inflammatory agents.  Surfactin was shown to suppress 
the interaction of lipid A with LPS-binding protein (LBP) that mediates the transport of LPS to 
its receptors. Moreover, surfactin did not influence the viability of the eukaryotic cell lines 
tested (Takahashi et al., 2006). Surfactin also inhibits the LPS-induced expression of 
inflammatory mediators (IL-1ǐ and iNOS) (Hwang et al., 2005) and reduces the plasma 
endotoxin, TNF-Ǐ and nitric oxide levels in response to septic shock in rats (Hwang et al., 
2007). Surfactin downregulates LPS-induced NO production in macrophages by inhibiting the 
NF-κB transcription factor (Byeon et al., 2008). The surfactin-induced inhibition of NF-κB, 
MAPK and Akt pathways also leads to the suppression of the surface expression of MHC-II 
and costimulatory molecules in macrophages, suggesting the impairment of their antigen-
presenting function. These results indicate that surfactin is a potent immunosuppressive agent 
and suggest an important therapeutic implication for transplantation and autoimmune 
diseases including arthritis, allergies and diabetes (Park & Kim, 2009). 

5.2 Anti-mycoplasma effects 

Mycoplasmata are the etiological agents of several diseases and also the most significant 
contaminants of tissue culture cells. Surfactin is already used commercially for the curing of 
cell cultures and cleansing of biotechnological products of mycoplasma contamination 
(Boettcher et al., 2010). The treatment of mammalian cells contaminated by mycoplasmata 
with surfactin improved proliferation rates and led to changes in cell morphology. In 
addition, the low cytotoxicity of surfactin to mammalian cells permitted the specific 
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inactivation of mycoplasmata without having significantly detrimental effects on the 
metabolism of cells in the culture (Vollenbroich et al., 1997b). A recent study confirmed the 
potential of surfactin to kill Mycoplasma pneumoniae (MIC 25 µM) independently of target cell 
concentration, which is a significant advantage over the mode of action of conventional 
antibiotics. Surfactin has exhibited, in combination with enrofloxacin, a synergistic effect 
resulting in mycoplasma-killing activity at about two orders of magnitude greater than 
when entire molecules are used separately (Fassi Fehri et al., 2007). More recently, surfactin 
was described as inhibiting the expression of proinflammatory cytokines and NO 
production in macrophages induced by Mycoplasma hyopneumoniae (Hwang et al., 2008a). In 
another study, surfactin showed a strong cidal effect (MIC 62 µM) and in combination with 
other antibacterials exhibited additive interaction, which could be clinically relevant 
(Hwang et al., 2008b). 

5.3 The role of surfactin in surface colonization by pathogens 

Swarming motility and biofilm formation are the key actions in the colonization of a surface 

by bacteria and increase the likelihood of nosocomial infections associated with various 

medical appliances, such as central venous catheters, urinary catheters, prosthetic heart 

valves, voice prostheses and orthopaedic devices. These infections share common 

characteristics even though the microbial causes and host sites vary greatly (Rodrigues et al., 

2006). The most important of these features is that bacteria in biofilms are highly resistant to 

antibiotics, evade host defenses and withstand traditional antimicrobial chemotherapy, 

making them difficult to treat effectively (Morikawa, 2006). Moreover, in food-processing 

environments, the control of microorganisms’ adherence to material surfaces is an essential 

step to meet food safety requirements. 

Recent studies have suggested that non-antibiotic molecules naturally produced within 

bacterial communities, such as surface active biosurfactants, could also interfere with 

biofilm formation by modulating microbial interaction with interfaces (Banat et al., 2010). 

Biosurfactants, such as surfactin, have been found to inhibit the adhesion of pathogenic 

organisms to solid surfaces or infection sites. Surfactin decreases the amount of biofilm 

formed by Salmonella typhimurium, Salmonella enterica, Eschericha coli and Proteus mirabilis in 

polyvinyl chloride wells, as well as vinyl urethral catheters. The precoating of catheters by 

running the surfactin solution through them prior to inoculation with media was just as 

effective as the inclusion of surfactin in the growth medium. Given the importance of 

opportunistic infections with Salmonella species, including the urinary tract of AIDS 

patients, these results have potential for practical application (Mireles et al., 2001).  

Substances containing surfactin have also been shown to possess specific anti-adhesive 

activity that selectively inhibits the biofilm formation of two pathogenic strains of S. aureus 

and E. coli on polystyrene by 97% and 90%, respectively (Rivardo et al., 2009). In another 

study, Rivardo et al. observed a synergistic interaction between surfactin and silver, acting 

as effective antibiofilm agents. Negatively charged surfactin increases metal solubility and 

may therefore facilitate the penetration through the exopolymeric substance that 

encapsulates biofilm and provides its protection (Rivardo et al., 2010). Moreover it was 

demonstrated that surfactin increases the efficiency of eradication of different antibiotics 

against a urinary tract-infective E. coli strain (Banat et al., 2010). 
The preconditioning of stainless steel and polypropylene surfaces with 0.1% (w/v) surfactin 
reduces the number of adhered cells of food pathogens Listeria monocytogenes and 
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Enterobacter sakazakii. The absorption of surfactin on polystyrene also reduced the 
colonization of Salmonella enteritidis (Nitschke et al., 2009). Considering that surfactin has an 
anionic nature, the observed anti-adhesive effect can be due to the electrostatic repulsion 
between bacteria and the molecules of surfactin adsorbed onto the polystyrene surface 
(Zeraik & Nitschke, 2010). All in all, these results outline a new potential of surfactin as an 
anti-adhesive compound that can be explored in the protection of surfaces from microbial 
contamination. 

5.4 Anti-viral activity 

Surfactin is active against several viruses, including the Semliki Forest virus, herpes simplex 
virus (HSV-1 and HSV-2), vesicular stomatitis virus, simian immunodeficiency virus, feline 
calicivirus and the murine encephalomyocarditis virus. The inactivation of enveloped 
viruses, especially herpes viruses and retroviruses, is significantly more efficient than that of 
non-enveloped viruses. This suggests that the antiviral action of surfactin is primarily due to 
the physicochemical interaction between the membrane active surfactant and the virus lipid 
membrane (Vollenbroich et al., 1997a). One important factor for virus inactivation is the 
number of carbon atoms in the acyl chain of surfactin. The capacity for virus inactivation 
increases with rising fatty acid hydrophobicity. During the inactivation process, surfactin 
permeates into the lipid bilayer, inducing complete disintegration of the envelope 
containing the viral proteins involved in virus adsorption, and penetration to the target 
cells. Its absence accounts for the loss of viral infectivity (Kracht et al., 1999). 
Recently, it has also been observed that antimicrobial lipopetides containing surfactin 
inactivate cell-free viruses of the porcine parvovirus, pseudorabies virus, Newcastle disease 
virus and bursal disease virus (Huang et al., 2006). 

5.5 Antitumor activity 

Surfactin has been reported to show antitumor activity against Ehrlich’s ascite carcinoma 
cells (Kameda et al., 1974). A recent study on the effect of surfactin on the proliferation of a 
human colon carcinoma cell line showed that surfactin strongly blocked cell proliferation. 
The inhibition of growth by surfactin was due to the induction of apoptosis and cell cycle 
arrest via the suppression of cell survival regulating signals such as ERK and PI3K/Akt 
(Kim et al., 2007).  
Another study revealed that surfactin inhibits proliferation and induces apoptosis of MCF-7 
human breast cancer cells trough a ROS/JNK-mediated mitochondrial/caspase pathway. 
Surfactin causes the generation of reactive oxygen species (ROS), which induce the 
sustained activation of survival mediator ERK1/2 and JNK, which are key regulators of 
stress-induced apoptosis. These results suggest that the action of surfactin is realized via 
two independent signalling mechanisms (Cao et al., 2010). The induction of apoptotic cell 
death is a promising emerging strategy for the prevention and treatment of cancer. 

5.6 Thrombolytic activity 

The plasminogen-plasmin system involved in the dissolution of blood clots forms part of a 
variety of physiological and pathological processes requiring localized proteolysis. 
Plasminogen is activated proteolytically using a urokinase-type plasminogen activator (u-
PA), which is initially secreted as a zymogen prourokinase (pro-u-PA). Along with 
activation by u-PA, the plasminogen itself has an activation mechanism involving 
conformational change. The reciprocal activation of plasminogen and prourokinase is an 
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important mechanism in the initiation and propagation of local fibrinolytic activity. 
Surfactin at concentrations of 3 – 20 µmol/l enhances the activation of prourokinase as well 
as the conformational change in the plasminogen, leading to increased fibrinolysis in vitro 
and in vivo (Kikuchi & Hasumi, 2002). In a rat pulmonary embolism model, surfactin 
increased plasma clot lysis when injected in combination with prourokinase (Kikuchi & 
Hasumi, 2003). Surfactin is also able to prevent platelet aggregation, leading to the inhibition 
of additional fibrin clot formation, and to enhance fibrinolysis with the facilitated diffusion 
of fibrinolytic agents (Lim et al., 2005). The anti-platelet activity of surfactin is due not to its 
detergent effect, but to its action on downstream signalling pathways (Kim et al., 2006).  
These results suggest a possible use for surfactin in urgent thrombolytic therapy related to 
pulmonary, myocardial and cerebral disorders. Moreover, surfactin has advantages over 
other available thrombolytic agents because it has fewer side effects and therefore has 
potential for long-term use.  

5.7 Antiparasitic activity 

Vector control is a key point of various strategies aiming at interrupting the transmission of 
mosquito-borne diseases. The culture supernatant of a surfactin producing B. subtilis strain 
was found to kill the larval and pupal stages of mosquito species Anopheles stephensi, Culex 
quinquefasciatus and Aedes aegypti. As few biocontrol agents or insecticides are effective 
against mosquito pupae, this could be a promising tool for application in control 
programmes (Geetha et al., 2010). 
Surfactin was also reported to act as a Sir2 inhibitor (silent information inhibitor 2). Sir2 
belongs to the NAD+ dependent histone deacetylases, which modulate the acetylation status 
of histones, regulate transcription, DNA replication and repair and have been implicated in 
pathogenesis of Plasmodium falciparum, causing cerebral malaria. Surfactin functions as a 
competitive inhibitor of NAD+ and an uncompetitive inhibitor of acetylated peptide. 
Surfactin was also found to be a potent inhibitor of intra-erythrocytic growth of P. falciparum 
in vitro, with an IC50 value in the low micromolar range (Chakrabarty et al., 2008).      
Surfactin can also be used as alternative treatment for nosemosis. When exposed to 
surfactin, the spores of Nosema ceranae, the causative agent of the most frequently parasitic 
infection in Apis mellifera, reveal a significant reduction in infectivity. Moreover, when 
surfactin is administered ad libitum and is introduced into the digestive tract of a bee, it also 
leads to a substantial reduction in parasitosis development (Porrini et al., 2010). 

6. Obstacles and perspectives 

In general, biosurfactants produced from microorganisms possess more advantages over 
their chemical counterparts, such as diversity, biodegradability, lower toxicity, 
biocompatibility and stability over wide range of pH. Nevertheless, they have not been 
widely used so far due to their high production costs, caused primarily due to low yields 
and high recovery expenses that cannot meet the economic needs of industrial production. 
Similar limitations hinder the exploitation of surfactin potential applications in medicine 
and industry, as well as environmental protection. Numerous studies have been made on 
the optimization of surfactin yields at the level of production conditions, hyperproducing 
mutant construction and downstream processing of the crude product or in seeking 
surfactin producers in extreme habitats (Das et al., 2008) and the development of novel 
methods for the rapid screening of producers (das Neves et al., 2009). On the other hand, the 
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relatively low (µmol/l) effective concentration in biological systems could facilitate its use in 
biomedicine.  
However, surfactin also needs to conform to some additional requirements, such as detailed 

knowledge of the mechanism of interaction with the target cells and possible cytotoxicity 

effects to the treated macroorganism. Genetic and biochemical engineering approaches to 

create a tailor-made molecules (Symmank et al., 2002), or surfactin analogues with modified 

properties represent a possible solution for the future. Surprisingly, almost no research has 

been focused on the principle of surfactin resistance of the producer, which can not only 

bring a valuable piece of information for improving yields, but is also crucial for possible 

medical applications. 

6.1 Toxicity 

One of the plausible drawbacks of the potential use of surfactin in medical applications is its 

haemolytic activity, as observed in in vitro experiments, which results from surfactin’s 

ability to disturb the integrity of the target cell membranes. The concentration-dependent 

haemolytic effect of surfactin was described as the concentration of surfactin that bursts 50% 

of red blood cells (HC50), which is equal to 300 µmol/l (Dufour et al., 2005). On the other 

hand, surfactin concentrations used in various biomedical studies were far below the 

threshold, i.e. 30 µmol/l. The lowest surfactin concentration that completely inhibited the 

growth of mycoplasmata after 48 h (MIC) was 25 µmol/l (Fassi Fehri et al., 2007); 30 µmol/l 

surfactin treatment displayed significant anti-proliferative activity in human colon cancer 

cells (Kim et al., 2007) and was able to induce apoptosis in human breast cancer cells (Cao et 

al., 2010). The same surfactin concentration is also capable of inhibiting the 

immunostimulatory function of macrophages (Park & Kim, 2009). 
The LD50 (Lethal Dose, 50%; the dose required to kill half the members of a tested 
population) of surfactin is at > 100 mg/kg, i.v. in mice (Kikuchi & Hasumi, 2002). An oral 
intake of up to 500 mg/kg per day of the lipopeptide did not show apparent toxicities. 
Surfactin demonstrated no maternal toxicity, fetotoxicity, and teratogenicity in ICR mice 
(Hwang et al., 2008c). Surfactin did not show any toxicological effects at dose 2500 mg/kg 
after a single oral administration in rats. The no-observed-adverse-effect level (NOAEL) of 
surfactin was established to be 500 mg/kg following repeat (4 weeks) oral administration. 
No surfactin-related toxicities in survival, clinical signs, haematological parameters and 
histopathological observations of haematopoietic organs were found (Hwang et al., 2009). 
Surfactin did not influence the viability of HUVEC (human umbilical vein endothelial cells) 
up to 30 µg/ml after 24 h. Surfactin was also regarded as being less toxic than other 
surfactants, as judged from the results of an acute toxicity study in mice (Takahashi et al., 
2006) and also as a safer anti-endotoxin agent in comparison with polymyxin B (Hwang et 
al., 2007).  
Another option for reducing surfactin toxicity is to design a tailor-made molecule. Minor 

alterations in the chemical structure of the molecule may lead to a dramatic adjustment in 

the toxicity profile of any compound. Genetic engineering of the surfactin synthetase 

resulted in the production of a novel antimicrobial agent. Reduced toxicity against 

erythrocytes concomitant with an increased inhibitory effect on bacterial growth was 

observed (Symmank et al., 2002). Similarly, linear forms of surfactin have lower surface and 

haemolytic activities and can even protect red blood cells against the action of other 

detergents. Linear surfactin analogues could be incorporated into cyclic surfactin in order to 
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take advantage of its protective effect (Dufour et al., 2005). An alternative approach is to 

deliver cyclic surfactin in a liposome of a specific phospholipid constitution into different 

kinds of target cells (Bouffioux et al., 2007). Thus, similar surfactin derivatives may exhibit 

reduced toxicity against eukaryotic cells, which could improve their therapeutic 

applications. These synthetic analogues appear as an interesting research tool to investigate 

the subtle structure-function variations on the membrane activity of surfactin. In the future, 

it is expected that potential applications will be found in the biomedical and 

biotechnological fields, enabling the design of new surfactants with tuneable, well-defined 

properties (Francius et al., 2008). 

Surfactin can be also regarded as a toxic agent that can insult the producing microorganism 

membrane. All antibiotic-producing bacteria ensure their self-resistance by coding for 

various means of self-defense mechanisms that are activated in parallel with antibiotic 

biosynthetic pathways; their expression subsequently increases in time in order to avoid 

suicide. The cytoplasmic membrane can be reasonably supposed to be the site of self-

resistance against surfactin. The major advantage of drugs targeting the integrity of the 

membrane constitutes the multistep modification of this structure, necessary to bring about 

cell resistance. On the other hand, any use of antibiotics could lead to the selection of 

resistant variants of pathogens at some level. Nowadays, only limited information is 

available concerning the molecular background of surfactin tolerance in producing bacteria. 

However, as the ultimate source of resistance genes are almost certainly the producers 

(Hopwood, 2007), the elucidation of the self-protective resistance mechanism in the 

producer B. subtilis at the level of surfactin target site – the cytoplasmic membrane – is 

inevitably important.  

The extracytoplasmic transcription σw factor, controlling genes that provide intrinsic 

resistance to antimicrobial compounds produced by Bacilli, was recently identified (Butcher 

& Helmann, 2006). Nevertheless, none of these resistance systems were proven to be 

engaged in surfactin resistance. The only gene plausibly involved in surfactin resistance is 

swrC (Tsuge et al., 2001; Kearns et al., 2004). It codes for the first published example of an 

RND family of the proton-dependent multidrug efflux pumps in Gram-positive bacteria and 

contributes to the secretion of surfactin. However, surfactin production was observed even 

in a swrC-deficient strains that persistently survived at concentrations higher than 

10,000 μg/ml (Tsuge et al., 2001). This finding suggests the existence of other additional 

mechanisms that participate in the surfactin self-resistance of the producer. 
In order to examine the self-protective mechanisms of the cytoplasmic membrane against 
the deleterious effect of surfactin, we have constructed a mutant derivative with an 
abolished ability to synthesize surfactin (Fig. 3) complementary to the wild type surfactin 
producer B. subtilis ATCC 21332 (Seydlova et al., 2009). In this mutant, the sfp gene essential 
to the synthesis of surfactin was replaced with its inactive counterpart from the non-
producing strain B. subtilis 168, bearing a frame shift mutation (Nakano et al., 1992). This 
isogenic pair of strains, differing only in surfactin production, represents a key tool for the 
comparative study of surfactin-induced changes in the cytoplasmic membrane of B. subtilis 
producing surfactin. Our preliminary data show that the synthesis of surfactin coincides 
with the substantial reconstruction of phospholipid polar headgroups, leading to a more 
stable bilayer. On the other hand, GC/MS analysis revealed a minor alteration in membrane 
fatty acids, implying that surfactin operates mainly in the polar region, which is in 
agreement with recent findings observed in vitro (Shen et al., 2010b). 
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Fig. 3. The B. subtilis ATCC 21332 surfactin-producing strain and its mutant derivative 
minus surfactin production, accompanied by the absence of haemolysis (a - right) and 
swarming motility (b – wild type, c - mutant; bar 10 mm) 

6.2 Economics of surfactin production 

The high production cost of biosurfactants, which cannot compete with chemical 
surfactants, has been a major concern in commercial applications. Different strategies have 
been proposed to make the process more cost-effective, such as the optimization of 
fermentative conditions and downstream recovery processes, use of cheap and waste 
substrates and the development of overproducing strains (Banat et al., 2010). 
Several advances in the optimization of culture conditions and downstream processing have 
been published recently. The amount and type of a raw material can contribute by 10-30% to 
total production costs in most biotechnological processes (Mukherjee et al., 2006). 
Interesting, cheap and renewable sources have been described from agroindustrial crops 
and residues. A promising perspective for large-scale industrial application was shown 
using the already commercialized, cottonseed-derived Pharmamedia medium (Al-Ajlani et 
al., 2007) or cashew apple juice for surfactin production (Ponte Rocha et al., 2009) reaching 
high yields of 2000 mg/l and 3500 mg/l, respectively.     
A number of studies also deal with the improvement of culture and environmental 
parameters, the optimization of medium components and trace elements for the 
fermentation of surfactin. Carbon source (glucose), nitrogen source (ammonium nitrate), 
iron and manganese were found to be significant factors. It was reported that the addition of 
4 mmol/l Fe2+ leads to a 10-fold increase in surfactin yield (Wei et al., 2004) and the addition 
of Mn2+ ions enhances lipopeptide production by a factor of 2.6 (Kim et al., 2010). 
Apart from wild-type surfactin-producing strains, a few mutants have been selected and 
tested for surfactin production. Physical mutagenesis by ion beam implantation was used 
successfully to prepare a mutant that produced up to 12.2 g/l of crude surfactin (Gong et al., 
2009). Another recombinant strain was obtained using random mutagenesis with N-methyl-
N'-nitro-N-nitrosoguanidine, reaching a maximum production level of 50 g/l (Yoneda et al., 
2006). 
Downstream processing such as recovery, concentration and purification account for the 
greater part of the total cost of a biotechnological product (Mukherjee et al., 2006). The most 
common isolation techniques for biosurfactants use precipitation, solvent extraction and 
chromatographic purification. These techniques are already well established for lab-scale 
applications, but cost hinders their use in industrial production. Lately, many advances 
have been reported for the recovery and purification of surfactin, including different 
combinations of ultrafiltration and nanofiltration through polymeric membranes with 
molecular weight cut-off. High surfactin recovery and purification were achieved, showing 
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potential for application (Isa et al., 2007; Chen et al., 2008; Juang et al., 2008; Shaligram & 
Singhal, 2010).  

7. Conclusion 

Surfactin, as a natural product with a multitude of auspicious features applicable in 
biomedicine, has attracted the intense attention of many research entities during the last 
decade. This systematic effort has resulted in substantial progress in understanding the 
different aspects of surfactin physicochemical properties, interactions with cell membranes 
and even its physiological role for the producer itself. A number of activities, such as 
antimicrobial, immunosuppressive, antitumor and antiparasitic activities, have been 
described and explored. This is of particular importance, especially at time when drug 
resistance among causal organisms for many life-threatening diseases is on the rise; other 
means of therapy are needed, or are entirely absent. 
In spite of its immense potential, surfactin use remains restricted thus far. Further research 
needs to be carried out into the interaction of surfactin with target membranes and its global 
effect on the macroorganism and natural microbiota in order to validate the use of surfactin 
in biomedical and health-related areas. Last but not least, the mechanism of surfactin 
resistance also presents a crucial challenge. Nevertheless, it is only a matter of time before 
surfactin and its great biomedical potential are harnessed. 
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