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1. Introduction     

With the rapid progress of modern science and technology, robots’ development and 
application extend ceaselessly. For different tasks and environment, especially to large 
complex tasks and environment, the problems of capability limitation of single robot 
become more and more obvious, such as information gathering and processing, controlling 
and so on. Therefore, the multi-robot coordination and cooperation are required to improve 
these abilities. 
Nowadays, the multi-robot system has been paid much attention. It has the prominent 
property of multidisciplinary intercrossing and fusion. Based on multi-agent system, and 
with the introduction of multi-agent system’s architecture, coordination and cooperation, 
this dissertation gives a thorough and systematic research on the information fusion of 
multi-robot system, the tasks distribution and programming of multi-robot coordination, 
and the multi-robot under oppositional environment. 

2. Multi-agent decision fusion based on evidence reasoning and its 
application to multi-robot system 

The overall goal of the research described in this section is to investigate a problem of 
distributed artificial intelligence introducing evidence theory for decision making in 
uncertain environment. Such problems arise, for example, in multi-sensor information 
fusion systems, and in multi-agent decision systems and in the situation assessment 
problem with distributed artificial intelligence. 
The evidence reasoning is applied effectively to intelligent decision systems and specialist 
systems, which not only accords with people’s reasoning manner and decision process but 
also gives the rational explanation based on information theory to reasoning. In this paper, 
evidence theory is introduced to the multi-agent system and the Multi-Agent Decision 
System Based on the Evidence Reasoning is presented. This system is composed of agents, 
fusion center and decision center. The distributed agents do not interact with environment 
and do not communicate with each other but only with a fusion center. Each agent extracts 
the feature information and educes the basic beliefs about local environment. The fusion 
center combines all agents’ beliefs and acquires the beliefs about global environment. The 
decision center produces the pignistic probabilities that are used to make decision. 
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2.1 Distributed decision system 

a. System architecture 

A general multi-agent distributed system consists of a group of distributed intelligent agents 
that have to coordinate their knowledge, goals, skills, and plans in order to make decisions, 
take actions, and solve problems. Agents in a distributed system may have different areas of 
expertise, specific a priori knowledge, and different decision functions. They may be able to 
observe only certain characteristics of the environment; they may observe different spatio-
temporal regions of the environment. Since no one agent has complete information about 
the environment and observations, they have to cooperate to achieve their goals. There have 
been many coordination schemes developed in the field of distributed artificial intelligence 
(Galina Rogova & Pierre Valin., 2005). 
In this paper, we investigate a problem of decision making in a hierarchical multi-agent 
system. Agents do not communicate with each other but only with a fusion center. Each 
agent has its own internal structure including domain knowledge, a set of hypotheses to be 
considered, and the basic belief assignment for each hypothesis. They transmit these beliefs 
to the fusion center. The fusion center combines each agent’s beliefs and produces the 
combined beliefs about the global environment. The decision center acquires pignistic 
probabilities of the hypotheses under consideration and maps them into actions. Based on 
this idea, we present the distributed decision system architecture in Figure 1. 
 

 

Fig. 1. Distributed decision system architecture 

b. Agent model 

Each agent i (1 ≤ i ≤I, I is the number of agent) is able to observe states of environment and 

extracts a particular type of information from it, which represented by a feature vector 

1 2( , ,..., )
i

i i i i
NS s s s= (Ni is the dimension of a feature vector. Let Θ = {θ1, θ2,,…, θn} be a frame 

of discernment, where θk (k=1,…,n) is the element of the frame of discernment and belongs 

to class k. of the hypothesis.  

For the feature vector which each agent i extract from environment and each class k, a 

proximity measure function ( , )
i

kS θΦ  is defined to map the evidence (feature vector) to the 

basic belief assignment of the element of Θ. ( , )
i

kS θΦ  is a decreasing function, 0≤ ( , )
i

kS θΦ ≤ 

1, which can be considered as a simple support function with focal element θk. 

 ( ) ( , )i i
k k km Xθ θ= Φ  (1) 
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 ( ) 1 ( , )i i
k km X θΘ = −Φ  (2) 

 ( ) 0i
k km A A θ= ∀ ≠ ⊂ Θ  (3) 

Combining all the i
km  according to the Dempster rule of combination (Dempster, A. P., 

1967), the basic belief assignment of agent i can be obtained (Shafer, G., 1976): 
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 (4) 

Each agent i extracts the feature vector from environment as the input, produces the simple 

support function of each hypothesis of Θ by the measure function Φ , and acquires its basic 

belief assignment using (4) as the output: 1 2( ), ( ),..., ( ), ( )i i i i
nm m m mθ θ θ Θ . This is shown in 

Figure 2. 
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Fig. 2. Agent model 

c. Fusion Center 

The function of the fusion center is to combine beliefs of all the agents in all the hypotheses 
with the Dempster rule of combination. However, the fusion center confront with two 
problems: how to deal with the agents’ beliefs when they have the different internal 
structure, which means that the agents have the different and compatible frame of 
discernment; and how to resolve the relative reliability of different agents. 
In our system (Figure 1.), the fusion center is able to combine the various kinds of the 
evidence. However, the Dempster rule of combination is based on the single frame of 
discernment, which obviously can handle one part of the information. In some situation, we 
have to appeal to the different conception and change the frame of discernment for evidence 
reasoning in order to solve the some special kinds of evidence. Coarsening and refinement 
are the transform methods to satisfy this demand. If the agents have different internal 
structure, i.e. the different and compatible frame of discernment, we can resolve their beliefs 
combination by coarsening and refinement. 

Agenti and agentj are assumed to own the different and compatible frame of discernment 

{ }1 2, ,...,i i i
nθ θ θΘ =  and { }1 2, ,...,j j j

mθ θ θΩ = . The map, σ:2Θ→2Ω, is a refining from Θ to Ω, then: 

, ( )A B A Bσ∀ ⊂ Θ ⊂ Ω =  

Let m1 and m2 are the basic belief assignments of Θ and Ω, they can be transformed and 
transferred as follow: 
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 ∑
=Θ⊂

=Ω⊂∀
BAA

AmBmB

)(:

12 )()(
σ

 (5) 

where the sum is 0 when no A satisfies the constraint. m2 is called the vacuous extension of 

m1 on Ω (Philippe Smets., 2005). 
 Reliability, i.e. our opinion about the ‘value’ of a agent, various from agent to agent. The 
idea is to weight more heavily the information produced by the ‘best’ agents and conversely 
for the ‘bad’ ones. For ┙∈ [0, 1], let (1-┙) be the degree of ‘confidence’ we assign to the agent. 

It can be encoded into a basic belief assignment defined on the set {reliable, unreliable} such 
that (Elouedi, Z. et al., 2004): 

 ( ) 1m reliable α= −  (6) 

 ( )m unreliable α=  (7) 

Suppose m is the basic belief assignment on Θ. The result of combining m with the 
‘confidence’ is a new belief, defined as: 

 ( ) (1 ) ( )m A m A for Aα α= − ⋅ ⊂ Θ  (8) 

 ( ) (1 ) ( )m mα α αΘ = + − ⋅ Θ  (9) 

This operation is called a discounting by Shafer and the coefficient ┙ is called the 
discounting factor. The larger ┙, the closer m┙ is from the vacuous belief function. 
The fusion center combines the all agent’s basic belief assignment to acquire the global 
environment information. With the coarsening and refinement, the basic belief assignments 
between the different and compatible frames of discernment are transformed and 
transferred. Moreover, the fusion center considers the relative reliability of agents, so it 
distributes the discounting to each agent’s basic belief assignment. Let mi is the basic belief 
assignment of agent i, and is transferred on the same frame of discernment. Let ┙i is the 
discounting factor of agent i. The Dempster rule of combination (Rogova G., 2003) is used to 
combine the all agent’s beliefs: 
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So the fusion center produces the beliefs in all hypothesis of the frame of discernment 
Θ = {θ1, θ2,,…, θk}: {mc(θ1), mc(θ2), …, mc(θk)} and mc(Θ). 

d. Decision Center 

The agents shown in Figure 1 extract the environment information and derive their 
corresponding beliefs. The fusion center combines the ensemble of agent beliefs into a set of 
combined basic probability assignments defined over the frame of discernment. From the 
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fusion center’s output, decision center adopts pignistic probability transformation to 
compute pignistic probabilities of each hypothesis. The transformation is based on the 

generalized Insufficient Reason Principle according to which A∀ ⊆ Θ  the mass of belief 

m(A) is distributed equally among the elements of A (Philippe Smets., 2005). 

 
( )

( )
k

c
k k

A

A

m A
BetP BetP

Aθ
θ

∈
⊆Θ

= = ∑  (11) 

2.2 Experiments and results 

The approach described in the papers is problem independent and does not impose any 
restrictions on the kind of features or information used by each agent. We use SimuroSot, 
one of FIRA simulation game, to evaluate the performance of this decision system.  
SimuroSot is FIRA’s robot football simulation match. The simulation system provides 
playground information: robots’ position and rotation information of both sides and ball’s 
position information. The strategy system assesses the situation based on the information 
and makes the responsive game (shown in Figure 3). From analyzing SimuroSot, we think 
that the strategy system must focus on two types of important information: the state of the 
ball and the strategy of opponent. The multi-agent decision system based on evidence 
reasoning of this paper is applied to the match situation assessment of SimuroSot, aiming at 
the ball state information and opponent’s strategy information. 
 

 

 

Fig. 3. the interface of SimuroSot platform 

The ball state information is observed by agent p and agent d respectively. The two agents 
have different internal structure.  

Agent p extracts ball’s position features, the feature vector is ball’s position 

coordinates: { },pS x y= , and produces beliefs in each hypothesis of Θp = {threat, sub-threat, 

sub-good, good}, which is the frame of discernment of agent p. Base on the playground’s 

property, there are four representative vector defined: 1 2 3 4, , ,p p p pω ω ω ω . So the measure 

function is as follow: 

 ( , ) exp( ( ))k k k
p pS dθ γΦ = −  (12) 
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where k=1,2,3,4,  ┛k >0, k k
p pd S ω= −  

Agent d extracts ball’s movement direction features, the feature vector is ball’s direction 

angle: { }dS φ= , and produces beliefs in each hypothesis of Θd = {towards us, backwards us}, 

which is the frame of discernment of agent d. The goals of both sides are considered as 

reference point. Let the angle from ball’s direction to goal home is ϕh, 0 180o o
hφ≤ ≤ , and to 

goal opponent is ϕo, 0 180o o
oφ≤ ≤ . We can define the measure function: 

 1
2

( , ) (cos 1)d
d k kS θ φΦ = +  (13) 

The fusion center takes the two agent’s beliefs as input. The fusion center confirms the 

combination beliefs frame of discernment, Θf = {threat, sub-threat, sub-good, good}. So the 

beliefs of agent d must be transferred. Let 1 : 2 2 fdσ ΘΘ →  is a refining from Θd to Θf. During 

the transform, several rules are added according to the need of application, which is based 

on the area (area1, area2, area3) of ball to judge. 

if ball is area1,then    σ1({towards us}) = {threat} and σ1({backwards us}) = {sub-threat, sub-good, good}, 

if ball is area2, then   σ1({towards us}) = {threat, sub-threat} and σ1({backwards us}) = {sub-good, good}, 

if ball is area3, then   σ1({towards us}) = {threat, sub-threat, sub-good} and σ1({backwards us}) = {good}, 

also σ1(Θd)= Θf.  
The fusion center also considers the two agents’ belief reliability. Let ┙p and ┙d are the 
discounting factor of agent p and agent d, respectively. During the simulation, we design 
that, when ball is in middle-ground, ┙p = 0.6 and ┙d = 0.1; when ball is near the base line, 
┙p = 0.1 and ┙d = 0.8 
With the Dempster rule of combination, the fusion center leads to the basic probability 
assignment for hypotheses under consideration. The decision center computes pignsitic 
probabilities of each hypothesis based on combined beliefs. We can use these probabilities to 
judge the ball states. 
Figure 4 describes the five different game states information. If the right side is us, the 
decision of game state is made by pignistic probability: BetP1(threat), BetP2(sub-threat), 
BetP3(sub-good) and BetP4(good). Table 1 shows that only agent p is used to observe the 
match and receive the game state. Table 2 shows the game state with the fusion of the 
observation of agent p and agent d. We can find that the distributed system makes the 
fusion of each agent’s information and produces the more accuracy and more effective game 
state. 
 

  

1

2 

3 

4 

5 

 

Fig. 4. Ball state: five cases (  is ball) 
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Pignistic probability Game 
State BetP1 BetP2 BetP3 BetP4 

case 1 0.072856 0.159931 0.224461 0.542753 

case 2 0.058579 0.220646 0.617479 0.103296 

case 3 0.021759 0.856901 0.103349 0.017991 

case 4 0.203953 0.457638 0.251437 0.086973 

case 5 0.639409 0.172916 0.126939 0.060736 

Table 1.  
 

Pignistic probability 
Game State 

BetP1 BetP2 BetP3 BetP4 

L 0.051437 0.108067 0.147387 0.693109 
case 1 

R 0.083047 0.183288 0.258486 0.475180 

L 0.078714 0.081742 0.617399 0.222144 
case 2 

R 0.216245 0.505598 0.139411 0.138746 

L 0.119005 0.123862 0.579351 0.177782 
case 3 

R 0.054978 0.837930 0.054657 0.052435 

L 0.125516 0.125686 0.506824 0.241973 
case 4 

R 0.241554 0.596728 0.081055 0.080663 

L 0.506455 0.240708 0.172812 0.080025 
case 5 

R 0.636418 0.176342 0.127544 0.059696 

Table 2. (L and R are two direction) 

 

 

(a) (b)

(c) (d)

(e)  

Fig. 5. Five kinds of opponent strategy formation(  is opponent robot) 
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Opponent’s strategy is the other focus. Each robot’s information of opponent team has to be 

obtained. With the information, opponent’s formation and decision are estimated. This is the 

important foundation of our decision-making. On basis of application to SimuroSot, the four 

agents are designed to observe the opponent’s four robots except the goalkeeper. These agents 

have a common internal structure including domain knowledge, a set of hypothesis to be 

considered, and a procedure for assigning a level of belief to each hypothesis. Let Θr = {attack, 

balance, defense} be the frame of discernment. Each agent produces beliefs from opponent’s 

robot position information, the feature vector is opponent robot’s position coordinates: 

{ },i i iS x y= . The fusion center combines beliefs of the four agents in all the hypotheses with 

the Dempster rule and computes combined beliefs. Based on them, the decision center 

produces pignistic probabilities of each hypothesis, so that opponent strategy is estimated. 
The five typical strategy formations is shown in Figure 5. If the right side is us, we can judge 
the opponent’s strategy using decision center’s output, pignistic probability: BetP1(attack), 
BetP2(balance) and BetP3(defense), shown in Table 3. 
 

Pignistic probability Opponent 
strategy 

formation BetP1 BetP2 BetP3 

formation a 0.150022 0.849978 0.849978 

formation b 0.814607 0.185393 0.185393 

formation c 0.282619 0.717381 0.717381 

formation d 0.634057 0.365943 0.365943 

formation e 0.470250 0.529750 0.529750 

Table 3. 

2.3 Summary 

The method of distributed decision based on TBM is presented in this paper. In the system 
architecture, the agents may be homogeneous, or may be heterogamous and do not 
communicate with each other. Each agent is independent and does not be imposed any 
restrictions on the kind of features or information used by itself. The fusion center integrates 
the information provided by all agents and computes the global environment beliefs. The 
decision center uses the probability transformation to produce the final conclusion. 
In the application, we find that there are two key factors of the system operation performance: 
how to choose the frame of discernment and how to extract the features from the environment. 
Therefore, the multi-agent decision system of this paper should depend on the practicality 
characters to design agent’s extracting features and to choose appropriate frame of 
discernment. The decision system must aim at the property of application and assign the 
rational discount factors to agents to improve the accuracy and effectively of this system. 

3. Multi-agent learning reward function based on knowledge 

Markov games and reinforcement learning are main research methods to Multi-Agent 
System (MAS) ((M. L. Littman., 2001) & (Bowling M.; Veloso M., 2004)). Markov game can 
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fit for dealing with MAS coordination and building the dynamic model of multi-agent’s 
interaction. Reinforcement learning is an interactive learning. Q-learning (C. J. C. H. 
Watkons & P. Dayan., 1992), one of reinforcement learning, is the dynamic programming 
learning based on Markov Decision Process (MDP). Applied to multi-agent system, 
reinforcement learning is extended to Markov games. Although reinforcement learning is 
focused on widely by its convergence and biology relativity, it does not work well in 
practice, especially to application to robot. 
Reinforcement learning does not provide the mapping of state and action. After choosing an 
action, an agent is signaled the effect but do not know which is the optimal. Therefore, the 
agent depends on the interacting with environment to collect states, actions, the transition of 
states and reward in order to get the optimal policy. However, in practice, the reward 
received from environment is not immediate, but delayed, so learning becomes more 
difficult within the time-limited. Currently, how to design the reinforcement function, 
which maybe the most difficult to reinforcement learning, is seldom discussed. M. J. Matalic 
designs the reinforcement function by reinforcing multiple goals and using progress 
estimators (M. J. Mataric, 2001). Kousuk INOUE presents reinforcement learning is 
accelerated by using experience information to distill the general rules (Kousuke INOUE, et 
al., 2000). L. P. Kaelbling decomposes the learning task and combines the prior knowledge 
to direct reinforcement learning (W. D. Smart & L. P. Kaelbling., 2002). 
Most research on reinforcement function is depended on application environment. Based on 
environment’s property, learning system reduces complexity and introduces relative 
information to enrich reinforcement function so that the learner can obtain more knowledge 
about environment and itself to process reinforcement learning by. We have the same 
opinion. We design reinforcement function including two aspects: the information of goal 
state and the agent’s action effect. The former is provided by environment, which is the 
interaction information between an agent and environment for accomplishing the special 
task, the latter is that the agent evaluates action effect, which depends on its domain 
knowledge of action ability. In this paper, the simulation game of Robot Soccer is applied. 

3.1 Multi-agent reinforcement learning 
In this section some basic principle of MDP is reviewed and then the formalisms of Markov 
games, which is an extension of MDPs. Q-learning algorithm is also presented, which is 
used to solve MDPs. Minmax-Q algorithm is proposed to solve Markov games. 

a. MDP and Q-learning Algorithm 

Let us consider a single agent interacting with its environment via perception and action. On 
each interaction step the agent senses the current state s of the environment, and chooses an 
action to perform. The action alters the state s of the environment, and a scalar 
reinforcement signal r (a reward or penalty) is provided to the agent to indicate the 
desirability of the resulting state. 
Formally, a MDP is represented by a 4-tuple <S, A, r, T>: S is a set of states, A is a set of 
actions, r is a scalar reinforcement function, r: S×A→R, T is a state transition function, T: 
S×A→S. 
The goal of the agent in the most common formulation of the reinforcement learning 
problem is to learn an optimal policy of actions that maximizes an expected cumulative sum 
of the reinforcement signal for any starting state. The task of an agent with RL is thus to 
learn a policy π: S→A that maps the current state s into the desirable action a to be 
performed in s. 
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The action policy π should be learned through trial-and-error interaction of the agent with 
the environment, which means that the learner must explicitly explore its environment. 
There is at least one optimal policy π* that is stationary and deterministic. One strategy to 
learn the optimal policy π* when the model (T and r) is not known in advance is to allow the 
agent to learn the evaluation function Q: S×A→R. Each Q(s, a) value (or action value for pair 
s, a) represents the expected cost incurred by the agent when taking action at state s and 
following an optimal policy thereafter. 
Q-learning algorithm iteratively approximates Q, provided the system can be modeled as a 
MDP, the reinforcement function is bounded, and actions are chosen so that every state-
action pair is visited an infinite number of times. Q-learning rules (C. J. C. H. Watkons & P. 
Dayan, 1992) are: 

 
'

( , ) ( , )

( max ( ', ') ( , ))
a

Q s a Q s a

r Q s a Q s aα β
← +
+ −  (14) 

Where s is the current state, a is the action performed in s, r(s, a) is the reinforcement 

received after performing a in s, s’ is the new state, β is a discount factor ( 0 1β≤ < ) and α is 

the learning rate ( 0α > ). 

b. MDP and Q-learning Algorithm Markov games and Minmax-Q Algorithm 

Let us consider a specialization of Markov games, which consists of two agents performing 
actions in alternating turns, in a zero-sum game. Let A be the set of possible actions that the 
playing agent A can choose from, and O be the set of actions for the opponent player agent 
O. r(s, o, a) is the immediate reinforcement agent A receives for performing action a∈A in 
state s∈S when its opponent agent O performs action o∈O. 
The goal of agent A is to learn an optimal policy of actions that maximizes its expected 
cumulative sum of discounted reinforcements. However, learning this policy is very 
difficult, since it depends critically on the actions the opponent performs. The solution to 
this problem is to evaluate each policy with respect to the opponent’s strategy that makes it 
look the worst [1]. This idea is the core of Minmax-Q algorithm, which is essentially very 
similar to Q-learning algorithm with a minmax replacing the max function in the definition 
of the state value. 
For deterministic action policies, the value of a state s∈S in a MG is: 

 ( ) maxmin ( , , )
o Oa A

V s Q s a o
∈∈

=  (15) 

And Minmax-Q learning rule is: 

 
( , , ) ( , , )

[ ( , , ) ( ') ( , , )]

Q s a o Q s a o

r s a o V s Q s a oα β
← +

+ −
 (16) 

where s is the current state, a is the action performed by agent A in s, o is the action 

performed by agent O in s, Q(s, a, o) is the expected discounted reinforcement for taking 

action a when Agent O performs o in state s, and continuing the optimal policy thereafter, 

r(s, o, a) is the reinforcement received by agent A, s’ is the new state, β is a discount factor 

( 0 1β≤ < ) and ┙ is the learning rate ( 0α > ). 
For non-deterministic action policies, a more general formulation of Minmax-Q has been 
formally defined elsewhere. 
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3.2 Reinforcement function based on knowledge 

Reinforcement learning systems learn a mapping from situations to actions by trial-and-
error interactions with a dynamic environment. The goal of reinforcement learning is 
defined using the concept of a reinforcement function, which is the exact function of future 
reinforcements the agent seeks to maximize. In other words, there exists a mapping from 
state/action pairs to reinforcements; after performing an action in a given state the learner 
agent will receive some reinforcement (reward) in the form of a scalar value. The agent 
learns to perform actions that will maximize the sum of the reinforcements received when 
starting from some initial state and proceeding to a terminal state. 
Perhaps, design of reinforcement is the most difficult aspect of setting up a reinforcement 
learning system. The action performed by the learner not only receives an immediate 
reward but also transits the environment to a new state. Therefore, the learning has to 
consider both the immediate reward and the future reinforcement caused by the current 
action. Nowadays, much of reinforcement learning work uses two types of reward: 
immediate, and very delayed. In reinforcement learning system, immediate reinforcement, 
when available, is the most effective. And delayed reinforcement requires introduction of 
sub-goal so that learning is performed within time-limited. Reinforcement learning is a 
feedback algorithm, so it is not good for long-term goal but more effective to the near goals. 
A learner can introduce medium-term goals and distributing task so as to accelerate the 
learning rate and increase the learning efficiency. 
In traditional reinforcement learning, the agent-environment interaction can be modeled as 
a MDP, in which agent and environment are synchronized finite state automata. However, 
in real-world, the environment and agent states change asynchronously, in response to 
events. Events take various amounts of time to execute: the same event (as perceived by the 
agent) can vary in duration under different circumstances and have different consequences. 
Reinforcement learning gives the reward to what are caused by and in control of the agent. 
 

  

 

 

state 

agent 

reinforcement function 

Reinforcement

Learning 

the global goal 
reward information 

the action effect 

reward 

information

Environment

action 

reinforcement signal

 

Fig. 5. Learning Model 

Instead of encoding knowledge explicitly, reinforcement learning hides it in the 
reinforcement function which usually employs some ad hoc embedding of the semantics of 
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the domain. We divide this reinforcement information involving domain knowledge into 
two types: 

• The global goal’s reward; 

• The agent action effect’s reward. 
In each state, a learner agent chooses an appropriate action and performs it to environment, 
which is transited to a new state. On the one hand, the agent depends on the task to judge 
the environment and receives the global goal reward; on the other hand, based on the 
agent’s domain knowledge about its action ability, it compares performance effect and 
obtains the reward of action. The reinforcement function that we design combines the global 
environment’s reinforcement and the agent action’s reinforcement. The reinforcement 
learning model with this reinforcement function is shown in Figure 5. 

3.3 Experiments 

a. Experimental Environment 

We adopted the Robot Soccer to perform our experiments. Robot Soccer is a typical MAS: 
robots is the agents, the playground and ball are thought as environment. 
State, actions of multi-agent learning are design as follows:  

• S = {threat, sub-threat, sub-good, good}; 

• Home agents’ A = {Shoot, Attack, Defend, More-defend}; 

• Opponent agents’ O = {Shoot, Attack, Defend, More-defend} 
In traditional reinforcement learning, reinforcement function is usually developed that 
reward is +1 if home team scored; reward is -1 if opponent team scored. Instead of it, we 
design the reinforcement function including two kinds of information: game goal 
reinforcement and robot’s action effect reinforcement. 
In play, game goal reinforcement information is the reward received by score of both sides. 
The rewards signal rs, is defined as: 

 

,            

- ,     0

0,                      
s

c our team scored

r c opponent team scored c

otherwise

⎧
⎪= >⎨
⎪
⎩

 (17) 

And, reinforcement information of the robot’s action effect is that, after performing each 
action, the robot receives the reward signal ra, which involves the robot’s domain 
knowledge about each action and evaluates the action effect.  

 
 

0,
0  a

d action success
r d

action unsuccesss

⎧
= >⎨
⎩

 (18) 

The combination reinforcement function considers the two kinds of reward and sums them 
with weighting their values constants appropriately. 

 
, 0, ( ) 1

s s a a

s a s a

R r rω ω
ω ω ω ω
= +

≥ + =
i i

 (19) 

Thus, the robot agent evaluates its policy using comprehensive reinforcement. With learning 
continually, the agent improves its policy and increases its ability. 
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b. Experimental Result 

We use SimuroSot, one of simulation match provided by FIRA [11] to conduct the 
experiments. In experiments, In order to evaluate the effectiveness of the reinforcement 
function presented in this paper, we compare its performance against traditional 
reinforcement function.  
traditional reinforcement function: 

 
1 hom   

-1   

e team scored
R

opponent team scored

+⎧
= ⎨
⎩

 (20) 

reinforcement function based on knowledge: 

 s s a aR r rω ω= +i i  (21) 

There are two group experiments. In experiment 1, the home team uses the conventional Q-
learning. In experiment 2, the home team uses the Minmax-Q algorithm of Markov Games. 
The opponent team uses fix strategy. The team size is 1. 
The parameters used in the algorithms were set at: ┚ = 0.9, initial value of ┙ = 1.0, ┙ decline 
= 0.9. In Q-learning, initial value of Q-table = 0. In Minmax-Q algorithm, initial value of Q-
table = 1. 

In experiment, we define that the appropriate policy is: s1→a1,s2→a2, s3→a3, s4→a4. For Q-

learning algorithm, we save several Q-values, which are Q(s1,a1), Q(s2,a2), Q(s3,a3), Q(s4,a4). 

And for Minmax-Q algorithm, we save Q-values, which are 1 1( , , )
o O
MinQ s a o
∈

, 2 2( , , )
o O
MinQ s a o
∈

, 

3 3( , , )
o O
MinQ s a o
∈

 and 4 4( , , )
o O
MinQ s a o
∈

. 
During more than 1000 steps learning, we analyze their results. Q-learning with the two 
kinds of reinforcement function all can converge to appropriate policy, but the former needs 
long time. In Minmax-Q algorithm, it can get to appropriate policy with knowledge-base 
reinforcement function, while it does not learn appropriate policy with traditional 
reinforcement function even if spending too long time. We choose the same Minmax-Q 
value to observe. 
The results of Q-learning are shown in Figure 6. The results of Minmax-Q are shown in 
Figure 7. Thereinto, Figure 5(a) and Figure 6(a) are respectively the learning with traditional 
reinforcement function; Figure 5(b) and Figure 6(b) are respectively the learning with  
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Fig. 6 (a). Q-learning algorithm with the traditional reinforcement function; (b). Q-learning 
algorithm with the knowledge-base reinforcement function 
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Fig. 7 (a). Minmax-Q algorithm with the traditional reinforcement function; (b). Minmax-Q 
algorithm with the knowledge-base reinforcement function 

knowledge-base reinforcement function. Obviously, we can observe that learning with 
traditional reinforcement function has worse convergence and still has many unstable 
factors at end of experiment, while the learning with knowledge-base reinforcement 
function converges rapidly and it gets to stable value about half time of experiment. 
Therefore, with the external knowledge (environment information) and internal knowledge 
(action effect information), multi-agent learning has better performance and effectivity. 

3.4 Summary 
When Multi-agent learning is applied to real environment, it is very important to design the 
reinforcement function that is appropriate to environment and learner. We think that the 
learning agent must take advantage of the information including environment and itself 
domain knowledge to integrate the comprehensive reinforcement information. This paper 
presents the reinforcement function based on knowledge, with which the learner not only 
pays more attention to environment transition but also evaluates its action performance 
each step. Therefore, the reinforcement information of multi-agent learning becomes more 
abundant and comprehensive, so that the leaning can converge rapidly and become more 
stable. From experiment, it is obviously that multi-agent learning with knowledge-base 
reinforcement function has better performance than traditional reinforcement. However, we 
should point out, how to design the reinforcement must depend on the application 
background of multi-agent learning system. Different task, different action effect and 
different environments are the key factors to influence multi-agent learning. Hence, differ 
from traditional reinforcement function; the reinforcement function is build by the 
characteristic based on real environment and learner action. 

4. Distributed multi-agent reinforcement learning and its application in multi-
robot 

Multi-agent coordination is mainly based on agents’ learning abilities under distributed 
environment ((Yang, X. M. Li, & X. M. Xu, 2001), (Y. Chang, T. Ho, & L. P. Kaelbling, 2003), 
(Kok, J. R. & Vlassis, N., 2006)). In this section, a multi-agent coordination based on 
distributed reinforcement learning is proposed. In this way, a coordination agent 
decomposes the global task of system into several sub-tasks and applies the central 
reinforcement learning to distribute these sub-tasks to task agents. Each task agent uses the 
individual reinforcement learning to choose its action and accomplish its sub-task. 
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4.1 Distributed reinforcement learning of MAS 

Currently, research on distributed reinforcement learning of MAS mainly includes the 
central reinforcement learning (CRL), the individual reinforcement learning (IRL), the group 
reinforcement learning (GRL) and the social reinforcement learning (SRL) (Zhong Yu; 
Zhang Rubo & Gu Guochang, 2003). 
The CRL aims at the coordinating mechanism of MAS and adopts the standard 
reinforcement learning algorithm to accomplish an optimal coordination. The distributed 
problem of the system is focused on and resolved by learning centrally. In a CRL, the whole 
state of MAS is the input and the action assignment of every agent is the output. The agents 
in CRL system are not the learning unit but an actuator unit to perform the orders of the 
learning unit passively. The structure of CRL is shown in Figure 8. 
 

learning 

unit 

environment

state 
combined

action 
actuator

(agents)

action 

reinforcement 

 

Fig. 8. the structure of CRL 

In IRL, all agents are the learning units. They perceive the environment state and choose the 
actions to receive the maximized reward. An IRL agent does not care about other agents’ 
states and only considers its reward to choose the action, so it is selfish and the learning 
system has difficulty in attaining the global optimal goal. However, the IRL has strong 
independence and is easy to add or reduce the agents dynamically. Also the number of 
agents has less effect on learning convergence. The structure of IRL is shown in Figure 9. 
 

agent 1 

agent n 

reinforcement

environment

state

agent 2 

action

 

Fig. 9. the structure of IRL 

The GRL regards all agents’ states and actions as the combined states and actions. In a GRL, 
the Q-table of each agent maps the combined states into the combined actions. A GRL agent 
must consider other agents’ states and choose its action based on the global reward. The 
GRL has an enormous state space and action space, so it would learn much more slowly as 
the number of agents grew, which is not feasible. The structure of GRL is shown in  
Figure 10.   
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Fig. 10. the structure of GRL 

SRL is thought as the extension of IRL. It is the combination of IRL, social models and 
economical models. The SRL simulates the individual interaction of human society and 
builds the social model or economical model. In SRL, the methodology of management and 
sociology is introduced to adjust the relation of agents and produces more effective 
communication, cooperation and competition mechanisms so as to attain the learning goal 
of the whole system.  

4.2 Multi-agent coordination based on reinforcement learning 

In this section, the multi-agent coordination based on distributed reinforcement learning is 
proposed, which is shown in Figure 11. This coordination method is a hierarchical structure: 
coordination level and behavioral level. The complicated task is decomposed and 
distributed to the two levels for learning. 
 

  

coordination

agent 

task agent 1

task agent 2

task agent n

sub-tasks
environment

state

action

reinforcement
 

Fig. 11. the structure of multi-agent coordination based on distributed reinforcement 
learning 

a. Coordination Level 

Coordination level decomposes the complicated task into several sub-tasks firstly. Let 

{ }1 2, , , mP p p p= … be a set of strategies of coordination agent, where ip ( 1 i m≤ ≤ ) is the 

element of the set of strategies and corresponds to the assignment of sub-tasks. Based on the 

environment state, coordination agent adopts CRL to choose the appropriate strategy and 

distributes the sub-tasks to task agents. The update for coordination agent’s Q function can 

be written: 
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'

( , ) (1 ) ( , )

max ( ', ')

p p p

p p p
p P

Q s p Q s p

r Q s p

α

α β
∈

← −

⎡ ⎤+ +⎢ ⎥⎣ ⎦

 (22) 

where s is the current state, p is the strategy chosen by coordination agent in s, rp is the 

reward signal received by coordination agent, s’ is the next state, ┙p is the learning rate of 

coordination agent, β is the discount factor. 

b. Behavioral Level  

In behavioral level, all task agents have a common internal structure. Let A be the action set 

of task agents. Each sub-task corresponding an action sub-set, kSA A⊆ , is assigned to a task 

agent. According to the sub-task, each task agent k ( 1 k n≤ ≤ ) adopts the IRL to choose its 

action, k
ka SA∈ , and performs it to environment. The update for Q function of task agent k 

is written: 

 

'

( , ) (1 ) ( , )

max ( ', ')
k

k

k k k k k

k k k
p

a st

Q s a Q s a

r Q s a

α

α β
∈

← −

⎡ ⎤
+ +⎢ ⎥

⎣ ⎦

 (23) 

where s is the current state, ak is the action performed by task agent k in s, rk is the 

reinforcement signal received by task agent k, s’ is the next state, ┙k is the learning rate of 

task agent k, β is the discount factor. 

c. Reinforcement assignment 

The reinforcement assignment is that the reinforcement signal received from environment is 

assigned to all agents in distributed system according to the effective method. In this paper, 

we design a heterogeneous reinforcement function: global task reinforcement and sub-tasks’ 

coordination effect reinforcement. 

Coordination agent is responsible to decide the high-level strategies and focuses on the 

global task achievement. Simultaneously, it arranges the sub-tasks to all task agents. So its 

reinforcement information includes both the global task and sub-tasks’ coordination effect. 

All task agents coordinate and cooperate so as to take their actions to accomplish the high-

level strategies. So their learning is evaluated by sub-tasks’ coordination effect. 

4.3 Experiments and results 

The SimuroSot simulation platform [10] is applied to the evaluation of our proposed 

method. In this simulation platform, the simulation system provides the environment 

information (ball’s and all robots’ position information), from which the strategic system 

makes decision to control each robot’s action and perform it to the game. 

In the distributed reinforcement learning system, the state set is defined to S = {threat, sub-

threat, sub-good, good}. In the coordination level, the strategy set of coordination agent is 

defined to H = {hard-defend, defend, offend, strong-offend}. In the behavioral level, the 

action set of task agents is defined to A = {guard, resist, attack, shoot}.  

The global goal of games is to encourage home team’s scoring and avoid opponent team’s 

scoring. The reward of global goal is defined:  
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>

 (24) 

 

The reinforcement of sub-tasks’ coordination effect is to evaluate the home team’s strategies, 
which includes the domain knowledge of each strategy. It is defined: 
 

 

 

0  
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 (25) 

 
Coordination agent sums the two kinds of reinforcement, weighting their values constants 
appropriately, so its reinforcement function, Rc, is defined: 
 

 
, 0, ( ) 1

c g aR r rω υ

ω υ ω υ

= +

≥ + =

i i
 (26) 

 

Task agents cooperate and take their actions to accomplish the team strategies. Their 

reinforcement function, Rm, is defined:   m aR r=  
The parameters used in the algorithm are set at : ┚ = 0.9, initial value of ┙ = 1.0, ┙ decline = 

0.9, initial value of Q-table = 0. 

There are two groups in experiments. The conventional reinforcement learning (group 1) 

and our proposed distributed reinforcement learning (group 2) are applied to the home 

team respectively. The opponent team uses random strategy. The team size is 2. 

The results of group 1 are shown in Figure 12a and Figure 12b respectively. During the 

simulation, the convergence of Q-learning has worse performance. Two Robots cannot learn 

the deterministic action policies. 

In group 2, Figure 13a shows the Q-value of the coordination agent, which convergent 

rapidly. From the Q’s maximum, coordination agent can get the effective and feasible result. 

Figure 13b and Figure 13c describe two Robots’ Q values respectively, which are 

convergent. Robots can get deterministic policy to choose actions. 

4.4 Summary 

With agents’ coordination and cooperation, MAS adopts multi-agent learning to accomplish 

the complicated tasks that the single agent is not competent for. Multi-agent learning 

provides not only the learning ability of individual agent, but also the coordination learning 

of all agents. Coordination agent decomposes the complicated task into sub-tasks and 

adopts the CRL to choose the appropriate strategy for distributing the subtasks. Task agents 

adopt the IRL to choose the effective actions to achieve the complicated task. With 

application and experiments in robot soccer, this method has better performance than the 

conventional reinforcement learning. 
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Fig. 12a. Q-values of Robot 1 in group 1 

 

 

Fig. 12b. Q-values of Robot 2 in group 1 
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Fig. 13a. Q-values of coordination agent in group 2 

 

Fig. 13b. Q-values of Robot 1 in group 2      
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Fig. 13c. Q-values of Robot 2 in group 2 

5. Multi-robot coordination framework based on Markov games 

The emphasis of MAS enables the agents to accomplish the complicated tasks or resolve the 
complex problems with their negotiation, coordination and cooperation. Games and 
learning are the inherence mechanism of the agents' collaboration. On the one side, within 
rational restriction, agents choose the optimal actions by interacting each other. On the other 
side, based on the information of environment and other agents' actions, agents adopt the 
learning to deal with the special problem or fulfill the distributed task. 
At present, research on multi-agent learning lacks the mature theory. Littman takes the 
games as the framework of multi-agent learning (M. L. Littman, 1994). He presents the 
Minmax Q-learning to resolve the zero-sum Markovgames, which only fit to deal with the 
agents' competition. The coordination of MAS enables the agents not only to accomplish the 
task cooperatively, but also to resolve the competition with opponents effectively. On the 
basis of Littman's multi-agent game and learning, we analyze the different relationship of 
agents and present a layered multi-agent coordination framework, which includes both their 
competition and cooperation. 

5.1 Multi-agent coordination based on Markov games 

Because of the interaction of cooperation and competition, all agents in the environment are 
divided into several teams. The agents are teammates if they are cooperative. Different 
agent teams are competitive. Two kinds of Markov games are adopted to cope with the 
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different interaction: zero-sum games are used to the competition between different agent 
teams; team games are applied to the teammates' cooperation. 

a. Team level: zero-sum Markov games 

Zero-sum Markov games are a well-studied specialization of Markov games in which two 

agents have diametrically opposed goals. Let agent A and agent O be the two agents within 

zero-sum game. For a∈A , o∈O (A and O are the action sets of agent A and agent O 

respectively) and s∈S (S is the state set), R1(s, a, o) = - R2(s, a, o). Therefore, there is only a 

single reward function R1, which agent A tries to maximize and agent O tries to minimize. 

Zero-sum games can also be called adversarial or fully competitive for this reason. 

Within a Nash equilibrium of zero-sum game, each policy is evaluated with respect to the 

opposing policy that makes it look the worst. Minmax Q-learning (M. L. Littman, 1994) is a 

reinforcement learning algorithm specifically designed for zero-sum games. The essence of 

minimax is that behave so as to maximize your reward in the worst case. The value function, 

V(s), is the expected reward for the optimal policy starting from state s. Q(s, a, o) is the 

expected reward for taking action a when the opponent chooses o from state s and 

continuing optimally thereafter.  

 
( )

( ) max min ( , , ) a
o OPD A

a A

V s Q s a o
π

π
∈∈ ∈

= ∑  (27) 

The update rule for minimax Q-learning can be written: 

 
( , , ) (1 ) ( , , )

( ( ))

Q s a o Q s a o

r V s

α
α β

← −
+ +

 (28) 

In MAS, there are several competitive agent-teams. Each of teams has a team commander to 

be responsible for making decision. Therefore, two teams’ competition simplifies the 

competition between two Team-commanders, which adopt the zero-sum Markov games. 

b. Member level: team Markov games 

In team Markov games, agents have precisely the same goals. Supposed that there are n 

agents, for a1∈A1, a2∈A2,…, an∈An, and s∈S, R1(s, a1, a2,…,an) = R2(s, a1, a2,…,an) = …. 

Therefore, there is only a single reward function R1, which all agents try to maximize 

together. Team games can also be called coordination games or fully cooperative games for 

this reason. 

 Team Q-learning (Michael L. Littman., 2001) is a reinforcement learning algorithm 

specifically designed for team games. In team games, because every reward received by 

agent 1 is received by all agents, we have that Q1=Q2=…=Qn. Therefore, only one Q-

function needs to be learned. The value function is defined: 

 
1

1 1 1
,...

( ) max ( , ,..., )
n

n
a a

V s Q s a a=  (29) 

The update rule for team Q-learning can be written: 

 1 1 1 1

1 1

( , ,..., ) (1 ) ( , ,..., )

( ( ))
n nQ s a a Q s a a

r V s

α
α β

← −
+ +

 (30) 
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In MAS, an agent team consists of the agents that have the same goal. Because of 
cooperation in a team, agents adopt team Markov game to cooperate each other to 
accomplish the task. 
We present the multi-agent coordination framework shown in Figure 14. Based on the 
environment information and opponent information, Team commander applies zero-sum 
Markov game to make decision of the team level. According to team commander’s 
strategies, member agents use the team Markov game to make the decision of member level, 
performing their actions to environment. 
 

 Zero-sum Markov game

Member 

agent 1 

Member 

agent n 

Team 

commander 

Dynamic 

Environment

Team Markov game

reward

state

action
 

Fig. 14. Multi-agent coordination framework 

Team commander’s strategies aim at the environment and opponent team. Also, these 
strategies arrange different actions’ choice scope to all member agents. Team commander 
decomposes the complex task to several strategies. Each of them divides member agents into 
different roles, which are according to basic skills of member agents. Each member agent 
carries out its skill by learning. 
The decomposition of task and arrangement of roles are designed based on application 
system and domain knowledge. How to make decision and accomplish task is learned by 
multi-agent coordination framework. 

5.2 Experiment and results 

a. Experiment setup 

Robot soccer is a typical MAS. SimuroSot simulation platform is applied to evaluate our 
proposed method.  Ball and playground is environment. Robots are agents. We define the 
state set, S = {threat, sub-threat, sub-good, good}. The opponent team situation is defined to 
O = {hard-defend, defend, offend, strong-offend}. In the team commander, there is a team-
level strategy set, H = {hard-defend, defend, offend, strong-offend}. Each member agent has 
the action set, A = {guard, resist, attack, shoot}. Each team level strategy corresponds to a 
team formation and arranges the roles of all member agents. 
In multi-agent learning, traditional reinforcement function is usually developed that reward 
is +1 if the home team scored; reward is -1 if the opponent team scored. In order to 
accelerate learning, we design a heterogeneous reinforcement function, which reinforces 
multiple goals including global and local goals. 
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(a) 

 

(b) 

Fig. 15. Q-values of Robot 1, 2  in experiment 1 
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Fig. 16a. Q-values of Team commander in experiment 2 
 

 
(b) 
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(c) 

Fig. 16b-c. Q-values of Robot 1, 2 in experiment 2  

The global goal of match is to encourage home team’s scoring and avoid opponent team’s 

scoring. The reward of global goal is defined:  
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The local goals are to achieve home team’s cooperative strategies. This reinforcement 

includes the domain knowledge and evaluates member agents’ cooperative effect. It is 

defined: 
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Team commander sums the two kinds of reinforcement, weighting their values constants 

appropriately, so its reinforcement function, Rc, is defined: 
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In member level, team games focus on the cooperation of member agents. Its reinforcement 
function, Rm, is defined: 

 
m aR r=  (33) 

b. Results 

There are two group experiments. In experiment 1, the home team uses the conventional Q-
learning. In experiment 2, the home team uses our proposed method. The opponent team 
uses fix strategy. The team size is 2.  
The results of experiment 1 are shown in Figure 4a and Figure 4b respectively. The learning 
of two Robots has worse convergence and still has many unstable factors at the end of 
experiment. In the results of experiment 2, Figure 5a shows zero-sum game performance of 
the team commander. The values of ( , , )i j

o O
MinQ s h o
∈

(i, j = 1, 2, 3, 4) are recorded. They are 

 convergent rapidly. Team commander gets the effective and rational strategy. Figure 5b 

and Figure 5c describe two Robots’ Q values, ( , , )i j
a A
MinQ s a a
∈

 and ( , , )i j
a A
MinQ s a a
∈

(i, j = 1, 2, 3, 

4) respectively, which are convergent. Robots can get deterministic policy to choose actions. 

5.3 Summary 

In multi-agent environment, neglecting the agents’ interaction of competition and 
cooperation, multi-agent learning can not acquire the better performance. This paper 
proposed a multi-agent coordination framework based on Markov game, in which team 
level adopts zero-sum game to resolve competition with opponent team and member level 
adopts team game to accomplish agents’ cooperation. By applying the proposed method to 
Robot Soccer, its performance is better than the conventional Q-learning. However, this 
paper only discusses two agent teams’ relationship. How to deal with the games and 
learning of multiple agent teams in multi-agent environment will confront with more 
challenges and difficulties. 
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