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1. Introduction 

In the annals of history the evolution of the synthetic rubber industry can be traced to the 
early 1930s where the first emulsion polymerised styrene butadiene rubber known as Buna 
S was prepared by I. G. Farbenindustrie in Germany. But it was not until the US 
Government in 1940 established the Rubber Reserve Company, a stockpile of natural rubber 
and the development of a synthetic rubber program came into full fruition. However, when 
the United States entered World War II, the synthetic rubber plants owned by the US 
Government were either closed or sold to private industry between the years 1946 and 1955, 
and from this the development of this formidable technology began. In the early 1960’s one 
primary objective prevailed and that was the economical polymerisation of polyisoprene 
with a high cis–1,4 structure, which is the synthetic version of natural rubber(Holden & 
Hansen, 2004). Around this time, workers at Shell investigated lithium metal initiators for 
isoprene polymerisation and found that alkyllithiums yielded some interesting results. In 
particular, there was no chain termination or chain transfer steps present. Thus, when all of 
the original monomer was consumed, the polymer chain still remained active and could 
initiate further polymerisation if more monomer, either of the same or different species, 
were added (Holden & Hansen, 2004). Parallel with these developments, tri-block 
copolymers using difunctional initiators were also reported in the literature (Szwarc et al., 
1956; Szwarc, 1956). These block copolymers were produced under conditions that gave 
polydiene segments a relatively low 1,4 content(Holden & Hansen, 2002). However, poor 
elastomeric properties were acknowledged whereby the rheological properties of both 
polybutadiene (PB)(Gruver, 1964) and isoprene(Holden, 1965) resulted in the materials 
exhibiting Newtonian behaviour and the viscosities of the pure polymers approach constant 
values as the shear rate approaches zero. This behaviour resulted in bales of these 
elastomers appearing to be solid but in fact behaved as viscous liquids which hindered both 
their storage and commercial attractiveness. In light of this, Shell chemical research 
polymerised polydiene elastomers with various molecular weights to combat this problem 
(Holden & Hansen, 2004). Later studies included work on block copolymers resulting in the 
formation of a material which contained short blocks of polystyrene on either end of the 
elastomeric chain to form a styrene butadiene styrene (SBS), as illustrated in Figure 1. In 
contrast to the diene homopolymer, these block copolymers demonstrated, non-Newtonian 
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behaviour, high tensile strength, high elongation and rapid and almost complete recovery 
after elongation (Holden & Hansen, 2004; Holden, 1962) 
 

 

Fig. 1. Structure of a styrene-butadiene-styrene block copolymer. 

Depending on the overall butadiene content, SBS block copolymers can either be used as 
thermoplastic elastomers (Holden & Kricheldorf, 2004) or as blend components enhancing 
the mechanical performance of transparent polystyrene (PS)-based plastics (Knoll & 
Niessner, 1998) and (Wagner, 2004). A very similar behaviour is also found for styrene–
isoprene (SI) block copolymers. Due to their compatibility with PS and the wide range of 
possible mechanical properties, these two materials dominate the market for block 
copolymers in plastics even over 40 years after their discovery ( Nestle et al.,2007). 

2. Phase separation of SBR and SBS copolymers 

One of the most important properties of a SBS structure is the phase separated system, 
where the two phases (polystyrene and polybutadiene) retain many of the properties of 
their respective homopolymers. For example, tri-block copolymers have two glass transition 
temperatures (Tg) which are characteristic of the respective homopolymer (Polystyrene 
~100°C and Polybutadiene ~-90°C) whereas styrene butadiene rubber copolymers have a 
single intermediate Tg. Regarding the aforementioned material, experimentally a single 
glass transition can be found at about -65°C which is in accordance with a material with a 
styrene content of 23% (Van der Vegt, 2005). A graphic illustrating the glass rubbery 
transition of the two aforementioned copolymers is presented in Figure 2. Thus, at room 
temperature the polystyrene phase is strong and rigid where as the polybutadiene phase is 
soft and elastomeric. 
 

 

Fig. 2. The glass–rubber transitions for styrene and butadiene copolymer systems (Van der 
Vegt, 2005). 

If the polystyrene phase is only a minor part of the total volume, it is then reasonable to 
postulate a phase structure as illustrated in Figure 3. From this structure, the polystyrene 
phase consists of separate spherical regions known as domains. Since both ends of each 
polybutadiene chain are terminated by polystyrene segments, these rigid domains act as 
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multifunctional junction points to give a crosslinked elastomer network similar in many 
respects to that of a conventional vulcanised rubber (Brydson, 1978). Thus, when SBS is 
heated, the domains soften and the network loses its strength resulting in the ability of the 
block copolymer to flow which is one of the main characteristics associated with these types 
of thermoplastic elastomers. When the heated block copolymer is cooled, the domains 
become hard and the original properties are regained. 
 

 

Fig. 3. Phase structure of SBS. 

Therefore, when one or more blocks are capable of crystallising, additional transitions 
(corresponding to the Tms of the blocks) will be observed whilst both the morphology and 
solution properties will be more complicated (Brydson, 1978). 

3. Morphology evaluation of SBS  

Three types of microphase segregation can occur within SBS systems in which one or 
another of the components are either in spheres, rods (cylinders) or lamellae where the 
morphology depends on the concentrations of styrene or butadiene used. In an ideal 
situation the greatest interest is in a system by which the polystyrene segments are 
concentrated into spherical domains. If, however, a system was produced in which one of 
the components exists in cylindrical or rod like domains uniformly oriented in a single 
direction, or the two components were arranged in lamellae, then it should be possible to 
obtain rubbers which demonstrate anisotropic mechanical properties (Brydson, 1978). 
According to Adhikari et al.,(2003), when investigating the deformation behaviour of 
styrene butadiene star block copolymer/hPS blends,  the microphase separated blends with 
PS particles in lamellar matrix exhibited debonding at the particle-matrix interface. 
Therefore, the morphology formation in block copolymers is influenced by a number of 
factors: these include monomer types, chemical composition and even the processing 
history. Burford et al., (2003) found that interpenetrating networks (IPNs) made by the 
polymerisation/crosslinking of styrene in the dispersed styrene rich phase of a block 
copolymer within a crosslinked elastomeric matrix formed networks which combined 
stiffness and toughness. This formation of IPNs can allow the production of materials with 
controlled morphologies and the greater probability of synergistic property enhancement. 
But the morphologies of these IPNs are generally complex because they show varying 
degree of phase separation, with phases varying in size, shape and definition at interfaces. 
Adhikari and co-workers (2004) have researched into the deformation behaviour of 

www.intechopen.com



 Biomedical Engineering, Trends in Materials Science 

 

468 

styrene/butadiene block copolymers with a polystyrene content of ~ 70%. They noted that 
the phase separation behaviour of the copolymers was found to be strongly affected by 
asymmetric molecular architecture. It has been demonstrated that the phase behaviour of a 
binary block copolymer/homopolymer mixture is primarily governed by the length of the 
homopolymer chains relative to the corresponding block of the block copolymer (i.e. the 
ratio Nhomo-A/Nblock-A, where Nhomo-A and Nblock-A represent the degree of polymerisation of 
added homopolymer A and corresponding block A in the block copolymer AB respectively). 
Thus, there is competition between microphase and macrophase separation in a binary 
block copolymer/homopolymer blend composition. In such blends, according to Adhikari 
et al.,(2004) low molecular weight homopolymer is solubilised within the corresponding 
block of the copolymer at low concentration. As the molecular weight of homopolymer 
approaches that of the corresponding molecular weight of PS or PB in the copolymer, it 
tends to segregate to the middle of the microdomains. However, if the molecular weight of 
the homopolymer is larger than that of the corresponding block of the block copolymer, 
macrophase separation tends to predominate.  

4. Microphase separation of SBS copolymer 

Microstructures occur when SBS copolymers undergo microphase separation due to the 
thermodynamic incompatibility of PS and PB blocks. This separation is a result of the 
miscibility gap of polybutadiene and polystyrene in the solid-state and is crucial for the 
properties of the material. Since both the chain architecture of the block copolymer and the 
microphase separation affect the mobility of the butadiene-rich phase (Nestle et al., 2007). 
These elements, rich in one block, take the form of either spherical, cylindrical or lamellar 
domains (as previously discussed) dispersed in a continuous matrix of the other component. 
The phase-separated structure for SBS contains two homogeneous, nearly pure phases and a 
third diffuse interphase (Spaans et al., 1999). A schematic of these phases is illustrated in 
Figure 4.  
 

 

Fig. 4. Schematic representation of SBS molecule embedded in a phase separated 
microstructure consisting of matrix B, core S and a broad interphase of mixed S and B. S 
represents styrene and B represents butadiene (Spaans et al., 1999). 
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Spaans et al., (1999) has correlated this information with a typical DSC thermograph of SBS 

to represent the locations of these microphase domains. A graphical representation 

illustrating Spaans concept is shown in Figure 5. 

 

 

Fig. 5. A graphical representation of a DSC thermograph illustrating the Tg changes in the 
local heat capacity at a sequence of positions through the interfacial region, as the sample 
experiences a broad temperature range (Spaans et al., 1999). 

5. Thermal properties of a SBS copolymer 

Based on experimental data carried out by the authors, a linear tri-block SBS with 69% 

butadiene content under the trade name Kraton D1101 (see Table 1) was investigated. As 

presented in Figure 6, a Tg value at -92°C was located in the butadiene rich microphase 

domain which coincides with  the Tg (-90°C) of pure PB and this result is in agreement with 

the findings of Spaans et al.,(1999) and Kennedy et al., (2009). The glass transition of the PS 

domain in SBS copolymer can be detected at around 67°C which corresponds with the 

findings of Spaans et al.,(1999) , Kennedy et al., (2009) and Mohammady et al.,(2005). This 

value was significantly lower than the Tg at 100°C for a PS homopolymer of comparable 

molecular weight. 

 

Butadiene/styrene ratio (wt%) 69/31 

Total molecular weight 102,000g/mol 

Microstructure of PB 

1,4-trans (%) 42 

1,4-cis (%) 49 

1,2 (%) 9 

Table 1. Physical properties of Kraton D1101 

The glass transition for the PS phase in thermoplastic elastomer block copolymer tends to be 

lower than that of pure homopolymer of the same chemical structure which is due to the 
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entrapment of some centre block rubbery segments, a kinetic effect which is not 

thermodynamically favoured (Spaans &Williams, 1995; Escobar et al., 2003). This lowering 

effect is a consequence of premature molecular motions in the PS domain induced by PB 

segmental mobility. Munteanu and Vasile (2005) have stated that copolymers with 

microphase separated morphology can be considered as finite confined systems. This 

confinement applied by the PB matrix to the PS discrete phase may decrease the Tg of PS in 

SBS. According to Muhammady et al., (2001) the interfacial interaction and miscible fraction 

at the domain boundaries also lowers the value of the glass transition. Between Tg values of 

PB and PS a broad continuous curvature is evident on the DSC thermograph shown in 

Figure 6. This curvature should be found in all block copolymers which have homogeneous 

microphases present, as stated by Spaans et al., (1999). At 241°C a thermal transition occurs 

for SBS block copolymer which is believed to be a first order phase transition and 

corresponds to findings in literature (Spaans et al., 1999; Kennedy et al., 2009). At this 

transition the polymer merges into segmental homogeneity resulting in a 

disorganised/homogeneous state. It has been well established that when block copolymers 

such as SBS are heated above the upper glass transition temperature, the microstructure of 

the polymer will be eventually destroyed and the block copolymer will form a homogenous 

phase. The critical temperature at which this occurs is called an order-disorder transition 

(ODT) temperature (Spaans et al., 1999; Kennedy et al., 2009; Spaans & Williams, 1995). 
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Fig. 6. A DSC thermograph of a SBS copolymer (Kraton D1101), where the Tg values for PB 
and PS are -92°C and 67°C respectively. The separation temperature, Ts is 241°C. 

6. A review of Styrenic graft copolymerisation 

Huang and Sundberg (1995a, 1995b, 1995c, 1995d), have published a number of studies on 

the graft copolymerisation of styrene, benzyl acrylate and benzyl methacrylate onto a cis- 
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polybutadiene. In their kinetic study, they have shown by the use of different initiators two 

possible mechanisms occurred where initiators such as benzoyl peroxide (BPO) can abstract 

allylic hydrogen atoms from polybutadiene while azobisisobutyronitrile (AIBN) cannot 

extract the allylic hydrogen atom. According to Jiang and Wilkie (1998) neither initiator 

appears to have significant reactivity towards addition of primary radicals to the double 

bond of the polybutadiene and the allylic radicals which are generated by hydrogen 

abstraction can initiate polymerisation of reactive monomers such as styrene and 

methacrylates leading to the formation of graft copolymers. Graft copolymerisation will still 

occur for monomers which are initiated by the allylic backbone radicals. This process occurs 

by addition of the growing polymeric radical to the polybutadiene double bond, producing 

a saturated alkyl radical which is capable of further initiation of low reactivity monomers. 

De Sarkar et al.,(1999) found that 1,2 -vinyl double bonds of butadiene occur in a pendant 

position along the polymer chain making bonds more accessible for grafting. They also 

postulated that the order of reactivity for vinyl groups are, (i) saturation of 1,2-vinyl bonds 

is easier than 1,4–trans and (ii) PB is directly proportional to the amount of 1,2-vinyl bonds ( 

De Sarkar et al., 1999). The various structural sequences associated with butadiene are 

illustrated in Figure 7. 

 

 

Fig. 7. Various structural formations associated with butadiene. 

In the research performed by Madhusudhan and Raghunath (1999), maleic anhydride 

(MAH) was grafted onto ABS by the addition to the double bond initiated by BPO. Sheng 

and co-workers (1990) found that BPO initiated the removal of an allylic hydrogen atom 

while AIBN acted upon the addition of the double bond of SBR which is in agreement with 

the findings of Huang and Sundberg(1995a, 1995b, 1995c, 1995d). Mrrov and Velichksva 

(1993) described how MAH was grafted onto SIS only by the removal of an allylic hydrogen 

atom, whereas Zhang and Li (2003) have investigated the grafting mechanism of SBS with 

MAH using BPO and AIBN. They found that the variation of C=C content in SBS-g-MAH 

was used to verify the different graft mechanisms of BPO and AIBN. They concluded that 

the grafting reaction occurs by the addition onto C=C bond when AIBN was used, while the 

removal of an allylic hydrogen atom was evident when BPO was used to initiate the 

reaction.  

7. Grafted copolymers with potential medical application 

The latest wave of biomedical materials can strengthen the capabilities of many of today’s 

medical products. Some polymeric materials demonstrate properties such as lubricity, 

biocompatibility and antimicrobial action on device surfaces while others may crack, tear, 

slip and flake off medical devices due to inherent design flaws. There has been considerable 
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interest and activity in the application of synthetic polymers in medicine, particularly for 

surgical and dental implants. The most critical property of a polymeric material is that it has 

acceptable tissue compatibility. If this criterion is not met, local tissue irritation may result. 

In general, the chemical structure, electric charge, hydrophilicity and hydrophobilicity, 

surface roughness, micro-heterogeneity, and flexibility of the materials affect the performance 

of cells and tissues on the materials (Minoura,1993; Yang & Tsai, 2010). Biocompatibility can 

be characterised by a whole series of negatives, for example that the material was non-toxic, 

non-irritant, non-thrombogenic, non-carcinogenic and so on. Such a state of compatibility 

was most likely to be achieved by a material being inert and unrecognisable by the tissue. A 

desirable property of a synthetic polymeric material used in biomedical applications is that 

it has acceptable tissue compatibility. If this criterion is not met, local tissue irritation may 

result. One particular method used to obtain these desired properties is grafting hydrophilic 

compounds namely a hydrogel onto hydrophobic backbones. Hydrogels have physical 

properties similar to those of human tissue and possess excellent tissue compatibility and 

are used as biomedical materials. The main disadvantages of hydrogels are their poor 

mechanical properties after swelling. To overcome this problem, Yang & Hsiue (1996) 

grafted hydroxyethyl methacrylate (HEMA) onto SBS via UV radiation. The mechanical 

properties of SBS-g-HEMA were found to be superior to those of poly(HEMA) and were 

identical to those of SBS. From their measurements, the contact angle and blood clotting 

time, the wetting and non-thrombogenic properties of SBS-g-HEMA were better than those 

of SBS. Yang et al., (1997) have also researched into the graft copolymerisation of dimethyl 

amino ethyl methacrylate (DMAEMA) with SBS and it was found that the degree of grafting 

was related to the irradiation time, DMAEMA concentration and temperature, but the 

adsorption of albumin and fibrinogen decreased with an increase in the amount of grafting. 

They continued on their work by the substitution of amino groups on the SBS-g-DMAEMA 

graft copolymer membrane which was treated with heparin to prepare the heparin 

containing SBS-g-DMAEMA (SBS-g-DMAEMA-HEP). It was found that, with increased 

grafting and heparin content, the surface tension and the water content of the SBS-g-

DMAEMA membrane increased whereas the contact angle decreased (Yang et al., 1998). 

Over the past few years, N-isopropylacrylamide (NIPAAm) has appeared in the literature 

with increasing frequency (Durne et al., 2005; Zhang et al., 2005; Geever et al., 2008; Geever 

et al., 2007; Geever et al., 2006; kennedy et al., 2009). Lee and Chen (2001) have grafted N-

isopropylacrylamide (NIPAAm) onto SBS via solution polymerisation using benzoyl 

peroxide as the initiator. This was carried out to improve the water absorption and thermo 

sensitivity of SBS. Thus, a biomedical material often needs to function dependably without 

significantly altering the physical or mechanical properties of the substrate. Kennedy et 

al.,(2009, 2010) have successfully grafted SBS with acrylic acid (AA) and SBS with  

N- isopropylacrylamide(NIPAAm) respectively via UV polymerisation techniques for use as 

a potential biomedical material and in doing so; they proved that the glass transition values 

for each of the grafted copolymers increased in the butadiene domain, thus proving that 

grafting had occurred. 

8. Synthesis of graft copolymers of SBS via UV polymerisation 

UV polymerisation has become a well established technology which has found a large 

number of industrial applications due to the relative ease in which the reaction occurs. In 
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general, a liquid resin containing a photoinitiator (Benzophenone (BP)), is transformed into 

a solid polymer simply by exposure to UV light (Xiang et al., 2001; Murata et al., 2004; Rohr 

et al., 2003; Kim et al., 2002). In order to ascertain a possible reaction site of the base 

polymer, Mateo et al.,(2000) investigated the photoreactions of model compounds of SBS 

structures 1-heptene, 3-heptenes and cumene. They concluded that the main photoreaction 

induced by BP in heptene derivatives, models of the cis, trans and vinyl-double bonds of the 

polybutadiene sequences, is the abstraction of an allylic hydrogen atom by the BP, and that, 

in minor extension of other hydrogen atoms of the heptene aliphatic chain. In developing 

grafted systems it was considered by the authors that the allylic hydrogen associated with 

butadiene in SBS copolymers reacted with the hydrogel monomers using benzophenone via 

UV polymerisation, as illustrated in Figures 7 and 8 respectively. 
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Fig. 7. A scheme showing the reaction of SBS and NIPAAm to yield SBS-g-NIPAAm 
copolymers (Kennedy et al.,2010). 
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Fig. 8. A proposed scheme illustrating the reaction of SBS and NVP to yield SBS-g-NVP 
copolymers using Benzophenone as the initiator (Kennedy & Higginbotham, 2010) 

9. Thermal-mechanical analysis of the grafted SBS copolymers   

To appreciate the importance of these materials for biomedical use, one needs to understand 

the thermal properties associated with the grafted copolymers. From experimental data 

(Kennedy et al., 2010) the authors present DSC thermographs showing several 

concentrations of SBS-g-NIPAAm copolymers (Figure 9). As depicted by the DSC 

thermographs, exothermic variability existed in the temperature region between 50 and 

200°C for each of the grafted copolymers. This variability was the result of both the 

breakdown of crosslink's which were formed within the SBS copolymer during UV 

polymerisation and the polymerisation of the monomers to form homopolymers. It was 
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found, by exposing SBS to concentrated UV light, crosslinking takes place which has an 

effect on the flexibility of the material. When analysing the butadiene domain, all of the 

grafted samples have a broad thermal transition when compared to the PB domain of SBS. 

According to Rohr et al.,(2003) graft copolymerisation can also occur between the 

homopolymers, thus creating branched or crosslinked architectures. However, within the PB 

domains, the grafted copolymers that contained higher concentrations (3, 3.5 and 4 mL) of 

monomer followed the same thermal profile as that of SBS. This behaviour suggests that the 

pure monomer reacted more readily with itself forming a homopolymer, thus reducing the 

amount of grafting taking place, thus, increasing the variability within the system. The 

grafted copolymers which contain monomer concentrations below 2.5mL have broader DSC 

thermographs within the butadiene rich domain resulting in Tg values of the grafted 

samples being shifted up wards in the sub ambient domain, suggesting that grafting had 

occurred within this region, which coincides with the reaction sequences as presented in 

Figure 7. Similar observations were also found when SBS was grafted onto NVP via DSC 

analysis. 

 

 

Fig. 9. DSC thermographs of SBS-g-NIPAAm resulting from the reaction of SBS and various 
concentrations (0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0 g) of NIPAAm. 

From DSC analysis it can be speculated that grafting took place for each of the samples 
tested. However, to further verify the presence of grafting, Dynamic Mechanical Thermal 
Analysis (DMTA) studies can be utilised (Kennedy et al., 2010). In each of the loss tangent 
thermograms, illustrated in Figure 10, the peak height of the tan δ value corresponds to the 
glass transition (Tg) of the samples being tested. From thermogram shown in Figure 10, a tan 
δ value for SBS can be detected at -92°C which is associated with the polybutadiene 
segment. However, there was an increase in tan δ from -92°C to -79°C for non-washed SBS-
g-NIPAAm copolymer, indicated that grafting had occurred. This reduction in the tan δ is 
an indication that the backbone of the SBS copolymer has lost some of its flexibility, due to 
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the grafting of a hydrogel to its backbone. To back up this claim, the samples were washed 
in chloroform under soxhlet extraction for eight days and the tan δ value shifted to -74°C. 
Therefore, it is evident that the tan δ values for each of the samples tested increased, 
establishing that grafting had occurred onto various butadiene segments along the SBS 
backbone. Thus, suggesting that grafting will increase the Tg of the PB phase by increasing 
the thermal energy required to free polymer molecules from additional constraints. 
 

 

Fig. 10. DMTA spectra representing SBS, non-washed SBS-g-NIPAAm and washed  
SBS-g-NIPAAm samples after 8 days.  

10. Spectral analysis of the grafted SBS copolymers 

Infrared spectroscopy has been a valuable technique for materials analysis in the laboratory 
for over seventy years. An infrared spectrum represents a fingerprint of a sample with 
absorption peaks which correspond to the frequencies of vibrations between the bonds of 
the atoms making up the material. Because each material is a unique combination of atoms, 
no two compounds produce the exact same infrared spectrum. Therefore, infrared 
spectroscopy can result in a positive identification (qualitative analysis) of every different 
kind of material. In addition, the size of the peaks in the spectrum is a direct indication of 
the amount of material present. With modern software algorithms, infrared is an excellent 
tool for quantitative analysis. The technique of Attenuated Total Reflectance (ATR) has in 
recent years revolutionised solid and liquid sample analyses because it combats the most 
challenging aspects of infrared analyses, namely sample preparation and spectral 
reproducibility. Within the context of this work Fourier transform infrared spectroscopy 
was carried out using the Attenuated Total Reflectance (ATR-FTIR) technique as this 
generated the best results for the study. ATR-FTIR spectroscopy was carried out on SBS, 
NIPAAm and SBS-g-NIPAAm copolymers as shown in Figure 11. The main bands for 
characterising the  butadiene segment within SBS (Figure 11 (a))  are CH2 scissoring at 1449 
cm-1, trans-1,4 C=C out of phase deformation at 964 cm-1, =CH stretching at 3005 cm-1 and C-
H stretching at 2916 and 2844 cm-1. Regarding the PS segments, styrene absorption occurs at 
697 cm-1, C-H out of plane deformation occurs at 3060 cm-1 and at 1601 cm-1 aromatic C-C 
stretching occurs (Munteanu & Vasile, 2005; Romero-Sanchez et al., 2005a; Romero-Sanchez 
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et al., 2005b). The ATR-FTIR spectrum for NIPAAm shown in Figure 11(b) illustrates bands 
corresponding to C=O stretching and NH bending for secondary amides at 1655cm-1 and 
1544cm-1. These bands are present as small shoulders in SBS-g-NIPAAm copolymer shown 
in Figure 11 (c). The peak at 1545 cm-1 for NIPAAm and SBS-g-NIPAAm copolymer was 
assigned as a symmetric deformation of NH3+. These results correspond to the finding of 
Erbil et al., (2004) and Ju et al.,(2002). However, the peaks present at 1617 cm-1 (C=C) and 
1407 cm-1 (CH2=) in the NIPAAm spectrum disappeared for SBS-g-NIPAAm copolymer as 
illustrated in Figure 11(b). This suggests that NIPAAm had grafted to SBS resulting in the 
loss of the double bond associated with the monomer. 
 

 

Fig. 11. Comparisons between the different ATR-FTIR spectrums where (a) is SBS (b) is 
NIPAAm and (c) is SBS-g-NIPAAm. 

ATR-FTIR spectral analysis was used in conjunction with the DSC thermographs to analyse 
SBS-g-NVP copolymers. For illustrative purposes spectra containing non grafted NVP 
which polymerised to poly N-vinyl-2-pyrrolidinone (PVP), SBS-g-NVP using 2.5 g of NVP 
and SBS are shown in Figure 12. In the case of the PVP spectrum, Figure 12 (a),  a broad 
C=O stretching band was found at 1650 cm-1 which corresponds to results obtained by 
Devine & Higginbotham (2003). Certain authors have found an absorption band for PVP at 
1660cm-1 and this is called amide I. This band is a combined mode with contributions of 
C=O and C-N stretching (Muta et al., 2002; Cheryl & Youngli, 2002). ATR-FTIR spectrum for 
the grafted sample depicted in Figure 12 (c) exhibited a peak at approximately 1664 cm-1, 
corresponding to the carbonyl group of PVP, which indicates monomeric growth of the 
grafted side chain. Szaraz et al.,(2000) has found that for pure liquid NVP two very strong 
bands occur in the IR spectrum. The band at 1629 cm-1, is a carbon-carbon double bond, 
corresponding to olefinic C=C stretching which is usually found in the region of 1680-1630 
cm-1. The band at 1706 cm-1 is due to carbonyl stretching between 1750 -1700 cm-1. However, 
as shown in the ATR-FTIR spectrum for grafted SBS-g-NVP copolymer, a small shoulder 
formed at 1714 cm-1 indicating that carbonyl stretching had occurred. This band is 
associated with un-reacted NVP as outlined by Szaraz et al., (2000) suggesting that NVP is 
still present within the grafted matrix, and so there is need to wash the samples after they 
have been fully synthesised. 
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Fig. 12. Comparisons between the different ATR-FTIR spectra where (a) is PVP, (b) is SBS 
and (c) is SBS-g-NVP. (Kennedy & Higginbotham, 2010) 

11. Topography of SBS and the grafted SBS coatings 

Improved compatibility is a desired feature for biomedical product such as a coating which 
comes in contact with blood during clinical use. The response of blood to a foreign material 
can be aggressive, resulting in surface-induced thrombus (clot) formation, which can impair 
or disable the function of the coating and most importantly threaten a patient’s health. In 
light of the biomedical potential of SBS based copolymers it is important to have a firm 
understanding of the materials surface properties. In order to minimise interfacial problems 
between the host tissues and the fluids, a biomedical material must exhibit a specific surface 
chemical behaviour (Yang & Tsai, 2010; Adamson, 1990; Andrade, 1985). All synthetic 
materials used in blood-contacting medical coatings promote surface-induced thrombotic 
phenomena to various extents. These events are initiated by non-specific protein adsorption 
followed by platelet adhesion, activation and aggregation on the biomaterial surface. The 
resulting thrombus can impair the function of the implanted devices, while thromboembolic 
events can occlude blood vessels leading to serious cardiovascular complications. Hence, 
non-thrombogenicity is a highly desired surface property for blood-contacting biomaterials. 
Thus, surface roughness is of significant interest in biomedical coatings because it is an 
important property which influences friction as well as wettability when in contact with a 
biological environment. 

11.1 White light profilometry  
One method of determining surface values of a material is to employ a technique known as 
White light profilometry which scans a surface using white light, thus providing surface 
structural analysis without using physical contact. The surfaces are characterised using 
amplitude parameters such as average surface roughness (Ra) or root mean square (RMS) 
roughness which can be summarised by a single “average roughness” value which is a close 
approximation of the arithmetic average roughness-height, calculated from the profile chart 
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of the surface. The Ra value is the average deviation of all points, calculated using equation 
1, from a plane fit of the test surface. A graphic representation showing how Ra is conceived 
is illustrated in Figure 13. 

 ( )
0

1
L

aR z x dx
L

= ∫  (1) 

 

 

Fig. 13. Illustration of the average roughness, Ra, where z(x) is the surface height in point x 
relative to a mean line and L is the overall length of the profile under examination. 

The standard deviation of the profile heights, RMS, is a parameter calculated by the average 
of the square roots of all of the Ra values. This parameter is the most widely used and its 
numerical value is about 11% higher than the Ra value. This parameter is calculated using 
equation 2. 

 ( )2
0

1
L

RMS z x dx
L

= ∫  (2) 

The height of a selected material can be evaluated using Peak to Valley (PV) value which is 
the distance between the highest and lowest points within the sample. A graphical 
representation of how a PV value is determined is illustrated in Figure 14. 
 

 

Fig. 14. Illustration of the peak to valley height (PV). 

Kennedy et al.,(2010) used this technique to evaluate the roughness and height of SBS-g-
NIPAAm grafted copolymers. As illustrated in Figure 15, the root mean square (RMS), as 
well as Peak to Valley (PV) values were 0.128µm and 1.651µm respectively for the SBS 
copolymer. However, when these values were compared to a SBS-g-NIPAAm and SBS-g 
NVP copolymers as shown in Figures 16 and 17 respectively, the RMS parameter (1.125µm 
for SBS-g-NIPAAm and 0.859µm for SBS-g-NVP) and the PV value (13.878µm for SBS-g-
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NIPAAm and 6.896µm for SBS-g-NVP) were greater than that of SBS. It was found that the 
PV of each of the grafted copolymers tested was influenced by monomeric concentrations 
and the amount of chloroform (used to dissolve SBS) still present in the sample after UV 
polymerisation. This is an important property characteristic which directly affects the non-
thrombogenic properties of the material within a specific biological environment i.e. the 
smoother the surface, the less likely that thrombosis will occur. However, this roughness 
may aid in the muco-adhesion properties of the material which is advantageous in 
biological environments such as arteries. 
 

 

Fig. 15. A white light profilometry scan for a SBS copolymer illustrating 2D and 3D surface 
profiles as well as the PV value, 1.651µm and the RMS parameter, 0.128µm. 

 

 

Fig. 16. A white light profilometry scan for a SBS-g-NIPAAm copolymer illustrating 2D and 
3D surface profiles as well as the PV value, 13.878µm and the RMS parameter, 1.125µm. 

www.intechopen.com



Synthesis and Characterisation of Styrene Butadiene  
Styrene Based Grafted Copolymers for Use in Potential Biomedical Applications   

 

481 

 

Fig. 17. A white light profilometry scan for a SBS-g-NVP coating illustrating 2D and 3D 
surface profiles as well as the PV value, 6.896µm and the RMS parameter, 0.859µm. 

11.2 Scanning electron microscopy  
SEM micrographs of SBS, selected grafted polymers are illustrated in Figures 18 to 20.  
 

 
(a) 

 

 
(b) 

Fig. 18. SEM images of SBS at resolutions of 50µm (a) and 10 µm (b). 
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Mohammady et al., (2002) has confirmed that SBS, kraton D1101, exhibits a mixture of PS 
cylinders and lamellae embedded in the PB matrix when analysed by SEM. These findings 
correspond with observations made by the Authors, as shown in Figure 18, where SBS 
exhibits a uniform and dense structure with no pores present whereas the remaining grafted 
samples illustrated in Figures 19 and 20 revealed porous sponge like membranes due to the 
migration of chloroform during the UV polymerisation process. 
 

      
(a) (b) (c) 

Fig. 19. SEM images of SBS-g-NIPAAm at resolutions of 50µm (a), 10µm (b) and 2µm (b). 

 

     
(a) (b) (c) 

Fig. 20. SEM images of SBS-g-NVP at resolutions of 50µm (a), 10µm (b) and 2 µm (c).  

11.3 Contact angle analysis of SBS and grafted SBS copolymers 
For the fabrication of biomedical coatings coming into contact with blood and tissue, it is 
usually desirable to create or utilise materials which exhibit high degrees of wettability. One 
technique used to predict wetting properties of biomedical polymers is the use of contact 
angles. When a droplet impacts onto a solid surface, a liquid film is formed which spreads 
out with a retarding velocity, due to the influence of both the surface tension and surface 
forces, resulting in the liquid film attaining a maximum spread when it comes to a stop. 
Young’s law provides a relation between those forces outlined in equation 3. 
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 .coslv ls svσ θ σ σ+ =  (3) 

where θ is the angle of contact the liquid makes on the solid, σlv, σls, and σsv represent the 
interfacial tensions at the boundaries between liquid (l), solid (s) and vapour (v).The contact 
angle, θ, is usually referred as the wettability of a surface. The liquid is non-wetting when 
90° < θ < 180° and wetting when 0°< θ < 90° (Moite & Moreira, 2003). Wettability can be 
assessed directly using goniometry by measuring the angle formed between a solid surface 
and the tangent to the drop surface. A graphic illustrating the concept of wettability is 
shown in Figure 21.  
 

 

Fig. 21. A graphical representation of wettability.  

Therefore, wettability is often referred to as hydrophilicity and is considered to be a surface 
property of a material as opposed to true hydrophilicity, which is considered to be a bulk 
property. A caveat to this design criterion is the fact that polymers are generally 
hydrophobic in nature due to their generally low surface tensions, resulting in polymers 
exhibiting poor wettability. For visual purposes, to illustrate principles of wettability, a 
digital goniometer was used and the results are illustrated in Figure 22, these images best 
demonstrate the affect of wettability on SBS as well as grafted SBS copolymers. 
 

   
(a) 113°                                             (b) 52°                           (c) 6°  

Fig. 22. Contact angles representing the copolymers, where (a) SBS, (b) SBS-g-NIPAAm and 
(c) SBS-g-NVP. 

From the images obtained the modification in the surface chemistry and wettability is 
reflected by the dramatic reduction in the contact angles as shown in Figures 22.  Lassalle et 
al.,(2004) has found a contact angle of 95° when 1% of N-carbamyl maleamic acid was 
grafted onto SBS. Whereas, Yang et al.,( Yang 7Hsiue, 1996; Yang et al., 1997; Yang et al., 
1998) reported similar trends when vinyl pyridine was grafted onto SBS and when dimethyl 
amino ethyl methacrylate was grafted onto SBS, contact angles of 77° and 76° were obtained. 
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Therefore, by grafting a hydrophilic monomer/polymer onto a hydrophobic backbone the 
wettability of the material is increase.  It is important to note, that the samples tested where 
not washed and the low contact angle for the SBS-g-NVP copolymer was in part due to the 
migration on polymerised poly N- vinyl-2-pyrrolidone which is an excellent hydrophilic 
hydrogel, but the principle still applies whereby a hydrophobic material such as SBS can be 
made into a hydrophilic compound via grafting technologies. 

12. Conclusion 

Polymer science is by nature an interdisciplinary field, where it has found refuge in the 
traditional domains of engineering, chemistry and physics. However, the importance of this 
branch of science has now expanded and by the further integration of other disciplines such 
as biology, medicine and computing, new innovations have emerged resulting in 
opportunities which very much find itself in the fields of biomaterials. This chapter looked 
at such possibilities, where the tradition SBS copolymer (a thermoplastic elastomer) was 
modified into a grafted copolymer utilising hydrogel technology to create a potential 
medical application in the area of biomedical coatings.  
To truly appreciate the breath and depth of the opportunities one must have a detailed 
understanding of the fundamental principles which occur within the materials such as phase 
separation, the domain theory, topography and reaction kinetics to name but a few. Only then 
can new materials be commercialised which capture the needs society has place on them. 
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