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1. Introduction

In the chemical and process industries, it is often required to pump fluids over long distances
from storage to various processing units and/or from one plant site to another. There may
be a substantial frictional pressure loss in both the pipe line and in the individual units
themselves. It is thus often necessary to consider the problems of calculating the power
requirements for pumping through a given pipe network, the selection of optimum pipe
diameter, measurement and control of flow rate, etc. A knowledge of these factors also
facilitates the optimal design and layout of flow networks which may represent a significant
part of the total plant cost (Chhabra & Richardson, 2008).
The treatment in this chapter is restricted to the laminar, steady, incompressible fully
developed flow of a non-Newtonian fluid in a circular tube of constant radius. This kind
of flow is dominated by shear viscosity. Then, despite the fact that the fluid may have
time-dependent behavior, experience has shown that the shear rate dependence of the
viscosity is the most significant factor, and the fluid can be treated as a purely viscous or
time-independent fluid for which the viscosity model describing the flow curve is given by
the Generalized Newtonian model. Time-dependent effects only begin to manifest themselves
for flow in non-circular conduits in the form of secondary flows and/or in pipe fittings
due to sudden changes in the cross-sectional area available for flow thereby leading to
acceleration/deceleration of a fluid element. Even in these circumstances, it is often possible
to develop predictive expressions purely in terms of steady-shear viscous properties (Chhabra
& Richardson, 1999).
The kind of flow considered in this chapter has been already studied experimentally by Hagen
Poiseuille in the first half of the XIX Century for Newtonian fluids and it has analytical
solution. However, even though in steady state non-Newtonian fluids can be treated as purely
viscous, the shear dependence of viscosity may result in differential equations too complex to
permit analytical solutions and, consequently, it is needed to use numerical techniques to
obtain numerical solutions. It is in this context when Computational Rheology plays its role
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2 Numerical Simulations, Applications, Examples and Theory

(Crochet et al., 1985). Existing techniques for solving Newtonian fluid mechanics problems
have often been adapted with ease to meet the new challenge of a shear-dependent viscosity,
the application of numerical techniques being especially helpful and efficacious in this regards
(Tanner & Walters, 1998).
Most of the text books dealing with the problem of non-Newtonian fluids through pipes, with
a few exceptions, put emphasis on the solution for the power-law fluids, while there are many
other industrially important shear-dependent behaviors that are left out of consideration.
Here it is intendeded to cover this gap with the help of numerical techniques.

2. Flow problems

In this section we will introduce physical laws governing the deformation of matter, known
as conservation equations or field equations, which are general for any kind of material. After
this we will introduce the constitutive equations, which provide the viscosity (η) and the
thermal conductivity (k) as a function of the state. Moreover, in order to close the entire
system of equations, we have to define the thermodynamic relationships between the state
variables, which are intrinsic of the material considered in the problem of the fluid. Clearly,
these relationships depend on the kind of fluid being considered. Then, the boundary and
initial conditions are presented as the equations needed to particularize the flow problem and
complete the set of equations in order to be resolved, analytical or numerically. All these
equations are defined as a stepping-off point for the study of steady flow of non-Newtonian
fluids in pipes with circular cross-section.

2.1 Governing equations

The term fluid dynamics stands for the investigation of the interactive motion of a large number
of individual particles (molecules or atoms). That means, the density of the fluid is considered
high enough to be approximated as a continuum. It implies that even an infinitesimally small
(in the sense of differential calculus) element of the fluid still contains a sufficient number of
particles, for which we can specify mean velocity and mean kinetic energy. In this way, we are
able to define velocity, pressure, temperature, density and other important quantities at each
point of the fluid.
The derivation of the principal equations of fluid dynamics is based on the fact that the
dynamical behaviour of a fluid is determined by the following conservation laws, namely:

1. the conservation of mass1,

2. the conservation of momentum, and

3. the conservation of energy.

Hereafter, this set of equations will be known as the field equations. We have to supply two
additional equations, which have to be thermodynamic relations between the state variables,
like for example the pressure as a function of density and temperature, and the internal energy
or the enthalpy as a function of pressure and temperature. Beyond this, we have to provide the
viscosity (η) and the thermal conductivity (k) as a function of the state of the fluid, in order to

1In most of the processes ocurring in chemical engineering, fluids are generally compossed of different
components and their concentrations might vary temporarily and spatially due to either potential
chemical reactions or molecular difussion, therefore it would be necessary to consider the conservation of
mass for each component being present in the fluid. However, we will consider in this chapter that fluids
are sufficiently homogeneous and no chemical reactions occur in it. Then, the conservation of mass can
be applied to the fluid as it was composed of only one component.

4 Numerical Simulations - Examples and Applications in Computational Fluid Dynamics
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close the entire system of equations. Clearly, these relationships depend on the kind of fluid
being considered (Blazek, 2001), and therefore they will be known hereafter as constitutive
equations. Then, it can be summarized as the governing equations consist of field equations
and constitutive equations.
In the isothermal theory, the conservation of energy equation is decoupled from the
conservations of mass and momentum. Therefore, the field equations are reduced to the
equation of continuity (Equation 1), which is a formal mathematical expression of the principle
of conservation of mass, and the stress equations of motion, which arise from the application
of Newton’s second law of motion to a moving continuum (or the principle of balance of
linear momentum) and the local expression of the principle of balance of angular momentum
(Equation 2).

∂ρ

∂t
+∇ · (ρ�v) (1)

∂ρ�v

∂t
+∇ · (ρ�v�v) =∇ · τ + ρ �fm (2)

Consequently, the thermal conductivity coefficient and the thermodynamic relations between
the state variables are not needed to be known, because they will not participate in the solution
of isothermal problems. For this reason, they will not be considered in the rest of the chapter,
since we will focus in isothermal problems, without external sources of energy. However, we
still require of a relationship between the stress tensor and the suitable kinematic variables
expressing the motion of the continuum, i.e. we require of a rheological equation of state.

Fig. 1. The governing equations consist of field equations (conservations of mass, momentum
and energy) and constitutive equations. The constitutive equations distinguish classical fluid
mechanics from non-Newtonian fluid mechanics, due to Newton’s viscosity law is valid for
all flow situations (the viscosity is constant at any shear rate) and all Newtonian viscous
fluids, but not for non-Newtonian fluids, for which their viscosities depend on the flow
conditions (I2 is the second invariant of the tensor of shear rates) among other parameters.

Independently on whether the problem is isothermal or not, the viscosity relates the stress
to the motion of the continuum. This equation for non-Newtonian fluids is also known as
rheological equation of state. Whereas the field equations are the same for all materials,
constitutive equation will in general vary from one non-Newtonian material to another,

5Numerical Simulation in Steady flow of Non-Newtonian Fluids in Pipes with Circular Cross-Section
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and possibly from one type of flow to another. It is this last point which distinguishes
non-Newtonian fluid mechanics from classical fluid mechanics, where the use of Newton’s
viscosity law gives rise to the Navier-Stokes equations, which are valid for all Newtonian
viscous fluids (Crochet et al., 1985). Figure 1 shows a sketch of the governing equations.
Finally, it will be also needed to define initial and boundary conditions in order to solve the
specific problems.

2.1.1 Field equations for steady flow in pipes with circular cross-section

Independently on the constitutive equation, the stress tensor (τ) can be assumed as the sum

of hydrostatic pressure, corresponding to a static state of the fluid (−pI), and the viscous

stresses (τ′), which represent the dynamic part of the stress tensor. In 1845, Stokes deduced
a constitutive viscosity equation (Equation 3) generalizing Newton’s idea, which is valid for
many fluids, known as Newtonian fluids:

τ′ = A : γ̇, (3)

where A is a forth order tensor generally depending on time, position and velocity, and γ̇ the

deformation rate tensor2. For newtonian fluids, A does not depend on velocity. Those fluids
not accomplishing the Equation 3 are known as Non-Newtonian Fluids.
In the particular case of having an isotropic fluid, the Equation 3 simplifies considerably in
Equation 4

τ′ = 2η

[

1

2

(

∇�v +∇�vT
)

−
1

3
∇ ·�vI

]

+ ηv∇ ·�vI, (4)

where η is the viscosity associated to the pure shear deformation of the fluid, and ηv is the
volumetric viscosity coefficient and it is related to the volumetric deformation of the fluid
due to normal forces. Then, for an isotropic fluid, the Navier-Stokes equation is obtained by
introducing the Equation 4 in the Equation 2.

∂ρ�v

∂t
+∇ · (ρ�v�v) = −∇p +∇ ·

[

η
(

∇�v +∇�vT
)]

+∇

[(

ηv −
2

3
η

)

∇ ·�v

]

+ ρ �fm. (5)

Moreover, if the fluid can be considered incompressible (ρ = cte), the equation of continuity
reduces to Equation 6

∇ ·�v = 0, (6)

and, consequently, the Equation 5 simplifies reaching the form given by Equation 7

ρ

(

∂�v

∂t
+�v · ∇�v

)

= −∇p +∇ ·
[

η
(

∇�v +∇�vT
)]

+ ρ �fm. (7)

Reached this point, it is worth to point out that these reduced expressions of field equations
(Equations 6 and 7) are only valid for an isotropic and incompressible fluid in isothermal
conditions. It is now the moment of considering the simplifications of the field equations
due to the facts that the fluid is flowing here in laminar steady state through an horizontal
cross-section pipe (Figure 2).

2Also known as the rate-of-strain tensor: γ̇ =∇�v +∇�vT .

6 Numerical Simulations - Examples and Applications in Computational Fluid Dynamics

www.intechopen.com



Numerical Simulation in Steady flow of
Non-Newtonian Fluids in Pipes with Circular Cross-Section 5

Fig. 2. Skecth of a pipe with lenght L and diameter D << L. The coordinates system here
considered is cylindrical and its origin is placed and centered at the entrance of the pipe.

This is a canonical problem in Fluid Mechanics. The unidirectional and steady flow of a fluid

through this pipe is originated by a constant gradient of reduced pressure pl = −
∂(p+ρU)

∂z =

cte, where U is a potential from which all massive forces derivate (�fm = −∇U) and z is the
axial coordinate. It can be proved that the laminar and fully developed flow in a pipe is
axysymmetric, i.e. there are not dependences with the azimuthal coordinate (�eθ). Moreover,
the r-component of vector �v is zero. From the continuity equation (Equation 6), it can be

derived that dvz
dz = 0 and, consequently, the velocity vector expressed in cylindrical coordinates

is given by Equation 8

�v = (vr,vθ ,vz) = vz�ez, (8)

with vz = vz (r)3 Then, the deformation rate tensor is given by Equation 9

∇�v +∇�vT =

⎛

⎝

0 0 dvz
dr

0 0 0
dvz
dr 0 0

⎞

⎠ , (9)

and, subsequently, the term ∇ ·
[

η
(

∇�v +∇�vT
)]

in Equation 7 is reduced to the expression
given by Equation 10

∇ ·
[

η
(

∇�v +∇�vT
)]

=

⎛

⎜

⎝

0
0

1
r

d
dr

(

rη dvz
dr

)

⎞

⎟

⎠
. (10)

In this way, the field equations are reduced to a second order ordinary differential equation
(Equation 11) (Landau & Lifshitz, 1987). It must be noticed that this equation is needed to be
completed with two boundary conditions and a constitutive equation, but not initial condition
because the flow is steady.

pl +
1

r

d

dr

(

rη
dvz

dr

)

= 0 (11)

3This dependence can be deduced from the fact that, while vz is zero at r = D/2 by the no-slip
condition, in other r-value is that sure vz is non-zero.

7Numerical Simulation in Steady flow of Non-Newtonian Fluids in Pipes with Circular Cross-Section
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2.1.2 Boundary conditions

For a Newtonian fluid, the constitutive equation for the viscosity does not depend on the flow
conditions and it is simply a constant coefficient η = cte. Therefore, the Equation 11 is linear
and its general solution is given by Equation 12, where the values of the constants C1 and C2

will depend on the boundary conditions.

vz (r) = −
plr

2

4η
+ C1lnr + C2 (12)

Classically, in Fluid Mechanics, these boundary conditions consists of the following ones:

– The no-slip condition holds that the particles of fluid adjacent to the wall of the pipe move
with the wall velocity (Equation 13)

vz (r = D/2) = 0. (13)

– The no-singularity condition consists of assuming that vz is a continuous function and
its first derivative exists and is also continuous, therefore the Equation 14 must be
accomplished

dvz

dr
(r = 0) = 0. (14)

Then, the Equation 12 reduces to Equation 15, i.e. the velocity profile for a Newtonian,
isotropic and incompressible fluid under laminar and steady flow through a circular
cross-section pipe is parabolic, as studied experimentally by Hagen in 1839 and Poiseuille
in 1840 (Papanastasiou et al., 2000).

vz (r) =
pl

4η

(

D2

4
− r2

)

(15)

However, when it is considered the laminar steady flow of a non-Newtonian fluid through
this kind of pipes things change. Even though the no-singularity boundary condition still
holds, the assumption of the no-slip condition is not as straightforward as it might seem.
Rheologists have, for good reasons, been more concerned about the validity of the concept
than workers in Newtonian fluid mechanics. With the benefit of decades of both theoretical
and experimental interest, it is possible to assess that at least three factors are of importance
concerning slip (Tanner & Walters, 1998):

– No effective slip can occur when molecular size is smaller than the wall roughness scale.

– For large molecules, relative to the wall roughness scale, the temperature and chemical
adherence properties may be of great significance in setting the critical shear stress at which
slip occurs.

– Normal pressure may assist in reducing slip.

Taking these factors about the slip at the wall into account, we will however assume that the
no-slip boundary condition holds in all the cases here considered.

8 Numerical Simulations - Examples and Applications in Computational Fluid Dynamics
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2.1.3 Constitutive equations for non-newtonian fluids

Constitutive equations (or rheological equations of state) are equations relating suitably
defined stress and deformation variables (Barnes et al., 1993). The simplest example is the
constitutive law for the Newtonian viscous liquid (Equation16), where a constant viscosity
coefficient is sufficient to determine the behaviour of incompressible Newtonian liquids under
any conditions of motion and stress. The measurement of this viscosity coefficient involves
the use of a viscometer, defined simply as an instrument for the measurement of viscosity.

τ′ = ηγ̇ (16)

However, as the viscosity of non-Newtonian liquids may be dependent on the flow conditions,
i.e. the rate-of-strain tensor, the viscometer is therefore inadequate to characterize the
behaviour of these materials and has to be replaced by a rheometer, defined as an instrument
for measuring rheological properties. One of the objectives of Rheometry is to assist in the
construction of rheological equations of state (Walters, 1975).
If non-Newtonian viscosity, a scalar, is dependent on the rate-of-strain tensor, then it must
depend only on those particular combination of components of the tensor that are not
dependent on the coordinate system, the invariants of the tensor (Bird et al., 1987):

– I1 = ∑
3
i=1 γ̇ii.

– I2 = ∑
3
i=1 ∑

3
j=1 γ̇ijγ̇ji.

– I3 = ∑
3
i=1 ∑

3
j=1 ∑

3
k=1 γ̇ijγ̇jkγ̇ki.

It can be deduced with ease that I1 = 0 for an incompressible fluid. In addition, I3 turns
out to be zero for shearing flows. Hence, for the flow problems here considered, η is solely
dependent on I2. Actually, it is preferred to use γ̇, the magnitude of the rate-of-strain tensor

(γ̇), instead of I2, being both parameters related by the Equation 17 (Macosko, 1994)

γ̇ =

√

√

√

√

1

2

3

∑
i=1

3

∑
j=1

γ̇ijγ̇ji =

√

1

2
I2. (17)

As this chapter is devoted to the steady flow of non-Newtonian fluids in pipes with circular
cross-section, which is a kind of flow dominated by shear viscosity and where the elasticity of
the fluid has no considerable repercussions, the most suitable constitutive equation is given
by the Generalized Newtonian Model (GNM) given by Equation 18. This is an inelastic model
for which the extra stress tensor is proportional to the strain rate tensor, but the “constant”
of proportionality (the viscosity) is allowed to depend on the strain rate. The inelastic model
possesses neither memory nor elasticity, and therefore it is unsuitable for transient flows, or
flows that calls for elastic effects (Phan-Thien, 2002).

τ′ = η (γ̇) γ̇ (18)

Consequently, Equation 11 can be rewritten for non-Newtonian liquids as Equation 19

pl +
1

r

d

dr

(

rη (γ̇)
dvz

dr

)

= 0. (19)

The GNM is quite general because the functional form of η (γ̇) is not specified. It must be
given or fit the data to predict the flow properties. We will introduce different models for

9Numerical Simulation in Steady flow of Non-Newtonian Fluids in Pipes with Circular Cross-Section
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η (γ̇), but many other functional forms can be used and these can be found in the literature or
in flow simulation softwares. Before that, it is important to keep in mind the main limitations
of the GNM (Morrison, 2001):

– They rely on the modeling shear viscosity to incorporate non-Newtonian effects, and
therefore it is not clear whether these models will be useful in nonshearing conditions.

– They do not predict shear normal stresses N1 and N2, which are elastic effects, and therefore
they can not consider memory effects.

Nevertheless, the GNM enjoys success in predicting pressure-drop versus flow curves for
steady flow of non-Newtonian fluids in pipes with circular cross-section.
As it has been mentioned above, it is possible to obtain η (γ̇) by means of experiments carried
out in a rheometer. In a shear rheometer, the material is undergone to simple shear conditions,
for which the rate-of-strain tensor is given by the Equation 20

γ̇ =
(

∇�v +∇�vT
)

∼=

⎛

⎜

⎝

0 0 0

0 0 dvθ
dz

0 dvθ
dz 0

⎞

⎟

⎠
, (20)

whose invariants are the following ones:

– I1 = tr
(

γ̇
)

= 0

– I2 = 2
(

dvθ
dz

)2

– I3 = det
(

γ̇
)

= 0

In the case of a steady flow in pipes with circular cross-section, the rate-of-strain tensor is
given by the Equation 9 and its invariants are the following ones:

– I1 = tr
(

γ̇
)

= 0

– I2 = 2
(

dvz
dr

)2

– I3 = det
(

γ̇
)

= 0

It can be observed that in both flow conditions the fluid is undergone to simple shear and

it can be stated that γ̇ =
√

|I2|
2 = | dvθ

dz | = | dvz
dr |. Then, the shear dependence of the viscosity

in steady state observed in the rheological experiments could be used directly in Equation
19. It has been already probed that the experimental data obtained with a rheometer can be
used successfully for the prediction of the transport characteristic in pipelines (Masalova et al.,
2003).

2.1.3.1 GNM for shear thinning fluids

Most of non-Newtonian fluids (foods, biofluids, personal care products and polymers)
undergone to steady shear exhibit shear thinnning behavior, i.e. their viscosity decreases
with increasing shear rates. During flow, these materials may exhibit three distinct regions
(see Figure 3): a lower Newtonian region where the apparent viscosity (η0), usually called the
limiting viscosity at zero shear rate, is constant with changing shear rates; a middle region
where the apparent viscosity is decreasing with shear rate and the power law equation is

10 Numerical Simulations - Examples and Applications in Computational Fluid Dynamics
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a suitable model for this region; and an upper Newtonian region where the viscosity (η∞),
called the limiting viscosity at infinite shear rate, is constant with changing shear rates (Steffe,
1996). Sometimes the position of the typical behaviour along the shear-rate axis is such
that the particular measurement range used is either too low or too high to pick up the
higher-shear-rate part of the curve4.

Fig. 3. Typical viscosity curve for a shear thinning behaviour containing the three regions:
The two limiting Newtonian viscosities, η0 and η∞, separated by a shear thinning region.

One equation for η (γ̇) that describes the whole shear thinning curve is called the Cross model,
named after Malcolm Cross, a rheologist who worked on dye-stuff and pigment dispersions.
He found that the viscosity of many suspensions could be described by the equation of the
form given by Equation 21

η (γ̇) = η∞ +
η0 − η∞

1 + (Kγ̇)m , (21)

where K has the dimensions of time, and m is dimensionless. The degree of shear thinning is
dictated by the value of m, with m tending to zero describes more Newtonian liquids, while the
most shear-thinning liquids have a value of m tending to unity. If we make various simplifying
assumptions, it is not difficult to show that the Cross equation can be reduced to Sisko5 or
power-law models6. The Carreau model is very similar to the Cross model (Equation 22)

η (γ̇) = η∞ +
η0 − η∞

[

1 + (Kγ̇)2
]m/2

, (22)

both (Cross and Carreau equations) are the same at very low and very high shear rates, and
only differ slightly at Kγ̇ ≈ 1 (Barnes, 2000).
The use of Cross or Carreau models in the Equation 19 results in a differential equation that
can not be solved analytically and, thefore, numerical techniques are needed.
It is worth to emphasize here that due to the boundary condition of no-singularity imposed at
the axis of symmetry, it is highly important choosing a model which contains what happens
to the viscosity at low shear rates in order to solve this problem.

4Note that the typical shear-rate range of most laboratory viscometers is between 10−2 and 103 s−1

5When the viscosity is just coming out of the power-law region of the flow curve and flattening off
towards η∞, the Sisko model is the best fitting equation: η (γ̇) = η∞ + kγ̇n−1.

6In many situations, η0 >> η∞, Kγ̇ >> 1, and η∞ is small. Then the Cross equation (with a simple
change of the variables K and m) reduces to the well-known power-law (or Ostwald-de Waele) model,
which is given by η (γ̇) = kγ̇n−1, where k is called the consistency and n the power-law index.

11Numerical Simulation in Steady flow of Non-Newtonian Fluids in Pipes with Circular Cross-Section
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2.1.3.2 GNM for shear thickening fluids

Shear thickening is defined in the British Standard Rheological Nomenclature as the increase
of viscosity with increase in shear rate (Barnes, 1989). This increase in the effective viscosity
occurs when the increasing shear rate exceeds a certain critical value. Although shear
thickening fluids (STFs) are much less common than shear thinning materials in industry,
an increasing number of applications take advantage of the shear thickening behaviour to
improve their performance, i.e. the incorporation of STFs to Kevlar R© fabrics in order to
improve the ballistic protection (Lee et al., 2003; Kirkwood et al., 2004) and enhance stab
resistance (Decker et al., 2007). However, shear thickening is an undesirable behaviour in
many other cases and it should never be ignored, because this could lead to technical problems
and even to the destruction of equipment, i.e. pumps or stirrers (Mezger, 2002).
Figure 4 shows the viscosity curve of a STF containing the three characteristic regions typically
exhibited: slight shear thinning at low shear rates, followed by a sharp viscosity increase over
a threshold shear rate value (critical shear rate), and a subsequent pronounced shear thinning
region at high shear rates. Nowadays, the physics of the phenomenon is deeply understood
thanks to the use of modern rheometers, scattering techniques, rheo-optical devices and
Stokesian dynamic simulations (Bender & Wagner, 1996; Hoffman, 1974; Boersma et al., 1992;
D’Haene et al., 1993; Hoffman, 1998; Maranzano & Wagner, 2002; Larson, 1999). However,
there is a lack of experimental or theoretical models able to predict the whole effective
viscosity curve of STFs, including the shear thinning behaviours normally present in these
materials for low enough and high enough values of the shear rate.

Fig. 4. Typical viscosity curve for a shear thickening behaviour containing the three regions:
The two limiting shear thinning behaviours separated by a shear thickening region.

As it has been mentioned above, many functional forms have been proposed in the past for
η (γ̇) in the case of shear thinning fluids. In contrast, for shear thickening fluids only the
power-law model, given by (Equation 23), has been commonly used

η (γ̇) = kγ̇n−1. (23)

Its major drawback is that power-law model can only fit the interval of shear rates where the
viscosity increases with the shear rate n > 1, but it fails to describe the low and the high shear
rate regions (Macosko, 1994), where shear-thinning behaviours are normally observed.
Very recently, Galindo-Rosales et al. (2010) have provided a viscosity function for shear
thickening behavior able to cover these three characteristic regions of the general viscosity
curve exhibited by STF. It consists in using a piecewise definition, taking the three different

12 Numerical Simulations - Examples and Applications in Computational Fluid Dynamics
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regions into account separately. According to this approach, they have defined the viscosity
function as follows,

η (γ̇) =

⎧

⎨

⎩

ηI (γ̇) for γ̇ ≤ γ̇c,
ηI I (γ̇) for γ̇c < γ̇ ≤ γ̇max,
ηI I I (γ̇) for γ̇max < γ̇,

(24)

where ηi (γ̇) is the viscosity function that fits the zone i of the general viscosity curve (for
i = I, I I, I I I). As it was pointed out by Souza-Mendes & Dutra (2004), the functions ηi

must be chosen such that both, the composite function given by Equation 24, as well as
its derivative with respect to γ̇, are continuous. This procedure avoids practical problems
in fitting procedures and in numerical simulations. The viscosity function proposed in the
work of Galindo-Rosales et al. (2010), given by Equation 25, accomplishes these smoothness
requirements.

η (γ̇) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ηI (γ̇) = ηc +
η0−ηc

1+
[

KI

(

γ̇2

γ̇−γ̇c

)]nI for γ̇ ≤ γ̇c,

ηI I (γ̇) = ηmax +
ηc−ηmax

1+
[

KI I

(

γ̇−γ̇c
γ̇−γ̇max

)

γ̇
]nII for γ̇c < γ̇ ≤ γ̇max,

ηI I I (γ̇) =
ηmax

1+[KI I I (γ̇−γ̇max)]
nII I for γ̇max < γ̇.

(25)

It must be noticed that the parameters appearing in the branches of Equation 25 have the
same dimensions and interpretation than those analogous for the Cross model (Equation 21):
Ki (for i = I, I I, I I I) possess dimension of time and are responsible for the transitions between
the plateaus and the power-law, while the dimensionless exponents ni are related to the slopes
of the power-law regimes. Equation 25 is able to capture the three regimes characteristic of
STF materials.
Then, substituting any the form of η (γ̇) given in Equation 25 in the Equation 19 will results in
a differential equation that can not be solved analytically and, thefore, numerical techniques
will be needed again.

3. Numerical simulations

Classical Fluid Mechanics offers a wide variety of possibilities with regards to numerical
algorithms based on finite elements, finite volume, finite differences and spectral methods
(Wesseling, 2001). Computational rheologists do not have a recipe which lets them know
which one is more suitable to work with in each particular problem, although most of the
published works related to solve 2-D problems in steady state are based on finite element
methods (Keunings, 1999). However, it has been proved that finite volume methods produce
better results (O’Callaghan et al., 2003) due mainly to a good conservation of the fluid
properties (mass, momentum and energy) and they allow to discretize complex computational
domain in a simpler way (Fletcher, 2005).
The problem considered here, because of its geometrical features, can be solved by any of
the numerical techniques already mentioned, although we have finally used the finite volume
technique (Pinho & Oliveira, 2001; Pinho, 2001). As the flow problem is axysymmetric, the
volume domain can be simplified to a 2-D domain with a length7 (L = 2 m) and a width

7Its lenght is long enough to ensure that the regime of fully developed flow is reached.
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(D = 1 cm << L). This domain is meshed by rectangles in a structured grid: in z-axis from
the inlet (ratio 1.05 and 500 nodes) and r-axis from the axis (ratio 1.0125 and 50 nodes), which
has been validated by correlating the analytical and numerical results given for the case of a
Newtonian fluid (Figure 5).

(a) (b)

Fig. 5. (a) Horizontal pipeline with L >> R in order to ensure that the flow reaches the fully
developed region. (b) Validation of the grid by means of the comparison between the
numerical result and the analytical solution of the fully developed velocity profile for a
Newtonian liquid.

As a consequence of the friction drag, there is a pressure drop. The energy required to
compensate the dissipation due to frictional losses against the inside wall and to keep the fluid
moving is usually supported by a pump. A large amount of data obtained experimentally for
many different Newtonian fluids in pipes having diameters differing by orders of magnitude
and roughness have been assembled into the so-called friction-factor chart or Moody chart,
relating the friction factor with Reynolds number in laminar and turbulent regime and relative
roughness. In laminar flow, the friction factor does not depend on the roughness of the inner
surface of the pipe and can be calculated by the Equation 26

f =
16

Re
, (26)

where f is the friction factor and Re is the Reynolds number. Nevertheless, when the fluid is
non Newtonian, the Moody chart and the Equation 26 are useless due to in non-Newtonian
fluids there is an extra dissipation of energy expent in modifying the internal structure of
the fluid8. It then is needed to analyse the particular flow behaviour of the fluid considered,
obtain its constitutive equation and solve the momentum conservation equation in order to
characterize the steady flow in a pipe of circular cross-section.
As an example of how to proceed, two different non-Newtonian fluids (shear thinning and
shear thickening fluids) are considered here. Firstly, their constitutive forms for η (γ̇) will be
obtained from their experimental viscosity curves. Secondly, the momentum conservation
equation in the steady state (Equation 19), considering axysimmetry and a cylindrical
coordinate system centered in the axis of the pipe, will be solved numerically by volume finite
methods. In order to have shear rates values within the limits of the experimental results
for each sample, the velocity inlet was always imposed at values below 0.1 m/s. Thus, the

8As it is oulined in the following subsection, the variations in the viscosity are due to variation in the
internal order of the fluid, which is possible thanks to the mechanical energy suplied by the shearing
motion.
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velocity profile, shear rate, apparent viscosity, pressure drop and friction factor were obtained
for each sample as function of velocity.

3.1 Experimental data set

Aerosil R© fumed silica is a synthetic, amorphous and non-porous silicon dioxide produced
by Degussa A.G (Degussa, 1998) following a high temperature process. Aerosil R© 200
presents a highly hydrophilic surface chemistry with surface silanol groups (Si − OH) that
can participate in hydrogen bonding. Because of the relatively high surface area (200m2/g) of
these particles, the surface functional groups play a major role in the behavior of fumed silica
Degussa (2005a). In the unmodified state, the silanol group imparts a hydrophilic character to
the material. However, it is possible to modify its surface chemistry by means of a chemical
after treatment with silane. In this way, Aerosil R© R805 is obtained from Aerosil R© 200 particles
by replacing silanol groups with octadecylsilane chains, which results in an hydrophobic
behaviour of the particles (Degussa, 2005b).
The degree of network formation by fumed silica in a liquid depends on the concentration of
solid and type (hydrophilic versus hydrophobic) of silica, as well as the nature (polarity) of the
suspending medium. Therefore, these three main factors allow to the suspensions of Aerosil R©

fumed silica inside a fluid possess a variety of rheological behaviors (Khan & Zoeller, 1993;
Raghavan & Khan, 1995). This variety of rheological behaviors makes silica particle a very
interesting filler from the point of view of a wide range of applications. For example, gels
of fumed silica in mineral or silicone oils are used as filling compounds in fiber-optic cables,
while in polyethylene glycols are being considered for application as polymer electrolytes in
rechargeable lithium batteries(Jáuregui Beloqui & Martin Martinez, 1999; Dolz et al., 2000;
Walls et al., 2000; Li et al., 2002; Fischer et al., 2006; Yziquel et al., 1999; Ouyang et al., 2006).
It has been already reported elsewhere (Galindo-Rosales & Rubio-Hernández, 2007; 2010)
that suspensions of Aerosil R© R805 and Aerosil R© 200 in Polypropylene Glycol (PPG) with
a molecular weight of 400 g/mol exhibit completely different rheological behaviour. PPG
molecules interfere in the formation of the fumed silica network by attaching itself to the
active Si − OH sited on the silica surface. Therefore no bridging between silica particles
occurs with polar solvents, such as polypropylene glycol, that have a stronger affinity for
fumed silica than that existing between two fumed silica. The solvent attaches itself to the
surface silanol group of the fumed silica rendering it inactive for further network formation.
For that reason, when dispersing Aerosil R© 200 in polypropylene glycol, it is expected that
primary aggregates interconnect, originating flocs with different sizes depending on the
weight fraction. On the contrary, a large interconnection between the flocs, which may result
in a three dimensional structure, should not take place. Therefore, the suspension would be
non-flocculated (Raghavan & Khan, 1997; Raghavan et al., 2000). However the presence of
octadecylsilane chemical bonds on the surface of Aerosil R© R805 avoids that PPG molecules
attached to the silica particles and lets them develop a three dimensional network without
interacting chemically with polypropylene gycol chains. So a flocculated suspension is formed
(Khan & Zoeller, 1993).
The steady viscosity curves, shown in Figure 6, represent the steady viscosity reached by
the suspensions at different values of shear rates. Therefore, the shape of these curves is
a consequence of the order achieved by silica particles inside the polymer matrix under flow
conditions. According to the previous analysis, Aerosil R© R805 suspension is flocculated after a
long time at rest, and the network breaks down when subjected to shear, a behavior known as
shear thinning. Figure 6 confirms that the higher the shear rate applied, the lower the apparent
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Fig. 6. Steady viscosity curve of A200 (a) and R805 (b) suspension in PPG400 at 5 %v/v and
25 oC fitted by Equation 25 and Carreau model, respectively.

steady viscosity value. As the interconnection between flocs and aggregates disappear under
the action of shear stress, the resistance to the flow decreases. On the other hand, the Aerosil R©

200 suspension presents a flow curve in which three zones can be distinguished. At low shear
rates, there is a reversible and slight shear thinning region (γ̇ ≤ 10.91± 0.05s−1). In the interval
of shear rates between 10.91 ± 0.05s−1 and 129 ± 4s−1, the viscosity increases with the shear
rate (shear thickening). Finally, at high shear rates (γ̇ ≥ 129 ± 4s−1), the viscosity decreases
again in a more pronounced way. This shape of the flow curve is a consequence of the internal
microstructure developed by the nanoparticles, and it is characteristic for non-flocculated
suspensions, in agreement with the results and analysis presented above. At low shear rates
the decrease in the viscosity is a consequence of the effect that the supplied mechanical energy
has on the existing flocs. Under shear, agglomerates either break down into smaller sizes or
stretch aligning in the flow direction. Both contribute to decrease the resistance to the flow
and, subsequently, a viscosity descend. The higher the shear rate applied, the more prominent
is this effect. However, when the shear rate is higher than a critical value γ̇c, the flocs are
forced to connect to each other by hydrodynamic forces. This structure formation during flow
results in an increase of the flow resistance and, therefore, leads to an increase of viscosity,
as well as to the presence of the shear thickening region observed in Figure 6. However, this
situation is metastable. When shear rate is higher than a maximum value (γ̇m), the stability
of the structure developed under flow is lost and the structure breaks down, decreasing the
viscosity (Vermant & Solomon, 2005). Shear thickening is not expected at such low volume
fraction (Barnes, 1989). Actually, this fact can be explained only by taking into consideration
the difference of aggregation between Euclidean and fractal solids. As consequence of their
fractal nature, individual silica particles are linked forming open primary aggregates, leading
to an effective dispersed phase volume φe f f much larger than the nominal one, φs (Raghavan
& Khan, 1997).
The equilibrium viscosity curves of the Aerosil R© R805 suspension here considered, shown in
Figure 6, can be fitted very accurately by Carreau Model, whose equation is given by Equation
22. This form of η (γ̇) is able to predict the shape of the general flow curve for shear thinning
behavior because of its four parameters (see Figure 6)9.

9Non-linear least-squares regression method based on the Levenberg-Marquardt algorithm has been
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Substituting Equation 22 in Equation 19, the differential equation which predicts the laminar,
steady and fully developed velocity profile of our samples when they would flow through a
duct is obtained (Equation 27)

pl +
1

r

d

dr

⎡

⎢

⎢

⎢

⎣

r

⎛

⎜

⎜

⎜

⎝

η∞ +
η0 − η∞

[

1 +
(

K| dvz
dr |

)2
]m/2

⎞

⎟

⎟

⎟

⎠

dvz

dr

⎤

⎥

⎥

⎥



= 0, (27)

whose boundary conditions are the same exposed above.
The equilibrium viscosity curves of the Aerosil R© 200 suspension is also shown in Figure 6 and
it can be fitted very accurately by Equation 25. This form of η (γ̇) is able to predict the shape
of the general flow curve for shear thickening behavior because of its eleven parameters (see
Figure 6).
Substituting Equation 25 in Equation 19, a set of three differential equations is obtained
(Equations 28), which predicts the laminar, steady and fully developed velocity profile of
the suspension of A200 in PPG 400 at 5 %v/v and 25 oC, not having any of them analytical
solutions. In order to solve them, numerical methods are needed.

pl +
1
r

d
dr

⎡

⎢

⎣
r

⎛

⎜

⎝
ηc +

η0−ηc

1+

[

KI

(

| dvz
dr

|2

| dvz
dr

|−γ̇c

)]nI

⎞

⎟

⎠

dvz
dr

⎤

⎥


= 0 for | dvz

dr | ≤ γ̇c,

pl +
1
r

d
dr

⎡

⎢

⎣
r

⎛

⎜

⎝
ηmax +

ηc−ηmax

1+

[

KI I

(

| dvz
dr

|−γ̇c

| dvz
dr

|−γ̇max

)

| dvz
dr |

]nII

⎞

⎟

⎠

dvz
dr

⎤

⎥


= 0 for γ̇c < | dvz

dr | ≤ γ̇max,

pl +
1
r

d
dr

[

r

(

ηmax

1+[KI I I(| dvz
dr |−γ̇max)]

nII I

)

dvz
dr

]

= 0 for γ̇max < | dvz
dr |.

(28)

3.2 Results and discussion

Here are exhibited the results obtained from solving numerically the differential equations
defined above.
Figure 7 shows the velocity profiles normalized by its maximum value, which is reached at
the axis of symmetry (at r = 0), for the suspensions of A200 and R805 in PPG400 at 5 %v/v
and 25 oC. It can be observed that both do not follow a parabolic profile, as it would be the
Newtonian case. In spite of this, their velocity profiles depend on the velocity impose at the
inlet of the pipe.
Different velocity profiles imply different shear rates across the section of the pipe, varying
from zero at the axis of symmetry to its highest value at the neighborhood of the wall. In
addition, the shear rates are higher for higher values of the inlet velocity, as it is shown in
Figure 8.
It is noticeable that in the case of the A200, due to its shear thickening behavior, the viscosity
increases with the velocity inlet and in the vicinity of the solid wall, where the shear rates are
higher, in opposition what happen to R805 suspension. Around the axis, the shear conditions

used to fit the experimental data to the models here considered.
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Fig. 7. Velocity profiles normalized by its maximum value, which is reached at the axis of
symmetry (at r = 0), for the suspensions of A200 (a) and R805 (b) in PPG400 at 5 %v/v and
25 oC.
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Fig. 8. Shear rate evolution across the section of the pipe in the fully developed region for the
suspensions of A200 (a) and R805 (b) in PPG400 at 5 %v/v and 25 oC.
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Fig. 9. Variation of the steady viscosity across the section of the pipe in the fully developed
region for the suspensions of A200 (a) and R805 (b) in PPG400 at 5 %v/v and 25 oC.

are almost null, what implies that in the A200 suspension the viscosity is relatively low, and
relatively high for the R805, according to their viscosity curves (Figure 9). Therefore, that
results in different shapes of the velocity profile, which is sharper for the shear thickening
suspension and flatter for the one with shear thinning behavior (Figure 7).
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Fig. 10. Pressure-drop per unit of length of the duct as a function of the velocity inlet. Results
for the suspensions of A200 (a) and R805 (b) in PPG400 at 5 %v/v and 25 oC.

Non linear differences in the viscosity with the inlet velocity will result in differences in
the pressure losses with regards to Hagen-Poiseuille solution. The pressure-drop per meter
of pipe is shown in Figure 10 for different values of velocity inlet. It must be notice
that the Reynolds number has not been used for those graphs, the reason is that this is a
non-dimensional parameter useful when the viscosity is constant and here it is not the case.
For a Newtonian flow, it is already known that pressure losses are proportional to the velocity
inlet, however, in the case of non-Newtonian fluids, it would depend of their rheological
behavior. In the case under study, the pressure-drop for a shear thickening behavior grows
exponentially with the velocity inlet, while for the shear thinning one it does potentially. The
values of losses are much higher for the case of R805 suspension, due to its higher viscosity
values.
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Fig. 11. Friction factor as a function of the velocity inlet. Results for the suspensions of A200
(a) and R805 (b) in PPG400 at 5 %v/v and 25 oC.

This information can also be given expressed by the friction factor (Figure 11). It can be
observed that the friction factor in the laminar regime does not depend inversely proportional
to the velocity, but it follows a potential or exponential law, depending on the rheological
properties of the fluid.
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4. Other kind of flows

In this chapter we have been focused in the use of numerical techniques to solve the
flow problem of laminar, steady and fully developed flow of non-Newtonian fluids, whose
viscosity is described by the GNM. These constitutive equations do not consider elastic
behavior and are perfect to describe this kind of flow due to it is dominated by viscous
effects. Numerical techniques here are needed beacuse of non-linearities introduced by the
constitutive equations of the fluids.
However, there are many other flow geometries in which elastic behaviors are relevant,
i.e. contraction/expansion geometries, cross-slot, etc. Then, viscoelastic models must be
used as constitutive equations for these fluids instead of the GNM. In this cases, because
of complexities in the geometry and the constitutive equation, numerical techniques are also
needed to obtain information about the flow properties. Those readers interested in this kind
of flows are strongly recommended to have a look at the works of Prof. R. Keunings et al.,
Prof. K. Walters et al., Prof. M.J. Crochet et al. or Prof. F.T. Pinho et al., among others.
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& Martı́n-Martı́nez, J.M (1999). Rheological properties of thermoplastic polyurethane
adhesive solutions containing fumed silicas of different surface areas, International
Journal of Adhesion and Adhesives 19: 321–328.

Keunings, R. (1999). Advances in the computer modeling of the flow of polymeric liquids,
Keynote Lecture, 8th International Symposium on Computational Fluid Dynamics, Bremen,
Germany .

Khan, S. A. & Zoeller, N. J. (1993). Dynamic rheological behaviour of flocculated fumed silica
suspensions, Journal of Rheology 37(6): 1225–1235.

Kirkwood, K., Kirkwood, J., Wetzel, E. D., Lee, Y. S. & Wagner, N. J. (2004). Yarn pull-out as
a mechanism for dissipating ballistic impact energy in kevlar R© km-2 fabric - part i:
Quasi-static characterization of yarn pull-out, Textile Research Journal 74 (10): 920–928.

Landau, L. D. & Lifshitz, E. M. (1987). Fluid Mechanics, Pergamon Press, Oxford, Great Britain.
Larson, R. G. (1999). The Structure and Rheology of Complex Fluids, Oxford University Press,

Nueva York, USA.
Lee, Y. S., Wetzel, E. D. & Wagner, N. J. (2003). The ballistic impact characteristics of kevlar R©

woven fabrics impregnated with a colloidal shear thickening fluid, Journal of Materials
Science 38: 2825–2833.

Li, Y., Fedkiw, P. S. & Khan, S. A. (2002). Tithium/v6o13 cells using silica nanoparticled-based
composite electrolyte, Electrochimica Acta 47: 3853–3861.

Macosko, C. W. (1994). Rheology: Principles, measurements, and applications, Wiley-VCH, Inc.,
USA.

Maranzano, B. J. & Wagner, N. J. (2002). Flow-small angle neutron scattering measurements
of colloidal dispersion microstructure evolution through the shear thickening
transition, J. Chem. Phys. 117(22): 10291–10302.

Masalova, I., Malkin, A. Y., Slatter, P. & Wilson, K. (2003). The rheological characterization and
pipeline flow of high concentration water-in-oil emulsions, Journal of Non-Newtonian
Fluid Mechanics 112: 101–114.

21Numerical Simulation in Steady flow of Non-Newtonian Fluids in Pipes with Circular Cross-Section

www.intechopen.com



20 Numerical Simulations, Applications, Examples and Theory

Mezger, T. G. (2002). The Rheology Handbook: for user of rotational and oscillatory rheometers, Ed.
Vincentz Verlag, Germany.

Morrison, F. A. (2001). Understanding Rheology, Oxford University Press, USA.
O’Callaghan, S., Walsh, M. & McGloughlin, T. (2003). Comparison of finite volume, finite

element and theoretical predictions of blood flow through an idealised femoral artery,
Summer Bioengineering Conference, Florida, USA, pp. 417–418.

Ouyang, C., Wang, S., Zhang, Y. & Zhang, Y. (2006). Low-density polyethylene/silica
compound modified asphalt with high-temperature storage stability, Journal of
Applied Polymer Science 101: 472–479.

Papanastasiou, T. C., Georgiou, G. C. & Alexandrou, A. N. (2000). Viscous fluid flow, CRC Press
LLC, USA.

Phan-Thien, N. (2002). Understanding Viscoelasticity, Springer-Verlag Berlin Heidelberg,
Germany.

Pinho, F. (2001). The methodology of finite volumes applied to computational rheology. ii-
fundamentals for stress-explicit fluids, Journal of the Portuguese Society of Rheology
1: 63–100.

Pinho, F. & Oliveira, M. (2001). The methodology of finite volumes applied to computacional
rheology: I- introduction, Journal of the Portuguese Society of Rheology 1: 1–15.

Raghavan, S. R. & Khan, S. A. (1995). Shear-induced microstructural changes in flocculated
suspensions of fumed silica, Journal of Rheology 39(6): 1311–1325.

Raghavan, S. R. & Khan, S. A. (1997). Shear-thickening response of fumed silica suspensions
under steady and oscillatory shear, Journal of Colloid and Interface Science 185: 57–67.

Raghavan, S. R., Walls, H. J. & Khan, S. A. (2000). Rheology of silica dispersions in organic
liquids: New evidence of solvations forces dictated by hidrogen bonding, Langmuir
16(21): 7920–7930.

Souza-Mendes, P. R. & Dutra, E. S. S. (2004). Viscosity function for yield-stress liquids, Applied
Rheology 14: 296–302.

Steffe, J. (1996). Rheological methods in food process engineering, Ed. Freeman Press, Michigan,
USA.

Tanner, R. I. & Walters, K. (1998). Rheology: An Historical Perspective, Rheology Series, vol. 7,
Ed. Elsevier Science Publishers B.V., Netherlands.

Vermant, J. & Solomon, M. J. (2005). Flow-indiuced structure in colloidal suspensions, Journal
of Physics: Condensed Matter 17: 187–216.

Walls, H. J., Zhou, J., Yerian, J. A., Fedkiw, P. S., Khan, S. A., Stowe, M. K. & Baker, B. L.
(2000). Fumed-silica based composite polymer electrolyte: synthesis, rheology and
electrochemistry, Journal of Power Sources 89: 156–162.

Walters, K. (1975). Rheometry, Chapman and Hall Ltd., London, Great Britain.
Wesseling, P. (2001). Principles of computational fluid dynamics, Ed. Springer Verlag, Berlin,

Germany.
Yziquel, F., Carreau, P. J. & Tanguy, P. A. (1999). Non-linear viscoelastic behavior of fumed

silica suspensions, Rheologica Acta 34: 14–25.

22 Numerical Simulations - Examples and Applications in Computational Fluid Dynamics

www.intechopen.com



Numerical Simulations - Examples and Applications in

Computational Fluid Dynamics

Edited by Prof. Lutz Angermann

ISBN 978-953-307-153-4

Hard cover, 440 pages

Publisher InTech

Published online 30, November, 2010

Published in print edition November, 2010

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

This book will interest researchers, scientists, engineers and graduate students in many disciplines, who make

use of mathematical modeling and computer simulation. Although it represents only a small sample of the

research activity on numerical simulations, the book will certainly serve as a valuable tool for researchers

interested in getting involved in this multidisciplinary ï¬eld. It will be useful to encourage further experimental

and theoretical researches in the above mentioned areas of numerical simulation.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

F.j. Galindo-rosales and F.j. Rubio-hernández (2010). Numerical Simulation in Steady Flow of Non-Newtonian

Fluids in Pipes with Circular Cross-Section, Numerical Simulations - Examples and Applications in

Computational Fluid Dynamics, Prof. Lutz Angermann (Ed.), ISBN: 978-953-307-153-4, InTech, Available

from: http://www.intechopen.com/books/numerical-simulations-examples-and-applications-in-computational-

fluid-dynamics/numerical-simulation-in-steady-flow-of-non-newtonian-fluids-in-pipes-with-circular-cross-section



© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


