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1. Introduction      

In the field of cooperative robotics, task allocation is an issue receiving much attention. 
When researchers design, build, and use cooperative multi-robot system, they invariably try 
to answer the question of which robot should execute which task. This is in fact a multi-
robot task allocation problem (MRTA). The task allocation problem addresses the question 
of finding the task-to-robot assignments that optimize global cost or utility objectives. 
Finding an optimal task allocation, even in a relatively simplified case, is an NP-hard 
problem. Therefore, the majority of common approaches are approximate or heuristic in 
nature. Those approaches usually give suboptimal solutions. MRTA is a fundamental issue 
of the multi-robot systems, which embodies the high-level system organization and 
operation mechanism. The quality of task allocation algorithm directly affects the 
performance of multi-robot system. With an increase in the number of robots and difficulty 
of tasks within a system, the issue of task allocation has risen to prominence and become a 
key research topic in the multi-robot domain. In 2005, the International Conference on 
Robotics and Automation (ICRA 2005) set special panels on multi-robot task allocation, in 
which the latest research and the progress are discussed.  
Gerkey and Mataric (2004) presented a particular taxonomy for the task allocation problem. 
It is described as follows: 

• Single-task robots (ST) vs. multi-task robots (MT): ST means that each robot is capable 
of executing at most one task at a time, while MT means that some robots can execute 
multiple tasks simultaneously. 

• Single-robot tasks (SR) and multi-robot tasks (MR): SR means that each task requires 
exactly one robot to achieve it, while MR means that some tasks can require multiple 
robots. 

• Instantaneous (IA) and time-extended (TA) assignment: In the instantaneous 
assignment, robots do not plan for future allocations and are only concerned with the 
one task they are carrying out at the moment (or for which they are considering 
executing). In the time-extended assignment, robots have more information and can 
come up with longer-term plans involving task sequences or schedules. 

Based on above categorization, there are eight types of task allocation combination. ST-SR-
IA is the simplest, as it is actually a trivial instance of the Optimal Assignment Problem 
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(OAP). ST-MR-IA often appears in real world applications; that is, some tasks require the 
combined effort of multiple robots. These two types of tasks are also called loosely-coupled 
tasks and tightly-coupled tasks, respectively. Although some approaches for solving either 
loosely-coupled task or tightly-coupled task allocation have been proposed, few approaches 
for solving both loosely-coupled and tightly-coupled task allocation have been developed.  
In this chapter, we present a task allocation mechanism based on swarm intelligence for the 
large-scale multi-robot system, with both loosely-coupled and tightly-coupled task 
allocation. The mechanism adopts a hierarchical architecture. At the high level, we employ 
an Ant Colony Algorithm to find optimal allocations. Namely, each ant performs a task 
allocation so as to choose an undertaker for every task. At the low level, each ant forms a 
task-oriented robot coalition to perform a tightly-coupled task. Ant colony optimization 
(ACO), the particle swarm and ant colony optimization (PSACO) and the quantum-inspired 
ant colony optimization (QACO) are adopted to form the coalition. Finally, the algorithm is 
implemented in the TeamBots simulation platform. Simulation results show that the 
proposed mechanism can effectively solve loosely-coupled and tightly-coupled task 
allocation in the large-scale multi-robot system. 

2. Related work 

Recently a number of solutions have been proposed in the literature to MRTA problems 
(Zhang & Liu, 2008). These include behaviour based approaches such as ALLCANCE (Parker, 
1998), BLE (Werger & Mataric, 2000) and ASyMTRe(Tang & Parker, 2005). The advantage of 
these approaches possesses real-time, fault-tolerance and robustness; the solution, however, 
can only be locally optimal. The market-based approach is the current mainstream of task 
allocation methods. The representative method is CNP (Contract Network Protocol) which 
proposed by Smith (1980). Other typical examples include First-price auctions (Zlot et al, 2002), 
Dynamic Role Assignment (Chaimowicz et al, 2002), Traderbots (Dias, 2004), M+ (Botelho & 
Alami, 1999), MURDOCH (Gerkey & Mataric, 2002a) and DEMiR-CF (Sanem & Tucker, 2006). 
Because of better scalability, this method is particularly well-suited to the distributed robotic 
domain. Furthermore, it is guaranteed to produce optimal allocations, but robots must 
cooperate through explicit communication and more resource consumption. Once the 
communication is interrupted, the performance of this method will degrade significantly 
(Kalra & Martinoli, 2006). Therefore, it is suitable for small- to medium- scale task allocation 
problems. Derived from the behaviours of social insects, the swarm intelligence approach is 
exhibiting several good features such as self-organizing ability in unknown environments, and 
emergent and adaptive behaviours through simple interaction among individuals. Since 
cooperative individuals are distributed and there is no central control and global data in the 
group, the system will be more robust. The failure of one or several individuals will not affect 
the whole solution. Additionally, individuals cooperate through implicit communications. As 
the number of the individuals in the system increases, the amount of communication grows 
quite slowly. Therefore the swarm intelligence approach is the most suitable for distributed 
multi-robot systems and as such more and more researchers have applied it to the multi-robot 
task allocation, especially in dynamic environments. Ding et al. (2003) and Yang &Wang (2004) 
adopted Ant colony algorithm for multi-robot cooperation. Zhang et al. (2007) employed 
swarm intelligence for adaptive task assignment. Zhang & Liu (2008 b, 2009) and Liu & Zhang 
(2009, 2010) conducted intensive research on swarm intelligence and applied it to the task 
allocation of large-scale multi-robot system. 
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3. Architecture  

Ant Colony Algorithm is a new intelligent optimization algorithm and first proposed by 
Colorni et al. (1992). In ant colony algorithm, each ant searches for solutions 
independently in the candidate solution space, and lays some pheromone on the found 
solution. The better the solution, the more pheromone the ant lays. A solution with higher 
pheromone has a much greater chance of being chosen, and consequently this gives a kind 
of positive feedback. Through this positive feedback, ants can eventually find the optimal 
solution. Via this process the algorithm effectively solves combinatorial optimization 
problems and performs especially well in solving complicated problems (Jiang et al, 2003; 
Xia et al, 2005). 
The paper adopts a hierarchical architecture, as shown in Fig.1. At the high level, we employ 
the Ant Colony Algorithm to find optimal allocations. Let an ant denote a task; each ant 
forms its task allocation so as to choose an undertaker for every task. At the low level, each 
ant forms a task-oriented robot coalition to perform a tightly-coupled task by the ant colony 
optimization (ACO), the particle swarm and ant colony optimization (PSACO) and the 
quantum-inspired ant colony optimization (QACO).  It is worth mentioning that the 
proposed mechanism can not only solve loosely-coupled task allocation, but also tightly-
coupled task allocation because ants in the high level denote tasks instead of individual 
robots. Finally, simulation results give a performance comparison, and then conclusions 
follow. 
 

 

Low-level  

coalition  

formation 

ACO based task allocation High-level 

Task allocation 

Task 1 

R2 R…

coalition 

formation 

R1 
Rn …

Task N 

R1 Rm …

coalition 

formation 

R2 
Rn …

 

Fig. 1. Hierarchical architecture of the system 

4. Key issues of robot coalition formation 

4.1 Validity of robot coalition 

Similar to agent coalition formation, robot coalition formation also tries to find the robot 
coalition with the greatest value that can complete a task t. A coalition may be formed by 
several arbitrary robots in the system. However, in order to obtain a satisfactory result, we 
must consider all or most of the combinations. Therefore it is a complex combinatorial 
optimization problem. In addition, although there are many similarities between agent 
coalition and robot coalition, there are also inherent differences which should not be 
overlooked.  

Rm
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Firstly, software agents are simply code fragments whose capabilities corresponding to 

software functionality and current data knowledge while robots are tangible entities that 

occupy physical space and whose capabilities correspond to sensors, actuators, etc. Multi-

robot systems must handle real world sensory noise, full or partial robot failures, and 

communication latency or even loss of communications. 

Secondly, agents are allowed to exchange resources, so the formed coalition freely 

redistributes resources amongst the members. However, this is not possible in a multiple-

robot domain. Robot capabilities in handling sensors (camera, laser, sonar, or bumper) and 

actuators (wheels or gripper) cannot be autonomously exchanged. This implies that a robot 

coalition that simply possesses the adequate resources is not necessarily up to performing a 

given task, and other locational constraints have to be represented and met in order for the 

coalition to succeed. 

Finally, correct resource distribution is an important issue in the robot coalition formation. 

The box-pushing task (Gerkey & Mataric, 2002 b) is used to illustrate this point. Three 

robots, two pushers (with one bumper and one camera) and one watcher (with one laser 

range finder and one camera) cooperate to complete the task. The total resource 

requirements are: two bumpers, three cameras and one laser range finder. However, this 

information is incomplete, as it does not accurately represent the constraints related to 

sensor locations. Correct task execution requires that the laser range finder and camera 

reside on a single robot while the bumper and laser range finder reside on different robots. 

Therefore each candidate coalition must be verified feasibly. 

Checking the feasibility of robot coalition is a Constraint Satisfaction Problem (CSP). It is 

defined by a set of variables, a set of the domain values for each variable and a set of 

constraint relationships between variables, which is denoted as (V,D,C). Where V is the set 

of variables {V1,…,Vn} which are resources and capabilities requirements, in box-pushing 

task, V1,…,Vn are the bumper, camera and laser range finder. D is the set of the domain 

values which is the sum of the available robots possessing the required resources and 

capabilities, D={D1,…,Dn}, where Di is the limited domain of  Vi‘s all possible values. C is the 

set of constraint relationships between variables, C={C1,…,Cm}, each constraint includes a 

subset of V, that is {Vi,…,Vj} and a constraint relationship R ⊆ Di×…×Dj. For the box-

pushing task, two types of constraints exist, the sensors and actuators must reside either on 

the same robot or on different robots. As shown in Fig. 2, locational constraints are 

represented as solid arcs (same robot) and dash arcs (different robot).  

 

B1 

C1 

B2 

C2 

L1 

C3 
 

Fig. 2. Box-pushing task constraint graph 
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4.2 The evaluation criteria of robot coalition formation 

Because robots are typically unable to redistribute their resources, it is possible that the 
coalition will have one or a few robots as main resource providers.  This kind of coalition 
tends to be heavily dependent on these members for task execution that these dominating 
members become indispensable. Such coalitions should be avoided in order to improve 
fault tolerance. The coalition imbalance is defined as the degree of unevenness of resource 
contributions made by individual members to the coalition. The perfectly balanced 
coalition is where each member contributes equally (taskvalue/n) to the task. The Balance 
Coefficient (BC) quantifies the coalition imbalance level. The BC can be calculated as 
follows: 

 1 2 n
n

BC
taskvalue

n

γ γ γ× × ×
=
⎡ ⎤
⎢ ⎥⎣ ⎦

A
 (1) 

where (┛1,┛2,...,┛n) is a resource distribution with a coalition C. For the coalitions of the same 

size, the higher BC, the more balanced the coalition is. 

In general, larger coalitions imply that the average individual contribution and the 

capability requirements from each member are lower; thus larger coalitions are more 

balanced. However, larger coalitions have much more costs and therefore it is necessary to 

consider coalition balance and coalition size simultaneously. The Fault Tolerance Coefficient 

(FTC) metric can be used to solve this problem and it is defined as follows: 

 ( )FTC BC f nδ μ= +  (2) 

where ├+μ=1, f(n)=1-e-λn is the function of coalition size. After a particular point, increasing 

n will not result in a significant increase to the function value. This means that enlarging 

coalition size does not yield improved performance when the number of robots increases 

beyond a threshold value. This, as one might imagine, is in accordance with a realistic robot 

application.  

4.3 The description of robot coalition formation problem 
1. The Ability Description of Robots 
All robots in the system form a robot set R={R1,R2,…,Rn}.  The ability vector of Ri is 
BRi=(bi1,bi2,...,bim)T, and the ability cost vector is costRi=(costi1,costi2,...,costim)T ,where costij is the 
cost of the ability bij. When bij=0, it denotes Ri without the ability bij. The cost of Ri is 

m

ij ij
j 1

cost b
=
∑ , which has m kinds of abilities. 

2. The Ability Description of Robot Coalition 
Robot coalition is a set of robots in which robots can cooperate to complete a task. A 
coalition C is the nonempty subset of R. Based on the different ability attributes of the 
robots, there are different ability vectors of the coalition. For the additive capacity (such as 
handling, etc.), the ability of the coalition C is as follows: 

 
i

i

C R
R C

B B
∈

= ∑  (3) 
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For the merger capacity (such as video distance, etc.), the ability of the coalition C is as follows: 

 
i

i

C R
R C

B B
∈

= ∪  (4) 

The cost of the coalition ability is defined as follows.  
The additive capacity:  

 ( )
i

m

ij ij
R C j 1

D C cost b
∈ =

= ∑ ∑  (5) 

The merger capacity:  

 ( )
i

m

ij ij
j 1R C

D C cost b
=∈

= ∑∪  (6) 

3. The Requirement Description of Task Capacity 

There are K tasks, denoted by { }1 2 kT t , t , ,t= A . The task t has the ability requirement 

vector: ( )T
t 1 2 mB b ,b , ,b= A . 

The essential condition for the coalition C to finish the task t is as follows：BC≥Bt. 

4. The Definition of Coalition’ s Income 
We define a reward function which is a mapping from the set of tasks to the set of real 
numbers, denoted by reward: T→R+. A cost function is defined as cost: C→R+, which is a 
mapping from the set of coalitions to the set of real numbers. We consider two types of cost: 
• A coalition-inherent cost measures the inherent cost (e.g., in terms of energy 

consumption or computational requirements) of using particular capabilities of the 
coalition. Here the main consideration is the consumption of the robot's ability to 
accomplish the tasks, including the communication between the robots in the coalition 
and the cost of the coalition ability. We denote it by C_cost.  

• A task-specific cost measures cost according to task-related metrics, such as time, 
distance, etc. Here we mainly consider the distance. We denote the cost of the coalition 
performing the task by T_cost. 

Thereby, the cost function of the coalition C performing task t is denoted as: 

 ( ) 1 2Cost C,t C _ cost T _ costω ϖ= +  (7) 

where 1ϖ and 2ϖ  are weighted coefficient of both the coalition-inherent cost and task-specific 

cost, 1 0ϖ >  , 2 0ϖ > . According to the differences between agent coalitions and robot 

coalitions, the income of the robot coalition should be defined as: 

 ( ) ( ) ( )Inc C FTC rew t Cost C,t= × ⎡ − ⎤⎣ ⎦  (8) 

where FTC is the Fault Tolerance Coefficient, rew(t) is the reward after robots accomplish 
task t.  

5. Low-level coalition formation 

At the low level, we employ the ant colony optimization (ACO), the particle swarm and ant 
colony optimization (PSACO) and the quantum-inspired ant colony optimization (QACO) 
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for the coalition formation. Their performance of forming robot coalition for tightly-coupled 
task is compared by simulation results.  

5.1 Forming robot coalition by ant colony algorithm 

Put m ants on n robots at random, the probability of ant k located on the Robot i choosing 
Robot j is defined as follows: 

 
( )

( ) [ ]
k

ij ijk
ij

ij iu
u J

t 1 /d
p ,

t 1 /d
kj J

α β

α β

τ

τ
∈

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦= ∈
⎡ ⎤⎣ ⎦∑

 (9) 

where Jk  is the robot set that ant k has not chosen; τij(t) is the quantity of pheromone 
remaining on the line between robot i and robot j; dij (i,j=1,2,…,n) is the distance between 
robot i and robot j, called communication cost; ┙ and ┚ control the relative weights of 
pheromone and communication cost. The ant will stop seeking a route when it arrives at a 
certain robot and finds that the current robot coalition can accomplish the task. When all 
ants have formed their task-oriented coalitions, one loop finishes. Then each candidate 
coalition is checked to verify its feasibility. Update the maximal income and the intensity of 
pheromone according to the following Equation.  

 ( ) ( )
m

k
ij ij ij

k 1

t 1 tτ ρτ τ
=

+ ← + Δ∑  (10) 

Here k
ijτΔ  is the increment of the familiar degree between robot i and robot j given by ant k 

in this loop and it is defined as: 

 

( )

1

,               

0,

k
m

k
kij

k

Inc C
if the coalition formed by ant k includes robot i and j

C

others

τ
=

⎧
⎪
⎪Δ = ⎨
⎪
⎪⎩

∑  (11) 

Inc(Ck) is the income of the coalition formed by ant k. The optimal combination of parameters ┙, 
┚ and ρ in this algorithm can be determined by the experimental method. The program 
termination may be controlled by a fixed evolving generation or when the evolving trend is 
inconspicuous. The time complexity degree is O(NC.m.n2), NC is the number of loops. 

5.2 Forming robot coalition by particle swarm and ant colony optimization 
Particle Swarm Optimization (PSO) was proposed by Eberhart and Kennedy (1995). 
Inspired by foraging behaviours of birds, birds are viewed as particles of swarm and their 
motion is affected by their own velocity, best position of individual and population in the 
past. As a result, an optimal solution can be obtained in a complex solution space.  
The system is initialized with a population of random particles and then the best solution 
can be found through iterations. In each time step, particles update their velocity and 
position by the following formula: 

 ( ) ( )1 0 1 2k k k k k kv c v c pbest x c gbest x+ = + − + −  (12) 
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 1 1k k kx x v+ += +  (13) 

where, pbest  denotes the optimal position of single particle,  gbest  denotes the optimal 

position of whole population,  kv  is the velocity of the particle, kx  is the current position of 

the particle, 0c , 1c  and 2c  are weight coefficients. 
1. Particle Swarm and Ant Colony Optimization (PSACO) 

PSO is suitable for dealing with continuous optimal problems, but for discrete optimal 

problems it is difficult to express the velocity of a particle. Therefore, inspired by Genetic 

Algorithms, 
kvc0
 is viewed as variation operator, while ( ) ( )kkkk xgbestcxpbestc −+− 21

 is 

viewed as the crossover operator of current solution with the individual optimal value and 

the global optimal value respectively.  
The PSACO takes an ant as a particle. Ants choose their cooperative ants based on their own 

information, pbest and gbest. Then the current coalition executes crossover operations with 

individual optimal coalition and global optimal coalition to form new coalition. Finally, the 

new coalition executes a variation operator.  

The adopted crossover strategy is to choose a random position from the second string as a 

crossover point. In addition, the variation rule is constructed so as to choose a random 

position, if the variation bit is -1 (the robot is not chosen), its value is set 1 (the robot is 

chosen), and vice versa. 

2. The PSACO Algorithm  
The PSACO algorithm is described as follows: 

Step 1. Initialization 

Set 0NC = , {1,2, , }kJ n= A . Execute ACO to form m initial coalitions and then compute the 

fitness Income0 of each coalition according to Eq. (8). Treat current fitness as the individual 

optimal value ptbest and treat current coalition as the individual optimal value coalition 

pcbest. Then, find the global optimal value gtbest and global optimal value coalition gcbest via 

ptbest.   
Step 2. Put m ants on n robots randomly. 

for k = 1 to m 

{Initialize robot coalition consisting of robots which ants initially are  

  located and delete these robots from kJ . Then calculate the capability 

                vector 
kCB of each initial coalition.} 

Step 3. for k = 1 to m 

whileう
kC tB B< え 

{Choose a robot j according to probability k
ijp  by Eq. (9) and put it into  

  current coalition. Delete j  form kJ . Increase the capability vector of  

  coalitions. } 
Step 4. for k = 1 to m 

Coalition 0( )C k  formed by the K-th ant crossovers with gcbest  thus produces '
1 ( )C k , and 

then '
1 ( )C k  crossovers with pcbest to produces ''

1 ( )C k . After the variation operator applied 

to ''
1 ( )C k , a new coalition 1( )C k is formed. If 1( )C k  can perform the task, compute the 

fitness 1Income  according to Eq. (8). If 1 0Income Income> , the new value is accepted, 

otherwise keep 0( )C k  as the coalition of ant k. Update the values of ptbest , pcbest , gtbest , 

gcbest . 

www.intechopen.com



Multi-Robot Task Allocation Based on Swarm Intelligence   

 

401 

Step 5. Compute the coalition income ( )kInc C  by Eq. (8) and save the best solution. 

Step 6. Update the pheromone by Eqs. (10) & (11). 

Step 7. Set 1t t= + , 1NC NC= + , 0ijτΔ =      

Step 8. ifう maxNC NC< え 

            {1,2, , }kJ n= A ； 

Goto Step 2. 
Step 9. Output the optimal coalition and its income. 

5.3 Forming robot coalition by quantum-inspired ant colony optimization 

Quantum-Inspired evolutionary algorithm (QEA) was proposed by Kuk-Hyun Han 

(2002). It is based on the concept and principles of quantum computing (Grover, 1994) 

such as a quantum bit and superposition of states. QEA performs well even with a small 

population and without premature convergence as compared to the conventional genetic 

algorithm.  

QEA is also characterized by the representation of the individual, the evaluation function, 

and the population dynamics. However, instead of using the binary, numeric and symbolic 

representation, QEA uses Q-bit as a probabilistic representation which is defined as the 

smallest unit of information. A Q-bit individual is defined by a string of Q-bits. The Q-bit 

individual has the advantage that can represent a linear superposition of states (binary 

solutions) in search space probabilistically. Thus, the Q-bit representation has a better 

characteristic of population diversity than other representations. 
1. Encoding with Q-bits 
A number of different representations can be used to encode the solutions onto individuals 

in evolutionary computation. QEA uses a new representation, called Q-bit, for a 

probabilistic representation.  The representation is based on the concept of Q-bit; a Q-bit 

individual as well as a string of Q-bits are defined below. 

Definition 1: A Q-bit is the smallest unit of information in QEA, which is defined with a pair 

of numbers (α,β) as 

α
β
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

where 
2 2

1α β+ = . 
2α gives the probability that the Q-bit will be found in the ‘0’ state 

and 
2β gives the probability that the Q-bit will be found in the ‘1’ state.  

A Q-bit may be in the ‘0’ state, in the ‘1’ state, or in a linear superposition of the two.  
Definition 2: An individual Q-bit as a string of Q-bits is defined as 
 

1 2

1 2

...

...
m

m

α α α
β β β
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 

where
2 2

1, 1,2,...,i i i mα β+ = = . 

The Q-bit representation has the advantage that it is able to represent a linear superposition 

of states. If there is, for instance, a three-Q-bit system with three pairs of amplitudes such as 
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1 1 1

22 2

1 1 3

2 2 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 

Then the states of the system can be represented as  

1 3 1 3 1 3 1 3
000 001 010 011 100 101 110 111

4 4 4 4 4 4 4 4
+ − − + + − −  

The above result means that the probabilities to represent the states 000 , 001 , 010 , 011  

, 100 , 101 , 110 , 111  are 1/16, 3/16, 1/16, 3/16, 1/16, 3/16, 1/16, and 3/16, respectively. 

Therefore, the three-Q-bit system contains the information of eight states.  
Evolutionary computing with Q-bit representation has a better characteristic of population 
diversity than other representations, since it can represent linear superposition of states 
probabilistically. Only one Q-bit individual is enough to represent eight states, but in binary 
representation at least eight strings, (000), (001), (010), (011), (100), (101), (110), and (111) are 
needed. 
2. Quantum-Inspired Ant Colony Optimization 
Wang & Li (2007) proposed a novel quantum genetic algorithm for TSP. The basic idea of 
quantum-inspired ant colony optimization is to make ants which have quantum 
characteristics, that is, every ant is a quantum individual and encoded by the probability of 
choosing cooperative robots instead of Q-bit. The QACO is added to the corresponding 
observation process and repairing process (Han, 2002). 
The probability coding is defined as:  

0

1

P

P

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

where 0 1 1P P+ = . The individual is denoted as: 

 
0 010 20

1 111 21

j m

j m

k kk k

k
k kk k

p pp p
q

p pp p

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

 (14) 

where 1,2, ,k n= A , 1,2, ,j m= A , 
1j

k
k ijP P= ,

0 1
1

j jk kP P= − . The t-th generation population of 

QACO is denoted as: { }1 2( ) , , ,t t t
nQ t q q q= A . { }1 2( ) , , ,t t t

nP t X X X= A ,  where t
kX  is the state 

of observing k-th individual, { }1 2
t t t t

k k k kmX x x x= A  ,   t
kjx is either 0 or 1.  When its value is 

0, it means that robot j is not chosen while the value 1 means  robot j is chosen. 
The algorithm of QACO is given as follows: 
Step 1. Initialize 0=t , 0=NC , NNC =max

, mnumAnt= , nnumRobot = ,  0=Δ ijτ ,  

0)0( ττ =ij
 

Step 2. Put m  ants on n  robots randomly  

for 1k =  to m  

   for 1j =  to n  

{ if ant k  starts from robot j ,  then 
1

1
jkP = . According to Eq. (9), calculate 
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the probability of choosing cooperative robots,
1j

k
k ijP P= , 

0
1

j

k
k ijP P= − } 

Step 3. Observe the individuals of ( )Q t and get the states ( )P t . 

Step 4. Check whether every state in ( )P t is a solution, if not then go to Step10 and repair it. 

Step 5. According to Eq. (8), calculate the income ( )t
jInc X of t

jX . 

Step 6. Save the optimization coalition b and its income ( )Inc b . 

Step 7. Update the pheromone by Eqs. (10) & (11). 

Step 8. Set 1t t= + , 1NC NC= + , 0ijτΔ =     

Step 9. If ( )maxNC NC<  and not keep evolving for a long time then go to Step 2, else 

output the optimization coalition and its income.  

Step 10. Repair the state which is not a solution through repairing process. If states in ( )P t  

are all solutions, then go to Step 5. 

6. High-level task allocation  

The following parameters are introduced; m denotes the number of ants, each task is 

denoted as node 0, and the candidate robots or robot coalition are labelled as node 1 to n. 

The probability that ant k moves from node 0 to node j is formulated below: 
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α β

α β

τ

τ
∈

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦= ∈
⎡ ⎤⎣ ⎦∑

 (15) 

where Ji is the set of candidate robots or robot coalition to task i, and costij is the cost of 
robots or robot coalition to finish task i. If the task can be completed by a single robot, the 
cost is both the distance of the robot to the task and its ability consumption. Otherwise, the 
cost Cost(C,t) is the cost of robot coalition to complete the task. For each ant k, the first task 
node in the task list is the beginning point for the optimization. After ant k chooses an 
undertaker, it moves to next task to choose an undertaker for next task, and so on. When ant 
k has chosen undertakers for all tasks, one task allocation is finished. When all ants have 
completed a solution, one cycle is completed.  The solution with the maximal income is the 
optimal solution, and then updates the intensity of pheromone according to Eq. (10). 

However, k
ijτΔ  is defined as follows: 

 k
ij m

kj
k 1

Q
,        

cost

Q is a constantτ

=

Δ =

∑
 (16) 

The detailed task allocation algorithm is as follows: 

Step 1. Initialization 

Set 00, 0, (0) , 0, , ,ij ijt NC numTask s numAnt m numRobot nτ τ τ= = = Δ = = = = , the capability 

requirement of each task, capability vector and cost vector of each robot.  
Step 2. for i=1 to s 

for k=1 to m do 

{Ant k starts from the first task and determines whether the current task i is a  

tightly-coupled task. If it is, then go to step 7, else choose an undertaker from 
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iJ according to k
ijp by Eq. (15) and calculate the income. Then, ant k moves to next  

task and repeats the above process until all tasks have been allocated to  

undertakers.} 
Step 3. Calculate total income of the task allocation formed by each ant. Then, update the 

maximal income and the allocation schema. 
Step 4. For ant k=1 to m do 

Update the intensity of pheromone ( )1tij +τ  according to Eqs. (10) & (16). 

Step 5. Set 0,1,1 =Δ+=+= ijNCNCtt τ . 

Step 6. If (NC<NCmax) and (still keep evolving) then go to step 2 
else output the allocation schema with the maximal income and stop the program. 

Step 7. Call coalition formation algorithm ACO, PSACO and QACO to form a coalition for 
task i, then goto Step 2. 

The allocating process is finished by the algorithm above. If current task is tightly-
coupled, the high-level algorithm will call the low-level algorithm to form a coalition 
formation.  

7. Deadlock elimination 

Because robots are fully distributed in the system with equal status among them, it is likely 

to appear deadlock due to robots waiting each other at different task position. We employ a 

simple strategy to avoid the deadlock. Each robot has a task queue. Robots perform tasks in 

the same order as the tasks are allocated.  

8. Simulation  

In order to verify the effectiveness of proposed algorithms, we implement the algorithms in 

the TeamBots platform developed by Carnegie Mellon University and Georgia Institute of 

Technology. The implementation runs on a PC with M CPU 750, 1.8GHz Intel Pentium 

processor.  Based on the transportation mission, there are some tasks in the environment.  

Some of them can be carried out by a single robot (loosely-coupled task) and the others must 

be completed by multiple robots (tightly-coupled task). Tables 1 and 2 list the capability of 

robots and task requirement. 

According to Tables 1 and 2, we can find that tasks T1, T3, T6 and T9 must be completed by 

multiple robots. Simulation parameters are as follows:  

The high-level ant colony size m=20, low-level colony size n=20, the maximal iteration 

number maxNC 500= , Q 1= , ( )irew T 1000= ,   0.5δ μ λ= = = , 1 2 1ϖ ϖ= = , 1.5α = , 2β = , 

and 0.9ρ =  
The task allocation algorithm was run 10 times. A comparison of three coalition formation 

algorithms is given in Fig. 3 and Table 3.  

From Fig. 2 and Table 3, the following conclusions can be made: 

1. The effectiveness of ACO is poor and it is easy to enter into premature convergence 

2. The quality of PSACO is best, however, because each ant takes  longer time than other 

two methods to finish a cycle, the runtime is relative long 

3. QACO can find a good solution in a short time, so it is suitable for large-scale multi robots  

systems 
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Robot Capacity Cost Robot Capacity Cost 

R0 1, 0, 1 1, 2, 1 R8 3, 2, 1 2, 1, 3 

R1 1, 1, 1 1, 1, 2 R9 3, 1, 1 2, 3, 2 

R2 2, 1, 2 2, 3, 1 R10 2, 0, 1 1, 4, 3 

R3 1, 2, 1 3, 2, 1 R11 1, 3, 3 2, 2, 1 

R4 0, 1, 1 1, 1, 1 R12 2, 1, 3 1, 3, 1 

R5 1, 1, 2 2, 1, 1 R13 0, 2, 1 3, 1, 2 

R6 0, 1, 1 3, 2, 3 R14 1, 2, 3 4, 2, 1 

R7 2, 2, 1 3, 2, 1    

Table 1. Capacity vector and Cost Vector of Robots 

 

Task 
Capacity 
Required 

Position Task 
Capacity 

requirement 
Position 

T0 1 1 1 (13,10) T5 1 1 2 (15,0) 

T1 3 2 3 (0,0) T6 3 3 2 (0,-10) 

T2 1 2 1 (10,-10) T7 1 2 3 (20,-10) 

T3 3 3 1 (-10,10) T8 2 1 2 (20,20) 

T4 2 1 1 (-8,-3) T9 3 2 4 (20,0) 

Table 2. Task requirement information 

 

Generations  

In
c
o

m
e

 

 

Fig. 3. Optimal evolution curves 

 

Algorithm 
Best 

(Generations)
Worst 

(Generations)
Average 

(Generations) 

Average 

runtime鯛Sec代 

ACO 9012 8953 8988 7.37 

PSACO 9030 9030 9030 8.52 

QACO 9022 8971 8997 3.75 

Table 3. Results comparison among ACO, PSACO and QACO 
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9. Conclusion 

This paper discusses the key issues of robot coalition formation. A task allocation 
mechanism based on swarm intelligence is proposed. This allocation method adopts a 
hierarchical architecture. At the high level, we employ Ant Colony Algorithm to find 
optimal allocations; each ant forms a task allocation so as to choose an undertaker for every 
task. At the low level, each ant forms a task-oriented robot coalition to perform a tightly-
coupled task. ACO, PSACO and QACO are used to form the coalition. The algorithm is 
implemented in the TeamBots platform. Simulation results show that the proposed 
approaches can effectively achieve loosely-coupled and tightly-coupled task allocation in 
large-scale multi-robot systems. PSACO achieves the best solution, but its running time is 
the longest. On the other hand, although QACO is somewhat inferior to PSACO in the 
solution quality, its running time is only half of two other methods. Therefore, QACO is 
more suitable for the large-scale multi-robot system. Our future work is to improve the 
performance of algorithms and accelerate their convergence. 
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