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1. Introduction    

Brain imaging has the potential to advance our understanding of human health and to 

improve diagnosis and treatment of neurological diseases. Inspired by key questions in 

neuroscience and medicine, it becomes extremely important to develop statistical methods 

that can accurately and efficiently recover useful quantitative information from large 

amounts of brain images. The underlying computational issues are challenging and often 

hampered by uncertainties in imaging acquisition parameters, the variability of human 

anatomy and physiology, as well as the nature of the imaging data to be handled such as the 

presence of noise and correlation, and the sample and data sizes, and so on.  

Structural and Functional MRI (sMRI and fMRI)  Among the varieties of brain imaging 

modalities, magnetic resonance imaging (MRI) is primarily a noninvasive imaging 

technique used in radiology to visualize the brain’s structure and function. Two main forms 

of MRI include: Structural MRI (sMRI) images the anatomy and strucure of the brain 

(Symms et al., 2004) and provides detailed pictures of the brain’s size and shape; functional 

MRI (fMRI) identifies active regions, patterns of functional connectivities during either tasks 

specifically designed to study various aspects of brain fundtion or during the resting state 

(Martijn et al., 2010). The MRI machine is, in essence, a big magnet. As the subject lies in its 

magnetic field, invisible radio waves are released around the subject. This will result in 

harmless radio waves bouncing off the different substances that make up the brain. The 

radio waves are then detected by a computer, which transforms the data into images of the 

brain’s structure and activity. In fMRI, as the subject lies in the MRI machine, simple tasks 

are given; the MRI then maps what parts of the brain are most active during those tasks 

compared with activity while the brain is at rest. This allows researchers to understand how 

the brain functions. This information is used together with the data from the sMRI data to 

reveal a comprehensive picture of brain structure and function that fit in the overall studies 

or to allow us to understand how the healthy brain works. The informaiton and fusion of 

structural and functional MRI can also improve our understanding and the treatment of 

neurodegenerative diseases and mental disorders such as Alzheimer’s disease and 

schizophrenia.  

Brain Morphometry Analysis with Hypothesis Testing from Structural MRI Structural 
MRI (sMRI), or simply called MRI, scans are usually stored in the format of three-
dimensional (3D) voxels. There are several procedures for MRI post-processing, and the two 
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important ones are registration and segmentation. The registration maps an MRI scan to a 
pre-defined template (i.e. matches anatomical landmarks from different MRI images); this 
makes the exploration of group differences achievable. The segmentation classifies the 
voxels of an MRI scan as gray matter, white matter, cerebrospinal fluid, background, or 
region of interest (ROI); it serves as a foundation form for many analytical tools, including 
voxel-based morphometry, shape-based morphometry, and cortical thickness measuring, 
etc.  
Volumetry analysis of the whole brain (Buckner et al., 2004) and ROIs (Jack et al., 1997; 
Wang et al., 2003) have been traditionally used to obtain the measurements of anatomical 
volumes and to investigate normal or abnormal tissue structure. However, pure volume 
measures of the brain or ROIs do not reveal the localized regional morphometry of brain 
structures. In addition, it is based on the definition of regions according to some a prior 
hypothesis, which, in practice, is not always available. Thus, in general, it limits the ability 
of a study to identify new and previously unexplored relationships between structural 
changes. The localization limitation of volumetry analysis can be overcome by methods 
generally referred to as high-dimensional morphologic analysis, such as voxel-based 
morphometry (VBM) (Ashburner and Friston, 2000; Chung et al., 2001; Davatzikos, et al., 
2001), or surface-based (i.e. shape-based) morphometry (SBM) that examines the 
corresponding surface vertex locations or shape differences (Shen et al., 2005; Styner et al., 
2005; Thompson et al., 2004). The outputs from these methods are statistical parametric 
maps of the 3D brain volume or the 3D surface of the ROIs, showing differences at each 
voxel (in VBM) or vertex (in SBM) between the comparison groups. Thus, the subsequent 
inference of differences among the groups is usually performed through hypothesis testing 
at each voxel or at each vertex.  
The standard parametric test, such as t-test or F-test, could be used in brain morphometry 
analysis for simplicity with the assumption that the data to be tested are independent, 
identically, and normally distributed, for small or medium size samples. When the sample 
size is large enough, this assumption is not that strict any more. However, in practical 
neuroimage analysis, the distribution of the data is typically unknown and sample size is 
quite small, in which case, the nonparametric randomization or permutation tests can be 
applied for improved accuracy. Permutation tests obtain p-values from permutation 
distributions of a test statistic, rather than from parametric distributions. They belong to the 
nonparametric “distribution-free” category of hypothesis testing and are thus flexible, and 
have been used successfully in biomedical image analysis (Nichols & Holmes, 2001; 
Pantazis, et al., 2004; Zhou et al., 2009). One way to construct the permutation distribution is 
through exact permutation which enumerates all possible arrangements. Another way is to 
construct an approximate permutation distribution based on random sampling from all 
possible permutations (i.e. random permutation). The computational cost is the main 
disadvantage of exact permutation. Random permutation has the problem of replication and 
causes more Type I errors. When a large number of repeated tests are needed, it is also 
computationally expensive to achieve satisfactory p-value accuracy. In Section 2, we present 
our novel moments-based permutation methods, which take advantage of the parametric 
and nonparametric features for both efficiency and accuracy. 
Brain Connectivity Analysis from Functional MRI fMRI is a powerful technique that 
noninvasively measures and characterizes brain functions in humans under various 
cognitive and behavioral tasks. One of the most common forms of fMRI is the Blood Oxygen 
Level-Dependent (BOLD) imaging (Ogawa et al., 1990), measuring the magnetic resonance 
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properties of the blood. As neurons do not have direct energy sources but only get energy 
from blood, more active neurons will need to be supplied with energy from the blood at a 
higher rate. Therefore, this BOLD contrast, is able to show which parts of the brain are more 
active. At a number of different time points over the course of an expeirment, fMRI provides 
a set of scans (at different depths through the brain) constituting a volume. fMRI data is a 
time-course of the BOLD intensity for each voxel in the brain.   
During fMRI data acquisition, even a light move of a subject’s head can cause severe 
irregularities within the acquired data. To account for these potential movements, a 
realignment or motion correction procedure needs to be performed on the data (Lindquist, 
2008). This usually entails looking for six parameters - three rotations and three translations, 
that lead the volumes maximally aligned. The next pre-processing step is normalization: 
each complete set of volumes is normalized to a canonical brain, or the same stereo-tactic 
space. This is especially useful in multiple subjects studies to account for differences in brain 
size. Moreover, in order to improve the data signal to noise ratio, a spatial smoothing is 
often carried out by comvolving a Gaussin kernel with the fMRI data.  
A number of analytic methods have been developed for detecting brain activity patterns and 
how these patterns change in patients with cognitive disorders (Calhoun et al., 2001; 
McIntosh & Lobaugh, 2004; Worsley & Friston, 1995). A thorough understanding of the 
neural mechanisms not only requires the accurate delineation of activation regions 
(“functional segregation or specification”) but demands precise description of function in 
terms of the information flow across networks of areas (“functional integration”). That is, 
our brain is a newtork: it consistes of spatially distributed, but functionally linked regions 
that continuously share information with each other. Various approaches have been 
proposed to extract association information from fMRI datasets, most of which rely on either 
functional or effective connectivity (Horwitz, 2003). Functional connectivity has been 
identified as “temporal correlations between spatially remote neurophysiological events” 
(Friston et al., 1993). In Section 3, we present a novel and general statistical framework for 
robust and more complete estimation of functional connectivity or brain networks.  
Overview  In this chapter, we will present the statistical methods we have developed for the 
problems in the realms of brain morphometry and connectivity from analyzing structural 
and functional MRI data. The integration of the recovered structure and function from these 
imaging data may be able to provide complementary information and thus enhance our 
understanding of how the brain works and how its diseases occur. We will provide an 
explaination of the problem areas, a description of the statistical techniques involved and a 
demonstration of results on simulated and real imaging data using these statistical methods.   

2. Brain shape morphometry analysis using novel permutation methods 

There is increasing evidence that surface shape analysis of brain structures provides new 
information which is not available by conventional analysis. A critical issue in surface 
morphometry is the shape description and representation. Various strategies have been 
investigated recently in the literature, such as (Brechbühler et al., 1995; Thompson et al., 
2004; Wang & Staib, 2000). The spherical harmonics (SPHARM) approach using spherical 
harmonics as basis functions for a parametric surface description was proposed in 
(Brechbühler et al., 1995). The correspondence across different surfaces is established by 
aligning the parameterizations via the first order ellipsoid. The present work employs the 
SPHARM-PDM shape description (Styner et al., 2006), which leads to corresponding 
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location vectors across all surfaces for our subsequent statistical analysis of surface shape. At 
each corresponding position on the surfaces, we test whether there is a significant mean 
vector difference between location vectors of two groups. If a hypothesis test leads to a  

p-value smaller than the pre-chosen α-level, we reject the null hypothesis and conclude that 
a significant shape difference exists at this surface location. In this chapter, we focus on the 
surface shape analysis for two groups, though our method can be extended to the multi-
group case.  
Since the distribution of the location vectors is unknown, only a limited number of subject 
samples are available, and the same tests are repeated on thousands of locations, we 
propose to use our hybrid or moments-based permutation approach to the brain shape 
analysis. This approach takes advantage of nonparametric permutation tests and parametric 
Pearson distribution approximation for both efficiency and accuracy/flexibility. Specifically, 
we employ a general theoretical method to derive moments of permutation distribution for 
any linear test statistics. Here, the term “linear test statistic” refers to a linear function of test 
statistic coefficients, instead of that of data. An extension of the method to the general 
weighted v-statistics has also been developed recently in (Zhou et al., 2009). The key idea is 
to separate the moments of permutation distribution into two parts, permutation of test 
statistic coefficients and function of the data. We can then obtain the moments without any 
permutation since the permutation of test statistic coefficients can be derived theoretically. 
Given the first four moments, the permutation distribution can be well fitted by Pearson 
distribution series. The p-values are then estimated without any real permutation. For 
multiple comparison of two-group difference, given the sample size n1 = 21 and n2 = 21, the 
number of tests is m = 2000. m×(n1+n2)!/ n1!/ n2! ≈ 1.1×1015 permutations are needed for an 
exact permutation test. Even for 20,000 random permutations per test, 4×107 permutations 
are still required. Alternatively, our hybrid or moments-based permutation method using 
Pearson distribution approximation only involves the calculation of analytically derived 
first four moments of exact permutation distributions while achieve high accuracy. Instead 
of calculating the test statistics in factorial scale with exact permutation, our permutation 
using mean difference test statistic only require O(n) computation cost, where n =  n1+n2.  

2.1 Hypothesis 

Classical Hypothesis Given registered location vectors across all subjects, surface shape 
morphometry analysis becomes a two-sample test for equality of means at each surface 
location. The hypothesis is typically constructed as:  

                                   0 : A BH μ μ=
# #

       vs.    :a A BH μ μ≠
# #

 (1) 

where ( )( ) ( )[ ]yx z T
A A A Aμ μ μ μ=

#
 and ( )( ) ( )[ ]yx z T

B B B Bμ μ μ μ=
#

 are three dimensional mean vectors of 

group A and B. 
Bioequivalence Hypothesis In many applications, statistical significance is not equivalent to 
practical significance since smaller differences of two group location vectors can be more 
statistically significant than the larger ones. Statistical significance means that the observed 
difference is not a consequence of sampling error. Practical significance indicates whether 
the difference is large enough to be of value in a practical sense. Statistical significance does 
not necessarily indicate practical significance because extremely small and non-notable 
differences can be statistically significant. For example, there are two pairs of observed mean 
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location vectors 1 1( , )A Bμ μ
# #

 at location 1 and 2 2( , )A Bμ μ
# #

 at location 2, with 1 [1,1,1]TAμ =
#

, 

1 [0.999,0.999,0.999]TBμ =
#

, 2 [1,1,1]TAμ =
#

, and 2 [0.7,0.7,0.7]TBμ =
#

. We assume that the 

variance of location vectors at location 2 is much larger than that at location 1, and their  
p-values of the observed mean differences are p1 = 0.001 and p2 = 0.01 respectively. The mean 
difference at location 1 is physically very small, although it is more statistical significant 
than the one at location 2. In this case, it is more reasonable to identify practical or physical 
shape difference at location 2 rather than at location 1.  In order to achieve this, we propose 
to use the multivariate bioequivalence hypothesis test for our surface morphometry 
analysis:  

                       

( ) ( )
0

( ) ( )

: max{ } , { , , }  bioequivalence

: max{ } , { , , }  bioinequivalence

s s
BA

s s
a BA

H s x y z

H s x y z

μ μ

μ μ

− ≤ Δ ∈

− > Δ ∈
 (2) 

where ∆ is the desired threshold. That is, the shape difference is detected as significant if the 
mean vector difference is large enough in either x, y or z direction. Bioequivalence tests were 
originally introduced in the pharmaceutical industry to determine the bioequivalence 
(Brown et al., 1997). Here, we employ bioequivalence concept though for detecting 
bioinequivalence as in Eq. (2) we constructed, instead of bioequivalence as in the standard 
pharmaceutical studies.  
A permutation test is valid if the observations are exchangeable under the null hypothesis. 
However, the condition of exchangeability under null hypothesis is not satisfied in 
hypothesis Eq. (2). We thus propose to utilize a two-step permutation test. 

                                  Step 1: (1) ( ) ( )
0 : , { , , }s s

BAH s x y zμ μ= + Δ ∈  

                      ( ) ( )( ) ( ) ( ) ( )(1) : y yx x z z
a B B BA A AH or orμ μ μ μ μ μ> + Δ > + Δ > + Δ   (3) 

                                  Step 2: (2) ( ) ( )
0 : , { , , }s s

BAH s x y zμ μ= − Δ ∈  

                      ( ) ( )( ) ( ) ( ) ( )(2) : y yx x z z
a B B BA A AH or orμ μ μ μ μ μ< − Δ < − Δ < − Δ   (4) 

If a hypothesis test of significance in step 1 (Eq. (3)) or in step 2 (Eq. (4)) gives a p-value 

lower than the α/2-level, we reject the null hypothesis and significant shape difference 

exists. The total significance level in this case is still α due to the involved two steps in Eq. 

(3) and Eq. (4). Note that the classical hypothesis is a special case of the bioequivalence 

hypothesis when ∆ = 0. Classical hypothesis is used in applications where statistical and 

practical significances are consistent. Otherwise, bioequivalence test is preferred if there is 

any non-negligible difference between practical significance and statistical significance. 

2.2 New Permutation Approach 

Pearson Distribution Series  The Pearson distribution series (Pearson I ~ VII) are a family of 
probability distributions that are more general than the normal distribution (Hubert, 1987). 
As shown in Fig. 1 (Hahn & Shapiro, 1967), it covers all distributions in the (β1, β2) plane 
including normal, beta, gamma, log-normal and etc., where distribution shape parameters 
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β1, β2 are the square of the standardized skewness and kurtosis measurements, 
respectively. Given the first four moments, the Pearson distribution series can be utilized to 
approximate the permutation distribution of the test statistic without conducting real 
permutation. 
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Fig. 1. Left: Regions in (β1, β2) plane for various types of Pearson distribution series; Right: 
Regions in (β1, β2 ) plane for various types of parametric distributions (Hahn & Shapiro, 
1967).  

Theoretical Derivation of Moments In order to approximate the permutation distribution 
with Pearson distribution, the moments of the exact permutation distribution need to be 
computed. Let X = [x1, x2, …, xn]T be the one dimensional data, and T = CTPX denotes the 

linear test statistic for permutation test. 1[ ]TnC c c= A is the linear test statistic coefficients 

vector. The permutation matrix P is a matrix that has exactly one entry 1 in each row and 
each column and 0's elsewhere. A permutation matrix is a matrix obtained by permuting the 
rows of an identity matrix according to some permutation of the numbers 1 to n. For 

example, let 

0 0 1

1 0 0

0 1 0

P

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 1 2 3[ ]TX x x x=  and 1 2 3[ ]TC c c c= , thus 3 1 2[ ]TPX x x x=  and 

2 1 3 2 1 3 ( )( , ) T
i i

i

T X C PX c x c x c x c xππ = = + + =∑ , where ( (1), (2), (3)) (2, 3, 1)π π π =  denotes a 

permutation of vector data by row. Then the linear test statistic can be denoted as 

( )( , ) T
i i

i

T X C PX c xππ = =∑ . The r-th conditional moment can be derived as: 

1

( )
, 1

1
( ( , ) ) (( ) ) ( )

! k k

r

r
r T r

i i
i i k

E T X X E C PX c x
n

π
π

π
=

= = ∑ ∑ ∏
A

 

                           
1 1

( ) ( )
, ,1 1 1 1

1 1
( ) ( )

! !k k k k

r r

r r r r

i i i i
i i i ik k k k

x c x c
n n

π π
π π= = = =

= =∑ ∑ ∑ ∑∏ ∏ ∏ ∏
A A

 (5) 
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To compute ( )
1

1

! k

r

i
k

c
n

π
π =
∑∏ , it is natural to partition the index space {1 2 }rU n= A  into 

1 2

1 2

( , , , )

( , , , )

q

q L

U
λ λ λ

λ λ λ ∈

A

A
∪ , where 

1 2 1 2

1 2 1 2

{( , , , ) : , , , ;

    ; }

q q

q q

L

r

λ λ λ λ λ λ

λ λ λ λ λ λ

+= ∈Ζ

≤ ≤ ≤ + + + =

A A

A A
. 1 2( , , , )qU

λ λ λA
means 

that all r  indices are permuted into q different numbers. Each number corresponds to iλ  

indices. When 3r = , (1,1,1) (1,2) (3)U U U U= ∪ ∪ , where  (1,1,1)U is the set of 

1 2 1 3 2 3{ }i i and i i and i i≠ ≠ ≠  with 3q =  and 1 2 3 1λ λ λ= = = , (1,2)U  is the set of  

1 2 3 1 3 2 2 3 1{ }i i i or i i i or i i i= ≠ = ≠ = ≠  with 2q =  and 1 21, 2λ λ= = , and (3)U  is the set of 

1 2 3{ }i i i= =  with 1q =  and 1 3λ = . Since permutation is equally related to all r  indices, 

( )
1

1

! k

r

i
k

c
n

π
π =
∑∏  is invariant in each category, we define ( )

1

1

! k

r

i
k

c
n

π
π =
∑∏  as moment coefficient, 

1 2( , , , )q
a λ λ λA , if 1 2( , , , )

1 2( ) q

ri i i U
λ λ λ∈ AA . Eventually, the r-th conditional moment is: 

                        
1 2

( , , , )1 2
1 2 1

( , , , )
, , , 1( , )

( ( , ) ) ( )
q k

q
q r

r
r

i
ki i U

E T X X a x
λ λ λ

λ λ λ
λ λ λ

π
=∈

= ∑ ∑ ∏
A

A
A A

  (6) 

Eq. (6) separates the permutation from the data. To get the moments, we only need to derive 
the permutation of the coefficients of pre-chose test statistics and calculate the summation 
terms of data. Due to the simple pattern of the coefficients of test statistics which is the same 
for repeated tests, we can derive the moments of permutation distribution without 
permutation of the data. Alternatively, all a s can also be calculated by computer simulation 

without analytical derivation. In addition, the discussed approach can be easily extended to 
the multivariate case (Zhou & Wang, 2008).  
Mean Difference Test Statistic In surface shape analysis, we use mean vector difference as 
test statistic, and T = [TX, TY, TZ]T = [CPX*, CPY*, CPZ*]T, where the mean difference vector 

1 21 1
1 2

1 1
[ 1 , 1 ]n nC
n n

× ×
−

= , 
1 2

*
1 1[0 , 1 ]Tn nX X × ×= + Δ, 

1 2

*
1 1[0 , 1 ]Tn nY Y × ×= + Δ , 

1 2

*
1 1[0 , 1 ]Tn nZ Z × ×= + Δ. 

∆ is the desired threshold for bioequivalence test, and is equal to zero in classical hypothesis 
test case. The detailed and complete formulas of corresponding a s are derived and listed in 

(Zhou & Wang, 2008). For the mean difference test statistic, the computation cost of data 
summation terms for the r-th moment in each index subspace can be reduced to O(n) from 
O(nr). 
Multiple Comparison via Adaptive ROI Constrained FDR Determining whether a location 
on the brain surface has significant group shape difference or not corresponds to performing 
a described hypothesis test at that position. Clearly, the location-wise p-values are spatially 
dependent. The significance rule, applied in the conventional False Discovery Rate (FDR) 
approach is defined as the expected proportion of false positives among the declared 
significant results. It is more powerful and less stringent than the Family-Wise-Error-Rate 
(FWER) approach. We adopt the adaptive concept of the FDR (Benjamini et al., 2006) and 
develop a ROI constrained adaptive FDR in (Zhou & Wang, 2008). This adaptive FDR 
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control is more powerful than the conventional one. It can find more significant areas while 
preserving the same desired FDR rate.  

2.3 Experiments and results 

Simulated Data In this experiment, we generated six different simulated data sets to 
evaluate our hybrid permutation tests. In case #1 and case #2, two group data are normal 
distributed with different mean and variance (Normal(0,1) vs. Normal(1,0.5)) in balanced 
design (n1 = n2 = 10) and unbalanced design (n1 = 6, n2 = 18), respectively. Each group has 
gamma distribution in case #3 (Gamma(3,3) vs. (Gamma(3,2), n1 = n2 = 10) and case #4 
(Gamma(3,3) vs. (Gamma(3,2), n1 = 6, n2 = 18).  In case #5 and case #6, two group data have 
beta distribution with different parameters (Beta(0.8,0.8) vs. Beta(0.1,0.1)) in balanced design 
(n1 = n2 = 10) and unbalanced design (n1=6, n2=18). 
 

 Case #1 Case #2 Case #3 Case#4 Case#5 Case#6 

t_HP 0.0113 0.0113 0.0123 0.0137 0.0172 0.0018 

t_RP 1.1584 1.1438 1.1369 1.1250 1.1262 1.1384 

t_EP 4.4389 4.2795 4.2983 4.3240 4.1320 4.2948 

p_HP 0.0499 0.1314 0.0010 0.0249 0.0908 0.0805 

p_RP 0.0495 0.1269 0.0012 0.0242 0.0889 0.0818 

p_EP 0.0498 0.1301 0.0010 0.0250 0.0925 0.0803 

Table 1. Comparison of computation costs and p-value accuracy for three permutation test 
methods. (HP: hybrid permutation; RP: random permutation; EP: exact permutation.). t_HP, 
t_RP and t_HP denote the respective computation time (in seconds) per test; p_HP, p_RP 
and p_EP are the respective p-value measurements by the three permutation methods. 

Table 1 indicates the high accuracy of our hybrid permutation technique, especially for the 

tail area (Note: the exact permutation results are considered as ground truth.) Furthermore, 

comparing with exact permutation or random 20,000 permutations, the hybrid permutation 

tests reduce more than 99% computation cost and can further save computation time as the 

sample size increases. In order to demonstrate the robustness of our method, we repeated 

the simulation for 10 times in each case, and calculate the mean and variance of the absolute 

biases of p-values of both hybrid permutation and random permutation, treating the p-

values of exact permutation as gold standard. In most cases, hybrid permutation is less 

biased and more stable than random permutation (Table 2), which demonstrates the 

robustness and accuracy of our method. 

We also generated a synthetic dataset to demonstrate that bioequivalence test plays an 
important role in identifying practical significance. There are 12 surfaces in group A and 9 in 
group B, which were generated by adding two types of Gaussian noises to the two flat 
patches, a (5×5) top patch and a (21×21-5×5) bottom patch. For group A, Gaussian noise 
with mean zero and standard deviation σb = 0.01 was added to the bottom patch with z = 0; 
Gaussian noise with mean zero and standard deviation σt = 0.09 is added to the top patch 
with z = 1. The 9 surfaces in group B were generated with the same noise patterns as in 
group A but to different bottom patch z = 0.01 and top patch z = 0.9. Since the differences  
between the bottom patches of the two groups are very small (z = 0 vs. z = 0.01), the practical 
group differences should only occur on the top patch (z = 1 vs. z = 0.9). Fig. 2(c) shows that  
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 Case #1 Case #2 Case #3 Case #4 Case #5 Case #6 

Mean_ABias_HP 8.79e-5 8.97e-6 9.54e-5 2.16e-4 6.79e-4 4.53e-4 

Mean_ABias_RP 2.82e-4 6.64e-5 2.14e-4 1.30e-3 2.78e-4 5.99e-4 

VAR_ABias_HP 5.99e-8 1.34e-7 2.10e-6 3.66e-7 9.55e-7 9.78e-6 

VAR_ABias_RP 1.98e-6 1.42e-7 1.41e-6 5.34e-6 1.05e-5 1.00e-5 

Table 2. Robustness and accuracy comparison of hybrid (moments-based) permutation and 
random permutation across 10 simulations, considering the p-values of exact permutation as 
gold standard. Mean_ABias_HP and VAR_ABias_HP are the mean and variance of the 
absolute biases of p-values of hybrid permutation; Mean_ABias_RP and VAR_ABias_RP are 
the mean and variance of the absolute biases of p-values of random permutation, respectively. 

many significance locations on both the top and bottom patches are detected by the classical 
hypothesis tests. Also, the non-practical significances can not be revealed with a more 

conservative significance level (i.e., lower α) because not all p-values on the top patch are 
lower than those of the bottom patch (see Fig. 2(d)). Using bioequivalence tests, we are able 
to precisely identify the practical significances that occur at the top patch (Fig. 2(e)).   
Real Data of the Human Brain  The MRI hippocampi used in this experiment were semi-
automatically segmented by human expert raters and manually grouped into 2 groups with 
21 subjects in group A and 15 in group B (see the following site for details: 
http://www.ia.unc.edu/dev/download/shapeAnalysis/). This dataset serves as a testing dataset for 
methodology validation for all users of the SPHARM-PDM software. Evaluation of our 
bioequivalence test using hybrid permutation with the mean difference test statistics on this 
hippocampus dataset is shown in Fig. 3. It can be seen that the Pearson distribution 
approximation based on the first four moments leads to an accurate approximation to the 
real permutation distribution and thus p-values (Fig. 3(c) vs. Fig. 3(d)). At the same 

significance level α = 0.05, there are differences (Fig. 3(e)) between the results of classical test 
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Fig. 2. (a): Mean shape of group A. (b): Mean shape of group B. (c) and (d): Results using 

conventional hypothesis tests with α = 0.05 (c) and with α = 0.001 (d). (e) Results using 

bioequivalence tests with α = 0.05 and ∆ = 0.025.  
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(a)       (b)           (c)            (d)            (e)             (f)          (g)            (h)        

        
 p-value>0.05      0.05                         0.0             less       equal        more 
   
        Color bar for (a) – (d), and (g) – (i)               Color bar for (e) and (f)  

 

Fig. 3. (a) and (b): Raw p-value maps from classical hypothesis test using Pearson 

approximation, at α = 0.05 (a), and at α = 0.035  (b). (c) and (d): Raw p-value maps from 

bioequivalence test at α = 0.05 (without correction), through real permutation ((c); number 
of permutations = 10,000), and using Pearson approximation (d). (e): The difference between 
(a) and (d), locations in red showing significances in (a) but not in (d).  (f): The difference 
between (b) and (d), locations in blue showing significances in (d) but not in (b). (g): Our 
ROI constrained adaptive FDR corrected p-map for (d). (h): Our ROI constrained adaptive 
FDR corrected p-map for (a). 

(Fig. 3(a)) and bioequivalence test (Fig. 3(d)). In addition, at a lower significance level,  

(α  = 0.035, Fig. 3(b)) both the non-notable differences and some practical significances that 
we would like to detect are shown as non-significant (see Fig. 3(f)). This indicates that 
simply decreasing the significance level in a standard hypothesis test may not lead to 
practical significances, which can only be achieved through the proposed bioequivalence 
test. The false positive error control results are shown in Fig. 3 (g) and (h).  

3. Brain connectivity analysis from functional MRI 

For functional connectivity studies, a common approach is to calculate the temporal 

correlation coefficients of a fMRI signal from a selected voxel or region (so called “seed”, or 

“seed region”) in a region of interest with all other voxels in the brain (Worsley et al., 2005). 

Each correlation map is resulting from the cross-correlation of only one seed region. 

However, when areas with quite different time series patterns are used as seed regions for 

brain connectivity inference, they should not be grouped as a single region; in some 

applications, functional co-activation to multiple seeds rather than a single one would be of 

particular interest. Multiple seeds can be chosen to calculate multiple correlation maps to 

separately discover the functional connectivity to different seeds. But how to reasonably 

integrate multiple connectivity maps for brain function inference is still unresolved and 

ambiguous. Furthermore, it is often unrealistic to examine all pair-wise correlations. 

Therefore, it is desirable to have a single correlation map resulting from the cross-correlation 

of two or more seed regions simultaneously.  

Dynamic connections in fMRI are thought to be reflected by high temporal correlations of 
the time series. The strong correlation between the time series of each region in the network 
with that of another distant region implied by the functional interactions may be related to 
the spatially structured noise in fMRI (Cordes, et al., 2002). The spatial correlations of the 
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noise must therefore be taken into account when dealing with sensitive and reproducible 
estimation of the network. Furthermore, brain functional connectivity based on marginal 
correlation can be dominated by the stimulus-locked responses. For example, if visual and 
auditory stimuli are presented concurrently, the stimulus-locked neural responses would 
cause increases in the BOLD signal in the primary auditory cortex (A1) and the primary 
visual cortex (V1) simultaneously. Correlation between A1 and V1 would thus be high, 
though not due to any intrinsic task-induced functional couplings but due to the responses 
in both regions to externally driven stimuli. Partial correlation is the conditional correlation 
which estimates any remaining correlation between time series after taking into account the 
relationship of each to one or more reference time series. The stimulus-locked responses can 
then be accounted for by choosing the reference functions to model the external stimuli. This 
allows us to measure any additional task-induced, but not stimulus-locked relation over 
brain regions. Recently, methods using partial correlation (or coherence) have been 
proposed (Sun et al., 2004; Marrelec et al., 2006), though they are for pair-wise correlation 
(or coherence) analysis and not applicable to multiple seeds. How to apply the partial 
correlation concept to multiple seed regions to brain connectivity study while considering 
spatial partial correlations in noise to those seed regions is challenging. Here, we propose a 
novel procedure to achieve this as one of the goals of this work.  

3.1 Functional connectivity using multiple correlations 

Estimating Temporal/Sample Multiple Correlations Let T be the total number of time 
points of the fMRI data. The temporal or sample multiple correlation coefficient considers 

the fMRI time series correlation between a given voxel X and a combination of seed regions, 

1 2, , PS S SA . Its estimation is based on the variance-covariance matrix: 

1

1 1 1

1

, ,

'
, ,

, ,

ˆ ˆ ˆvar cov cov

ˆ ˆ ˆ ˆˆcov var cov varˆ

ˆˆ
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P P P

X X S X S

S X S S S X X
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S X S S S

⎡ ⎤
⎢ ⎥
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⎢ ⎥
⎣ ⎦

S
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covΣ
cov Σ

A

A
B B B B

A

, 

where var( )X  and var
pS  are the time series variances for voxel X  and seed pS  

( 1,2,p P= A ), respectively; and ,cov
pX s  is their covariance. The temporal multiple 

correlation coefficient ˆ
temR  between voxel X and the multiple seeds '

1 2[ , , ]PS S SA  can be 

calculated as (Anderson, 2003):   

' 1ˆˆ ˆˆ
ˆvar

X X
tem

X

R
−⋅ ⋅

= S SS Scov Σ cov
. 

Estimating Spatial Multiple Correlations in Noise The factors contributing to the spatial 
correlation of the noise include fMRI data preprocessing, the point spread function, which 
causes data from an individual voxel to contain some signal from the tissue around that 
voxel, an effect compounded by motion correction techniques, and the smoothness 
introduced by interpolation in motion correction (Woolrich et al., 2004). Despite the 
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strategies and efforts to reduce such structured noise (Wang et al., 2003; Wang, 2005), some 
residual and further corrections are still essential for robust fMRI data analysis.  

Voxel-based Spatial Correlograph of Noise.  We assume the spatial noise is stationary and has a 

multivariate Gaussian distribution with variance-covariance matrix ( ),
, 1

M

i j
i j

σ
=

=Σ , where M 

is the total number of voxels; iσ and jσ are positive standard deviations for voxels iX and 

jX . The spatial correlations in noise then depend only on the spatial distance between 

voxels: ( )ij i j i jσ σ σ ρ= − , where i j− denotes the spatial distance or lag between iX and 

jX ; and ρ  is the spatial correlogram, a real-valued function that satisfies (0) 1ρ = and is 

bounded by -1 and 1. Since it is unknown what voxels or regions are predominantly 

influenced by the noise, the entire set ( ){ }, |h i jD X X i j h= − =  of pairs of voxels at lag h 

over the whole brain area is considered for the non-parametric estimate based on the 

median: ( ){ }ˆ( ) ,  , ,ij i j hh median r X X Dρ = ∈ , where ijr  is the Pearson’s linear correlation 

between the time series of the two voxels. As in general the empirical estimator ρ̂  of the 

correlogram does not provide a positive-definite correlation matrix, we focus on a 

parametric class of valid matrices, based on the empirical values ρ̂  estimated from the fMRI 

data. The rational-quadratic model ( )hρθ  in (Cressie, 1993; Wang & Xia, 2009) is utilized for 

such purpose. The derived spatial correlogram of noise, ( )hρθ , decreases rapidly from a 

correlation level between nearby voxels, 0ρ + , towards an asymptotic correlation, ρ∞ . A 

critical distance hε∞  can be determined beyond which the correlogram is almost equal to the 

asymptote, with a tolerance of ε . The parameterization of the rational-quadratic model 

using ( )0 , ,hερ ρ+ ∞ ∞  is given as in (Bellec et al., 2006; Wang & Xia, 2009). 

Spatial Multiple Correlations in Noise.  The spatial multiple correlations of the noise consider 

the correlations between any voxel X and a combination of multiple seeds 1 2, , PS S SA . 

Suppose the distances between the voxel X and the seeds 1 2, , PS S SA  are 

respectively 1 2, , Ph h hA , and the distances between any pair-wise seeds are ijh  (for iS and jS , 

ij jih h= ). The noise spatial correlation matrix for 1 2, , , PX S S S
′

⎡ ⎤⎣ ⎦A can then be constructed as: 

1
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where ( )hρθ  is the correlogram estimated above. Let 2
Xσ  and 2

pSσ  respectively denote the 

noise variance for voxel X, and seed pS , 1,2,p P= A . Then the corresponding variance-

covariance matrix, spaΣ , is: 
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The spatial multiple correlation coefficient of the noise between any voxel X and the seeds 

1 2, , PS S S
′

⎡ ⎤⎣ ⎦A  is computed as: 
'

2

X X

X
spa

R
σ

−⋅ ⋅=
1

S SS Sσ Σ σ
, and can be re-formulated to:   

                                           
spa

R −= ⋅ ⋅' 1
S SS Sρ Λ ρ  (7) 

Identifying Functional Connectivity of Brain The factors Given the estimation of multiple 
correlations in noise, we use hypothesis testing to search for significant correlations between 
any voxel and the seed regions that are statistically unlikely to be due to noise. 

Statistical Hypothesis Testing. We would like to test whether the temporal multiple correlation 
ˆ

temR  is likely to be found only by chance from the noise correlation. The hypothesis is: 

0 1:  vs. :tem spa tem spaH R R H R R= > . 

Under the null hypothesis that the temporal multiple correlation, ˆ
temR , arises from a 

population whose multiple correlation equals the spatial multiple correlation of the noise, 

spaR , the following quantity is a non-central F (Anderson, 2003) (pp. 153-154):     

   

2

2

1

1

tem

tem

R
F

R

T P

P

∧

∧
= ⋅

− −

−
 (8) 

Here, the degrees of freedom are P and 1T P− − , and the noncentrality parameter 

incorporating our re-formulated Rspa in Eq. (7) is 
' 1 1

' 1

( 1)

1

T
∧

− −

−
−

− ⋅ ⋅
SSS SS SS S

S SS S

ρ Λ Σ Λ ρ
ρ Λ ρ
Ψ Ψ

, where we 

condition on the seeds’ time series, andΨ  is a P P×  diagonal matrix with diagonal element 

1 / , for 1,2, ,
pS p Pσ = … . In this way, the p-value for each voxel can be calculated from this 

noncentral F distribution. A voxel shall be included in the functional connectivity network if 
the corresponding p-value is smaller than a pre-chosen type I error α (note: α 0.05=  is used 
in this connectivity work). It can also be shown that under the null hypothesis of the 
population multiple correlation, Rspa, is zero (i.e. our hypothesis becomes: 

0 1: 0  vs. : 0tem temH R H R= > ), the F in Eq. (8) is a central F (Anderson, 2003) (pp. 149-150), 

with P  and 1T P− − degrees of freedom. In fact, this is equivalent to multiple correlation 
analysis of multi-seed functional connectivity but without taking the spatial correlations of 
the noise into consideration.  
Effective Degrees of Freedom for Temporal Autocorrelation. A departure from the temporally 

i.i.d. (independent and identically distributed) assumption due to the temporal 

autocorrelation will result in a decrease in the degrees of freedom in the above hypothesis 

testing. To correct such possible bias, we estimate the effective degrees of freedom Teff. This 

can be achieved through the context of the general linear model (Worsley & Friston, 1995). 

Note that the Teff estimated this way assumes voxelwise spatial independence, which can be 

considered as an upper-bound estimation of our effective degrees of freedom. We 

approximate the effective degrees of freedom as Teff, and use the estimated Teff to replace the 

T-1 in the F statistic’s calculation in Eq. (8).   
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Multiple Testing using Non-central F Random Field.  We need to perform numerous tests equal 

to the total number of voxels over the brain area. In order to correct this multiple testing 

problem, different strategies can be potentially applied, such as Bonferroni correction, 

cluster-size thresholding, random field theory or false discovery rate control (Huettel et al., 

2004; Benjamini & Hochbert, 1995; Logan & Rowe, 2004; Nicholos & Holmes, 2001; Zhou & 

Wang, 2008). The Random field theory (RFT) correction on the t-field, Hotelling’s T2 field, 
2χ  field, central F field, and the correlation field has been developed by Worsley and 

colleagues (Cao & Worsley, 1999; Worsley, 1994). RFT estimates the number of independent 

statistical tests based upon the spatial correlation, or smoothness, of the experimental data. 

With even small to moderate amounts of smoothness in the data, the number of resels 

(resolution elements) will be much less than the original number of voxels. From the 

number of resels, one can estimate how many clusters of activity should be found by chance 

at a given statistical threshold. This number is known as the Euler characteristic of the data. 

RFT correction is less conservative than the Bonferroni correction. In this work, we use the 

non-central F RFT to correct the multiple comparison problems (Wang & Xia, 2009; 

Hayasaka et al., 2007).  

3.2 Functional connectivity using partial multiple correlations 

Estimating Temporal Partial Multiple Correlations  The temporal partial multiple 

correlation coefficient considers the fMRI time series correlation between a given 

voxel X and a combination of seed regions 1 2, , PS S SA  conditioned on fixed stimuli 

(experimental paradigms or reference functions, i.e. the convolution functions of the 

hemodynamic response with the 0-1 boxcar stimulus functions in the case of the block-

design experiments), 1 2, , NV V VA . Its estimation is based on the matrix: 
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where var
nV  is the time series variances of the stimulus nV  ( )1,2,n N= A ; ,cov

nX V is the 

covariance between voxel X and nV , and ,cov
p nS V is the covariance between the seed pS and 

nV . Their estimation can be achieved through time series and reference function samples of 

size T, though here they are not technically variances and covariances because the nV  are 

fixed stimuli. With the assumption that the conditional distribution 

( )1 1 1 2 2, , , , ,P N NX S S V v V v V v ′= = =A A is a multi-normal distribution (Anderson, 2008), its 

variance-covariance matrix can be calculated as:  

{ }{ } { } { }

1*

tem X X X X

−∧ ∧ ∧∧ ′
= − ⋅ ⋅

S S S V VV S V
Σ Σ Σ Σ Σ . 
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Let the components of 
*

tem

∧
Σ  be divided into four groups, 

* * '
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X X

X

⎡ ⎤
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cov Σ
, where *ˆvarX  and 

*ˆ
SSΣ  are variances of voxel X  and the seeds holding the reference functions (stimuli) fixed, 

*ˆ
XScov is their corresponding covariance under the same condition. The temporal partial 

multiple correlation is:  

* * *
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temR
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= S SS S
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cov Σ cov

i  

Estimating Spatial Partial Multiple Correlations in Noise In Section 3.1, we estimate the 
voxel-based spatial correlograph of noise using the median of Pearson’s linear correlation, 
i.e. marginal correlation. Here, we take the similar approach but replace the marginal 
correlation with partial correlation because the stimuli are now considered to be fixed, i.e., 

( ){ }*ˆ ( ) ,  , ,ij i j hh median r X X Dρ ⋅= ∈V , where ijr ⋅V  is the partial correlation coefficient between 

voxels Xi and Xj holding 1 2, , NV V VA  fixed. Let the variance-covariance matrix of 

( )1, , , ,i j NX V VX
′

A  be 

∧ ∧
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multi-normal; its variance-covariance matrix is calculated as:  
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The partial correlation coefficient is thus given by (Anderson, 2008):    
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The noise spatial partial correlation matrix for 1 2, , , PX S S S
′

⎡ ⎤⎣ ⎦A holding 1 2, , NV V VA   fixed 

can be constructed as:  
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where *( )hρθ  is the correlogram. Let *

pSσ  denote the residual standard deviation of the noise 

for seed pS , 1,2,p P= A , holding 1 2, , NV V VA   fixed (see Appendix in [Wang & Xia, 2009] 
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for its estimation). The spatial partial multiple correlation coefficient of the noise between 

any voxel X and the seeds 1 2, , PS S S ′⎡ ⎤⎣ ⎦A holding the stimuli fixed is computed as:   
 

spa
R

⋅

−= ⋅ ⋅
V

* ' * 1 *
S SS Sρ Λ ρ . 

 

Identifying Conditional Functional Connectivity of Brain We would like to test whether 

the temporal partial multiple correlation ˆ
temR ⋅V  is likely to be found only by change from 

the noise correlation. The hypothesis is: 
 

0 . 1 .:  vs. :tem spa tem spaH R R H R R⋅ ⋅= >V V V V . 

 

Here, we can show that the following quantity is a non-central F: 
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with the degrees of freedom P  and 1T N P− − − , and the noncentrality parameter 

( ) * *1

1

T
∧
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−

′ ′−
′−

*
* * 1 * 1 *
S SS SS SSS

* * 1 *
S SS S

ρ Λ Ψ Ψ Λ ρ

ρ Λ ρ
Σ , where we condition on the seeds’ time series; *ψ  is a 

P P×  diagonal matrix with diagonal element *1
pSσ , for 1,2,p P= A . Note that the 

temporal autocorrelation can be handled in a similar way as in the multiple correlation case 
by computing the associated effective degrees of freedom; the multiple testing correction is 
similarly based on non-central F random field theory (see Section 3.1 for details).  

Similar to the multiple correlation case, under the null hypothesis of the population  

partial multiple correlation, 
spa

R
⋅ V

, is zero (i.e. our hypothesis becomes: 

0 . 1 .: 0 vs. : 0tem temH R H R= >V V ),  the F in Eq. (9) is a central F , with P  and 1T N P− − −  

degrees of freedom. This is then equivalent to partial multiple correlation analysis of multi-

seed functional connectivity but without taking the spatial partial correlations of the noise 

into consideration.  

3.3 Experiments on real fMRI data 

The real fMRI data (single-subject) was obtained from the SPM data site 

(http://www.fil.ion.ucl.ac.uk/spm/data/attention) with the detailed description in (Buchel & 

Friston, 1997). The subject was scanned during four runs, each lasting 5 min 22 s. One 

hundred image volumes were acquired and the first ten was discarded in each run. Each 

condition lasted 32.2 s, giving 10 multislice volumes per condition. The fMRI data size was 

53 63 46 360× × × . Four conditions – ‘fixation’, ‘attention’, ‘no attention’, and ‘stationary’ – 

were used. Electrophysiological and neuroimaging studies have shown that attention to 
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visual motion can increase the responsiveness of the motion-selective cortical area V5 and 

some other areas, and an occipito-parieto-frontal network is involved in the visual pathway 

modulation by attention. The structural model for the dorsal visual pathway includes 

primary visual cortex (V1), visual cortical area MT (V5), posterior parietal cortex (PP), and 

modulatory interaction term involving dorsolateral prefrontal cortex (PFC). The activation 

regions were identified by categorical comparisons using the SPM5 software package, 

contrasting “attention” and “no attention” and contrasting “no attention” and “stationary”. 

Here we examine the functional interactions by using the different seed regions: V1, or V5 or 

both V1 and V5, and by using different methods.   
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Fig. 4. Comparison and results of functional interaction maps for the real fMRI data. 

Partial Correlation Effects – Multiple vs. Partial Multiple Correlations  From Fig. 4 (a) and 

(b), we can see that using multiple correlation (2nd row), both stimulus-locked and task-

induced networks are identified, with all the dorsal visual pathway involved regions shown 

as highly significant (yellow). However, using partial multiple correlation (1st row), since the 

stimulus-locked effects are accounted for, the network regions and their sizes are 

considerably reduced. Specifically:  i) with V1 as seed regions (Fig. 4(a), 1st row), mainly the 

low level visual network is identified as highly significant implying task-induced coupling 

among the visual areas, such as V1 to V5; ii) withV5 as seed regions (Fig. 4(b), 1st row), the 

two PP and the right PFC regions are still shown as highly significant, suggesting the 

involved task-induced coupling of attention to motion modulation, after taking account of 

the stimulus-locked effects. 
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Effects of Multiple Seeds – Comparison using Both V1 and V5 as Seeds The partial 

multiple correlation results using V1 or V5 (Fig. 4 (a) and (b), 1st row) as seed regions have 

been illustrated in the above. With a combination of a V1 and a V5 as seed regions (Fig. 4(c)), 

using partial multiple correlation, we can not only detect the highly significant low level 

visual network regions (as in Fig. 4 (a) and (b), 1st row, last slice), but also identify the highly 

significant attention to motion modulation PP areas (as in Fig. 4(b), 1st row; also compare to 

Fig. 4(a), 1st row), achieving the combined effects of multiple seed regions involving both V1 

and V5. Note that since only one V5 is used here, the region sizes and significance levels  

for the PP and right PFC are not as large as the ones using both V5 regions in Fig. 4(b) (1st 

row). 

Effects of Spatial Noise – Comparison of Non-central and Central F-tests  The results 

without taking the spatial noise correlations into consideration (central F-test) are shown  

in Fig. 4 (a) and (b), 3rd row, with many unjustified areas identified as functionally 

correlated with the V1 and/or V5 seed regions due to the spatial structured noise in the 

fMRI data. 

4. Conclusions 

A new statistical surface morphometry analysis method is presented and developed by 

using our moments-based permutation tests where the permutation distributions are 

accurately approximated through Pearson distributions for considerably reduced 

computation cost. The proposed hybrid strategy takes advantage of nonparametric 

permutation tests and parametric Pearson distribution approximation to achieve both 

accuracy/flexibility and efficiency. In addition, hybrid permutation schemes for both the 

conventional and bioequivalence tests are provided. Compared with the classical hypothesis 

tests, bioequivalence tests can screen out the non-notable differences and accurately locate 

the practical or physical significances. In real applications, either the standard or the 

bioequivalence hypothesis tests can be chosen, depending on the specific problems, i.e. 

whether the statistical and practical significance differences are negligible or not. 

This chapter also presents a novel and general statistical framework for sensitive and 

reproducible estimation of brain networks from fMRI based on multiple and partial multiple 

correlation analyses and multiple seed regions, with the standard single-seed region 

analysis as the degenerate and a special case. Compared with using only a single seed, using 

multiple seeds can not only lead to more robust estimation of functional connectivity, but 

also more sensitive identification of functional co-activation networks or regions to multiple 

seeds that may not be detected in the single-seed method. The use of the partial multiple 

correlation has the interesting features of providing a convenient summary of conditional 

independences and hence of being more closely related to the direct functional interactions 

(i.e. effective connectivity) of the brain than marginal correlation.  

The statistical and computational data analysis methods presented in this chapter can lead 

to precise and efficient recovery of structure and function of the human brain. The discovery 

of relationship between brain structure and function through combination of different 

modalities (e.g. sMRI and fMRI) will be a future direction, which may provide a unique 

perspective (Jiang et al., 2008) and thus further enhance our understanding of the complex 

system of the human brain. 
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