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The Fate of Herbicides in Soil 

Sonia Blasioli, Ilaria Braschi and Carlo E. Gessa 
Department of Agroenvironmental Sciences and Technologies, University of Bologna 

Italy 

1. Introduction  

The agrochemical spreading is a common and essential agricoltural practice to obtain high 
quality, large harvests. 
Agrochemicals are classified according to the target organisms designed to be controlled 

(insects, weeds, fungi). Of all the target organisms, weeds cause by far the greatest economic 

loss due to their interference in crop production. It is not surprising therefore, that 

herbicides are the most common class of agrochemicals in the world (48% of the total 

expenditure) and in Europe (43%) outstripping fungicides (35%) and insecticides (14%). 

Europe, Asia, and the United States are the largest consumers of agrochemicals; in Europe, 

France has the biggest agricoltural areas, and is the highest-ranking country for pesticide 

consumption followed by Germany and Italy (see http://www.croplife.org/ and 

http://www.ecpa.be). 

Bad agricoltural practice and accidental spreading of high doses of agrochemicals can 

determine toxic effects in humans and the environment; pesticides can accumulate in 

organisms and achieve critical concentrations for the human and ecosystem health. 

Agrochemicals were used for the treatment of human diseases like malaria and typhus. 

However, high doses of some pesticides can be highly toxic to humans. Laboratory 

experiments have shown that the administration of high doses of pesticides to animals can 

cause cancer, mutagenesis, and even death; moreover, exposure to low doses can cause skin 

irritation and breathing problems. In the “infamous”  case of DDT, for instance, which was 

introduced onto the market in 1940 for the malaria and typhus control, the central nervous 

system was attacked causing loss of memory, tremblings, and personality changes. 

Paraquat, a dipyridylic herbicide, is an extremely toxic systemic pesticide; it can enter in the 

body by inhalation, ingestion or direct contact. It is expecially toxic to the lungs, but can 

cause gastrointestinal apparatus, kidney, liver, and heart disorders and the weakening of 

other organs with vital functions. 

Plants that are sensitive to pesticide molecules may show signs of growth inhibition and loss 

in biomass even as far as necrosis, but may be able to develop resistance to certain pesticides 

(see http://www.weedscience.org; Yuan et al, 2007). Agrochemicals may also have a toxic 

effect on nontarget plants (Madhun & Freed, 1990) when transported away from the treated 

site (soluble herbicides or surface erosion).  

Soil and aquatic ecosystems contain a multitude of microorganisms. After pesticide 
spreading, microbic activity may be reduced. However, in some situations an enhancement 
in microbial activity may occur (Lewis et al., 1978; Pozo et al., 1994).  
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The leaching of soluble and highly mobile molecules, wilful discharge in underground wells 
and accidental dumping in water bodies contribute to water contamination. Carabias 
Martinez et al. (2000) monitored the concentration of fifteen herbicides selected owing to 
their frequency of use, the amounts used, their toxicity and their persistence in river basins 
in the provinces of Zamora and Salamanca (Spain). After six months, the presence of six out 
of the fifteen herbicides monitored, was detected at levels ranging from the detection limit 
to 1.2 μg/L. The presence of these herbicides was related to agricultural activities as well as 
the kind of crop and its treatment period. 
The prediction of herbicide movement and fate in soils represents an important strategy in 
limiting their environmental impact (Figure 1). Physical, chemical, and biological processes 
regulate herbicide mobility and degradation in soil: rainfall and irrigation water can move 
herbicides along the soil profile; sites negatively charged of clay mineral surfaces and/or 
organic matter can adsorb herbicides in their cationic form at soil pH; microbial activity can 
promote herbicide transformation. Different transfer and degradation processes which 
control the movement and the fate of pesticides in the environment are reported in the Table 
1. Except physical processes, other processes depend on soil characteristics. 
 

 

Fig. 1. The fate of agrochemicals in the environment. 
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Process Consequence  Factors  

Movement (processes that relocate agrochemicals without changing their structure) 

Physical drift Movement due to wind action Wind speed, drop sizes 

Volatilization 
Loss due to evaporation from 
soils, plants, and waters 

Vapor pressure, wind speed, 
temperature 

Adsorption 
Removal due to interaction with 
soils, plants, and sediments  

Clay content, organic matter, 
moisture 

Absorption  
Uptake by plant roots or animal 
ingestion  

Cell membrane transport, 
contact time 

Leaching  
Horizontal and vertical 
movement downward through 
the soil  

Water content, soil texture, 
clay and organic matter 
contents 

Erosion  Wind and water action 
Rainfall, wind speed, sizes of 
clay and organic matter 

Degradation (processes that modify the chemical structure) 

Photochemical  
Assorption of sunlight               
(i.e., ultraviolet radiation) 

Chemical structure, intensity 
and duration of exposure 

Microbial  Degradation by microorganisms  
Environmental factors (pH, 
moisture, temperature) 
organic matter content 

Chemical  Hydrolysis and redox reactions 
pH modifications, same 
factors as microbial 
degradation 

Metabolism  Adsorption by plants or animals 
Adsorption capacity, 
metabolism, interactions with 
microorganisms 

Table 1. Movement and degradation processes of agrochemicals in the environment 
(Pierzynski et al., 2000). 

2. Chemico-physical parameters affecting the fate of herbicides in soil 

The fate of herbicides such as that of any organic molecule released into the environment is 
determined by their chemico-physical characteristics. 
Solubility. The solubility of an herbicide is important in predicting its behaviour in water and 
its mobility in soil. Agrochemical water solubility is a function of temperature, pH, and ionic 
strength and is affected by the presence of other organic substances such as the dissolved 
organic matter (DOM) (Pierzynsky et al., 2000). Two methods are frequently used to 
estimate organic molecule solubility based on i) chemical structure (Kps) and ii) the n-
octanol/water partition coefficient (KOW). n-Octanol/water coefficients are determined by 
the following equation which highlights that there is an inverse relationship between 
solubility and KOW: 
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L
K
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concentration of organic chemical in water

L
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⎝ ⎠

 (1) 

Persistence. The persistence of an herbicide is defined as the time in which the molecule 
remains in the soil and is usually expressed as half-live. Half-live (t1/2) refers to the time 
required to halve the organic molecule concentration compared with its initial level.  
Half-life values are important in understanding the potential environmental impact of a 
chemical; in fact, a molecule which degrades quickly, has a low t1/2 value and thus the 
impact of this species on the environment is reduced if the degradation products are 
harmless. On the contrary, the environmental impact of species with a high t1/2 value can be 
substantial even if the molecule is only moderately toxic.  
The prediction of herbicide half-life and thus, its persistence in the environment is an 
important parameter in agronomic practice because it supplies information on the residual 
activity of agrochemicals which could cause damages to the successive crops. 
For a first order reaction, the half-life is determined by the following equation: 

 1/2

0.693
t

k
=  (2) 

where k is the kinetic constant of the degradation reaction involving the agrochemical. 

Volatilization. Volatilization of organic molecules is responsible for the transfer of molecules 

from aquatic and soil environments into the atmosphere. As with the solubility, it is 

important to know the contribution of agrochemical volatilization in predicting its residual 

amount and thus, its persistence in the environment.  

The volatilization of herbicides from waters depends on the chemical and physical 
properties of the molecules in question (e.g., vapour pressure and solubility), their 
interaction with suspended materials and sediments, the physical properties of the water 
bodies (depth, turbulence, and velocity) and any water-atmosphere interface properties.  
The solubility of a gas dissolved in an aqueous solution is well defined by the Henry 

constant, calculated using the homonymous equation: 

 
gas

H
aq

P
K

C
=  (3) 

where KH is the Henry constant, Pgas is the gas partial pressure and Caq is its concentration in 

the aqueous phase. For high KH values, the molecule prefers to leave the liquid phase in 

order to pass into the atmosphere. This constant is useful to describe the agrochemical 

fugacity from a water body but also from soil solid components which are always 

surrounded by water in adsorbed form. 

The rate of volatilization can be indicated as half-life, which is the time required to halve the 

organic molecule concentration in water compared with its initial value. The volatilization 

half-lives of different molecules are reported in the table 2.  

Factors that influence the volatility of organic molecules from soils include the chemical and 
physiochemical properties of the pollutant (i.e., vapour pressure, solubility, the structure 
and nature of the functional groups, and adsorption-desorption characteristics), 
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concentration, soil properties (soil moisture content, porosity, density, and organic matter 
and clay contents) and environmental factors like temperature, humidity, and wind speed.  
 

Volatilization Agrochemical t1/2 

Low Dieldrin 327 d 

 3-bromo-1-propanol 390 d 

   

Medium Phenantrene 31 h 

 Pentachlorophenol 17 d 

 DDT 45 h 

 Aldrin 68 h 

 Lindane 115 d 

   

High Benzene 2.7 h 

 Toluene 2.9 h 

 O-xylene 3.2 h 

 Carbon tetrachloride 3.7 h 

Table 2. Volatilization rates of some organic molecules (Pierzynsky et al., 2000). 

Photolysis. Photochemical reactions involve sunlight radiation and play an important role in 
the degradation of molecules on soil surfaces and in aquatic environments. Photolysis in the 
soil is difficult to determine because of the heterogeneous nature of soils and low sunlight 
penetration. Nevertheless, it is an important herbicide degradation process in soil since it is 
always active. 
In water as well as in soil, photolysis can occur either by direct or indirect processes. In 
direct photolysis, sunlight is absorbed directly by organic molecules which alter its chemical 
structure. The indirect process occurs in the presence of natural photosensitive species such 
as nitrates or humic acids which can absorb the light and subsequently transfer excitation 
energy to the organic molecule. 
Biodegradation. Herbicide biodegradation is due to microorganism activity and is a function 
of those properties which influence microbial activity such as temperature and pH: a 
temperature or pH decrease slows down the biotic degradation rate since under such 
conditions microbial activity is reduced. This could explain the presence of certain 
molecules such as antibiotics, in the deeper layers of soils and waters (Gavalchin & Katz, 
1994; Van Dijk & Keukens, 2000). 
Adsorption-desorption. The ability of herbicides to adsorb on soils and sediments and their 
tendency to desorb are the most important factors affecting soil and water contamination. 
Adsorption depends on both molecule and soil chemico-physical properties. In soil, the 
surfaces responsible for adsorption are colloidal particles and among these, organic matter 
and clays. Organic matter, due to its chemical affinity with agrochemical molecules, has the 
greatest adsorption strength towards these species; high surface area and the interlayer 
charge of clays, such as expandable phyllosilicates, make these sorbents good for organic 
molecules.  
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Adsorption on clays or organic matter can occur with the following interactions: van der 
Waals forces, hydrogen bondings, dipole-dipole interactions, ionic exchange, covalent 
bondings, protonation, ligand exchange, cationic and H2O bridging, and/or hydrophobic 
interactions.  
Cationic species adsorb on soil by electrostatic attraction while anionic molecules can adsorb 
on positively charged soil colloids, even if the adsorption of negative species is less strong 
than on the negatively charged clay surfaces. In acidic soils, herbicides which have amino 
groups can protonate to quaternary ammonium ions (-NH3+) and form H-bonds with the 
oxygen atoms of the phyllosilicate surfaces or with nitrogen atoms of organic matter; 
molecules which have acidic functional groups remain in a neutral form (COOH). 
Nonpolar molecules can interact with the hydrophobic moieties of soil organic matter: this 
hydrophobic bond is responsible for the strong adsorption of DDT and organochloride 
insecticides on soil organic matter.  
The strength of adsorption affects molecule mobility along the soil profile and thus, its 
bioactivity, persistence, biodegradation, leaching, and the volatilization process. The 
adsorption of an agrochemical onto the soil components can be considered as the first step 
towards its chemical degradation.  
Organic molecule adsorption modeling by soils is frequently done using adsorption 
isotherms.  
Adsorption isotherms are built by measuring the residual concentrations of pollutant in 
aqueous solution at the equilibrium point, after the adsorption on soil of different initial 
concentrations. For each concentration point, the adsorbed molecule concentrations are 
determined by the difference between initial and equilibrium concentrations. Adsorption 
data are commonly fitted using two different models described by the Langmuir and 
Freundlich equations. 
The Langmuir equation is: 

 
1

l

l

K bCx

m K C
=

+
 (4) 

where x/m is the mass of organic molecule adsorbed per unit of soil weight; C is the 

equilibrium concentration of the organic molecule; Kl is the Langmuir constant that is 

related to binding strength. The linear form of the Langmuir equation is: 

 
1

/ l

C C

x m K b b
= +  (5) 

If a plot of C/(x/m) vs C is a straight line, then the adsorption data satisfy the Langmuir 
equation, and b can be calculated from the slope and Kl from the intercept. 
The Freundlich equation is: 

 1/n
f

x
K C

m
=  (6) 

where x/m and C are the same as above; Kf and n are empirical constants. 
The Kf value is a measure of the extent of adsorption whereas the 1/n value indicates the 
affinity of organic molecule for the sorbent surface. If the 1/n value is lower than 1, there is 
high affinity between the adsorbate and the adsorbent. If 1/n is equal to 1, the solute is equally 
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distributed between the solution and adsorbent surface. If the 1/n value is higher than 1, the 
adsorption is called “cooperative” because there is cooperation between the adsorbed 
molecules and the new molecules approaching the surface to promote the adsorption. 
The linear form of the Freundlich equation is obtained by logarithmic transformation: 

 
1

log log logf

x
K C

m n

⎛ ⎞ = +⎜ ⎟
⎝ ⎠

 (7) 

A plot of log (x/m) vs log C should produce a straight line, with 1/n being equal to the slope 
and Kf the intercept. 
For many organic molecules, especially nonpolar species, adsorption can be constant, that is 
the adsorbed concentration is proportional to the equilibrium concentration. The Freundlich 
equation can be simplified: 

 
/

d

x m
K

C
=  (8) 

where Kd is the distribution constant. The adsorption constant can be normalized to the 
organic carbon content of the soil (fOC = OC%/100): the new constant is know as KOC which 
is independent of soil type and specific to a given pollutant. The constant is calculated using 
the following equation: 

 d
OC

OC

K
K

f
=  (9) 

Adsorption isotherms. Adsorption isotherms of organic molecules are divided into four 
classes, according to the nature of the initial curve portion (Giles et al., 1960). The four 
classes are know as H (high affinity), L (Langmuir type), C (constant partition), and S 
(sigmoidal or with an “s” form) isotherms (Figure 2). The L curves are the best known: the 
initial curvature shows that as more sites in the substrate are filled, it becomes increasingly 
difficult for solute to find an available vacant site. The H isotherm is a special case of L 
curve, where the solute has a high affinity for the surface especially at low concentrations. 
The C curves are characterized by the constant partition of solute between the liquid and 
solid phase; the constant partition is independent of concentration right up to the maximum 
possible adsorption, where an abrupt change in the slope to a horizontal plateau occurs. The 
initial part of the S curves describes contrary conditions in comparison with the other 
isotherms: the more solute has already been adsorbed, the easier it is for additional amounts 
to become fixed. This implies a side-by-side association between adsorbed molecules, 
helping to hold them to the surface. This has been called “cooperative adsorption”. 
Abiotic and biotic transformations. Both abiotic and biotic reactions are responsible for the 
transformation of herbicides in soils and waters. One of the two processes may be dominant, 
but usually both of these participate simultaneously in molecule degradation. The principal 
abiotic reactions that occur in water are hydrolysis, oxidation-reduction, and photolysis; in 
sediments, hydrolysis and redox reactions may prevail. Redox reactions in aquatic 
environments can be mediated by direct or indirect photolysis or catalyzed by metal species. 
In soil, abiotic reactions occur in the liquid phase (i.e. soil solution) and at the solid-liquid 
interface. In soil solution, hydrolysis and redox reactions are the most common abiotic 
transformations; these reactions are catalyzed by clays, organic matter and metal oxides.  
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Fig. 2. The four main classes of isotherms. From left to right: high affinity (H), Langmuir (L), 
constant partition (C) and S curves. 

Biotic reactions are classified as: i) biodegradation (contaminants are used as a substrate for 
microorganism growth); ii) cometabolism (contaminants are transformed by metabolic 
reactions without being used as an energy source); iii) accumulation (contaminants are 
accumulated in microorganisms); iv) polymerization or conjugation (contaminants are 
bonded to other organic molecules); v) secondary effects of microbial activity (contaminants 
are transformed by secondary microbial effects such as pH and redox changes) (Bollag & 
Liu, 1990).  
Biodegradation is considered the principal mechanism for the conversion of organic 
molecules into CO2, H2O and mineral salts. 
Although these reactions are mediated by microorganisms, abiotic processes are also 
involved, especially in transformations related to categories iv) and v).  
Braschi et al. (2000) have investigated the degradation of primisulfuron, a sulfonylurea 
herbicide, in microbial communities enriched with soils polluted by herbicide. The authors 
find that the degradation reaction of primisulfuron firstly occurs by means of hydrolysis 
and photolysis processes and that the role of microorganisms subsequently becomes 
important in the degradation of the herbicide metabolites.  

3. Soil inorganic phase: clay minerals 

Soil solid phases are almost totally characterized by inorganic components (fragments of 
rocks, primary and secondary minerals, amorphous materials); the organic component is 
only a small fraction. 
Minerals are the most diffuse inorganic species in the lithosphere. From a chemical point of 
view, they are classified as: i) silicates formed by oxygen and silicon and ii) nonsilicates, 
such as oxides, carbonates, phosphates, sulphates.  
Silicon tetrahedron is the building unit of silicates: different classes of silicates are obtained 
by the polymerization of building units.  
Layered aluminosilicate minerals, known as clay minerals, have a profound influence on 
many soil chemical reactions because of their high active surface area. They have regular 
layers of tetrahedral and octahedral sheets: tetrahedral sheets are comprised of silicon and 
oxygen atoms with three out of every four oxygen atoms shared between adjacent 
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tetrahedra. There are two types of octahedral sheets: dioctahedral and trioctahedral. 
Dioctahedral sheets have two out of every three octahedral sites occupied, most often by the 
trivalent Al cation. Trioctahedral sheets have all octahedral sites occupied by divalent 
cations, which are commonly Mg ions. Clays have structures that are either 1:1, 2:1, or 2:1:1 
layers of tetrahedral and octahedral sheets. 1:1 clay minerals have one tetrahedral and one 
octahedral sheet held together by sharing an apical tetrahedral oxygen. 2:1 clay minerals 
have an octahedral sheet posed between two tetrahedral sheets. 2:1:1 layered clays are 
similar to 2:1 clays with an additional dioctahedral or trioctahedral sheet between the 2:1 
layers (Pierzynski et al., 2000). 
The expansion property after water adsorption is typical to the 2:1 arrangement. In 1:1 clays, 
the oxygens of octahedral sheet bond with the oxygens of the tetrahedral sheet by means of 
H-bondings: this arrangement does not permit good expansion in water for this clay. In 2:1 
clays, no hydrogen bonds are formed between the oxygens of tetrahedral and octahedral 
sheets; a weak repulsion develops and distributes over the surface, allowing the clay 
minerals to expand easily in water (Figure 3). 
 

 

 

Fig. 3. Different arrangements of clay minerals: 1:1 on the top, 2:1 on the bottom. 

Clay minerals contain active sites for adsorption which are localized in the tetrahedral sheet, 
and are formed by siloxanes (siloxane cavity). This cavity is bordered by six sets of lone-pair 
electrons (from the oxygen atoms) that give a nucleophilic character to the surface: polar or 
positively charged species can interact with this highly negative surface (Sposito, 1984). 
Water can occupy the siloxane cavity by pointing the hydroxylic group inside the cavity; the 
polarization inducted by the surface, makes the water molecules strongly polarized and 
then reduces their mobility. The siloxane cavity extends along the whole tetrahedral sheet 
giving high adsorption properties to clays. 
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Clays can have a permanent negative charge which comes from isomorphous substitutions 
and a variable pH dependent charge. Isomorphous substitution occurs when an element 
substitutes for another in the mineral structure, such as Al3+ substituting Si4+. If an element 
of a lower charge is substituted for an element of a higher charge, a permanent negative 
charge develops in the clay mineral: the net negative charge electrostatically attracts positive 
and polar species. The variable charge is due to the presence of surface hydroxylic groups 
that can lose or accept protons as a function of soil solution pH.  
Cations in the soil solution are bonded to the surface of clay minerals by electrostatic 
interactions and can return in solution by the substitution of other cations or by dilution. 
The most representative exchange cations are K+, Ca2+, Mg2+, and Na+. Other cations, such 
as organic cations, are bonded onto clay minerals as a function of their affinity for the 
surface and their concentration in the soil solution.  
Cations adsorbed onto clay surfaces are surrounded by hydration water. This water is more 

acidic than the water in the soil solution because cations attract the hydroxylic groups of 

water and move the water dissociation equilibrium towards higher values. This results in a 

decrease of 2-3 units of hydration sphere pH in comparison with the soil solution. The 

surface acidity effect is an important factor in the adsorption processes of herbicides which 

have nitrogen groups: in fact, the nitrogens contained in some agrochemical structures can 

be protonated by acidic surfaces and agrochemicals can be adsorbed by cationic exchange.  

4. Soil organic matter 

The organic components of soils are characterized by: 

• vegetable and animal residues which are partially degraded and in transformation; 

• the biomass of living organisms; 

• materials of the neogenesis. 
Vegetable and animal residues are slowly decomposed by microbial attack on molecular 

and ionic compounds which can be transformed by polycondensation in macromolecules 

with complex and unknown chemical structures: these are known as humic substances. 

Humic substances have colloidal dimensions, high specific areas and are able to adsorb 

molecules or ions. The dark colour of humic compounds promotes the sunlight radiation 

absorption and thus, the increase of soil temperature.  

Organic matter plays an important role in the chemistry of soils: it covers the pores created 

by roots or pedofauna action by stabilizing the soil structure. Organic matter affects the 

water flow into the pores (capillary porosity): in fact, the coexistence of hydrophilic and 

hydrophobic properties in the same structure makes organic matter a material which is able 

to retain moisture or to repel the water by decreasing its flow along the pores. Moreover, 

organic matter forms macroscopic aggregates (“cements”) with inorganic species (i.e. Fe and 

Al oxides and hydroxides) which stabilize the soil structure. 

Finally, the organic matter can interact with agrochemicals by H-bondings, van der Waals 

forces, H2O bridgings, and hydrophobic bondings. 

5. Dissolved organic matter, DOM 

Dissolved organic matter (DOM) is defined as “the amount of organic matter that is able to 
dissolve in the field conditions”. DOM plays an important role in the biogeochemistry of 
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carbon, nitrogen, and phosphorous, in pedogenesis and in the transport of pollutants in soils 
(Kalbitz et al., 2000). 
The source of virtually all DOM in soils is photosynthesis; this includes both recent 
photosynthate (throughfall, leaf litter, root exudates, decaying fine roots) as weel as the 
leaching and decomposition of older, microbially processed soil organic matter (McDowell, 
2003). DOM ranges in age from hours to days, to decades and even up to thousands of 
years. 
Sinks of DOM include microbial transformation and immobilization, mineralization (to CO2, 
inorganic N, etc.), precipitation, and adsorption on mineral surfaces.  
Microbial soil communities are the most important agents in DOM formation. 
Guggenberger et al. (1994) studied DOM fractionation and structure and demonstrated that 
microbial metabolites constitute a significant portion of DOM. According to these studies, 
the carbohydrate fraction of DOM is chemically different from that in plant residues or bulk 
humus, in that DOM carbohydrates have a higher proportion of hexose- and deoxysugars 
than pentose sugars. Since pentose sugars are rarely found in microbial cells, DOM may be 
predominantly of  microbial origin. 
Zsolnay (1996) and Tipping (1998) have supposed that the DOM can be partitioned into 
mobile and an immobile fractions according to the pore sizes of the soil matrix.  Only the 
mobile DOM fraction in macro- and mesopores is subjected to convective transport by 
seepage. DOM in micropores is immobile and interacts with the mobile fraction by diffusion. 
Several field studies (Jardine et al., 1989; Michalzik et al., 2000) have shown that the DOM 
concentration and flux in soil solutions decrease significantly with soil depth because DOM is 
adsorbed along the soil profile. High molecular weight fractions are preferentially adsorbed 
when compared with low molecular weight components (Gu et al., 1995). The presence of 
aromatic rings, carboxylic acids, N- and S-containing groups, and amino acid residues in 
organic molecules increases the adsorption capacity (McKnight et al., 1992). Adsorption 
involves the free surfaces of colloidal minerals and the presence of organic matter which has 
already been adsorbed further reduces DOM adsorption (Kalbitz et al., 2000). 
Anions in soil solutions, such as sulphate and phosphate, compete with DOM for adsorption 
sites (Tipping, 1981). Kaiser & Zech (1997) and Beck et al. (1999) confirmed the role of 
phosphate in DOM removal from adsorption sites: this behaviour is also observed when the 
phosphate concentration is lower than the concentrations of other anions. Competition 
between sulphate and DOM for adsorption sites is evident when the sulphate concentration 
is higher than 10 mM (Kaiser & Zech, 1998). 
Polyvalent (Al3+, Fe3+, Ca2+ and Mg2+) or monovalent (Na+ e K+) cation activity affects the 
solubility of organic matter (Baham & Sposito, 1994). Chemical reactions between anionic 
functional groups of organic molecules and solution cations can reduce the surface charge 
density, alter the structural conformation of the adsorbed species, and consequently reduce 
solubility. At high concentrations of ions in solution, these processes increase and the 
solubility of organic matter is reduced by flocculation (Tipping & Woof, 1990). 
Various environmental factors influence DOM concentrations and fluxes in soils. Temperature 
is always a factor regulating DOM microbial production (Mulholland et al., 1990). 
One of the most consistent findings in both field and laboratory studies is that DOM 
concentrations increase following rewetting after dry periods (Lundquist et al., 1999; 
Tipping et al., 1999; Zsolnay et al., 1999). It is likely that reduced rates of decomposition in 
dry soils cause microbial products to accumulate. This, together with cell death and lysis, 
can contribute to high DOM concentrations in the soil leachate after dry periods. 
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The significant effect of precipitation and water fluxes on DOM is the DOM release at the 
beginning of large rainfall events. Storm events can alter DOM concentration and flux: high 
pore water velocity leads to low contact times between the soil solution and the solid matrix 
and creates chemical and physical nonequilibrium conditions. These conditions increase the 
DOM concentration in the soil solution leaving the soil poor in organic matter. 
Land use changes, such as afforestation, liming, and fertilization, converting forests into arable 
sites, and other management activities influence DOM dynamics by i) changing the input of 
organic matter, ii) changing the substrate quality and iii) altering the rates, extent, and 
pathways of microbial degradation and the synthesis of organic matter (Cronan et al., 1992). 
The understanding of the dynamics and fluxes of DOM in soils is important in limiting the 
loss of organic matter from the soil, improving agronomic practices, and reducing the 
environmental impact of substances adsorbed on the DOM, such as agrochemicals. 

5.1 The effect of DOM on the fate of herbicides 

The water solubility of herbicides is one of the most important physical properties 

controlling the transport and fate of chemicals in aquatic systems (Chiou et al., 1986). The 

formation of soluble complexes between agrochemicals and DOM can be considered 

responsible for the transport of pollutants towards water bodies. Previous studies have 

indicated that low concentrations of dissolved and/or suspended particulate-bound natural 

organic matter in water can significantly enhance the solubility and stability of many 

hydrophobic organic compounds, notably DDT and some polychlorobiphenyls (PCBs) 

(Wershaw et al., 1969; Hassett and Anderson, 1979; Caron et al., 1985).  

Chiou et al. (1986) observed the water solubility enhancement of solutes characterized by 

low water solubility such as DDT, 2,4,5,2’,5’-PCB, trichlorobenzene, and lindane, due to 

their interaction with the dissolved humic and fulvic acids extracted from soil and aquatic 

sediments. The effectiveness of DOM in enhancing solute solubility appears to be largely 

controlled by DOM molecular size and polarity.  

In the presence of soil, contradictory results have been obtained in studies concerning the 

effect of DOM on the behaviour of cationic or positively ionisable pesticides in soil and 

waters probably owing to different experimental conditions (Pennington et al., 1991; 

Barriuso et al., 1992; Klaus et al., 1998; Seol & Lee, 2000). 

The nature of DOM (exogenous or endogenous) influences the adsorption and desorption of 

dimefuron, atrazine and carbetamine (Barriuso et al., 1992). The authors observed that DOM 

chemico-physical properties, like organic carbon content, pH, and conductivity, strongly affect 

herbicide adsorption. Moreover, different DOM additions to soils (pretreatment with DOM 

solution before herbicide adsorption or preincubation of DOM solution with herbicide before 

soil addition) influences adsorption as a function of herbicide solubility. Increased adsorption 

of less soluble atrazine and dimefuron, after soil pretreatement with DOM solution, can be 

explained by an increase in soil adsorption capacity related to the increase of soil C content via 

adsorption of some organic compounds from DOM solutions. The fate of the highly soluble 

carbetamide is different: its adsorption decrease can be explained by the coverage of soil 

hydrophilic sites by DOM organic compounds adsorbed during the preincubation.  

Pennington et al. (1991) observed an opposite behaviour of the DOM: no interactions 

between the DOM extracted from different soils and the herbicides bromacil, metribuzin, 

alachlor, were observed. Diquat and paraquat are weakly adsorbed on DOM and their 

adsorption onto soils is not affected by the presence of soluble organic matter. 
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Despite the negative charge of negatively ionisable pesticides, which constrains them in the 
soil liquid phase and subsequently, in water courses, only a few studies on their behaviour 
in soil in the presence of DOM have been conducted (Spark & Swift, 2002; Said-Pullicino et 
al. 2004). 
Although the interactions of pesticides with DOM are affected by the ionic strength of the 
solutions, DOM is often used in laboratory trials, after the removal of salts, i.e. as a purified 
organic fraction, or further fractionated in humic and fulvic acids (Spark & Swift, 2002; 
Chiou et al., 1986). Metals bound to DOM constituents or contained in free form are lost 
during the purification procedure, and rarely purified DOM has been studied as a function 
of both the ionic strength and saline composition (Carter & Suffet, 1982). 

5.2 Case study: The fate of cyhalofop herbicide in soils treated with DOM from 
composts 

Cyhalofop-butyl (butyl(R)-2-[4-(4-cyano-2-fluorophenoxy)phenoxy]propionate, ClincherTM), 

is an acetyl CoA carboxylase inhibitor for post-emergence control of barnyard grass 

(Echinochloa spp) and silver top (Lepthochloa fusca) in rice (Buendia et al., 1998; APVMA, 

2005). The esters of aryloxyphenoxyalkanoic acids act as pro-herbicides. The formulation as 

esters facilitate the uptake through the plant cuticle and, once inside the plant, are 

transformed within a few hours into their acidic form, i.e. the active herbicide (Hendly et al., 

1985; Ferreira et al., 1995). In soils, cyhalofop-butyl is quickly transformed into its more 

soluble negatively ionisable acidic form (Jackson & Douglas, 1999). 

The potential for contamination of water bodies is high in areas where rice is cultivated in 

flooded conditions (Celis et al., 1998; Charizopoulos & Papadopoulou, 1999; Cerejeira et al., 

2000, Miao et al., 2003). Agrochemicals applied to aquatic environments such as paddy-

fields are matter of concern due to their potential leaching (Boesten & van der Linden, 1991; 

Müller et al., 2007) and persistence in soil and waters (Braschi et al., 2003).  

The addition of organic amendments to the soil is an agricultural practice that is considered 

to potentially affect the fate of pesticides in soil (Cox et al., 2001; Hesketh et al., 2001), by 

introducing a remarkable amount of exogenous soluble organic matter. The extent to which 

exogenous DOM is involved in transportation through the soil is yet to be understood. 

The effect of exogenous DOM from two composts on the behaviour of cyhalofop-butyl (CB) 

and cyhalofop-acid (CA) (Figure 2) was studied in two different soils (a paddy-field 

sediment, and a forest soil, Table 3) by means of solubility tests, determination of 

adsorption-desorption isotherms in soils, leaching experiments on soil columns (for 

experimental details, see Blasioli et al., 2008). To study the effect of the saline component on 

herbicide behaviour in soils, DOMs were used without any desalting treatment or pH 

modification.  

Cyhalofop-butyl degradation is slow in the paddy-field sediment and leads to the 

cyhalofop-acid formation; in the forest soil, the degradation is faster and three byproducts 

were detected (cyhalofop-acid, -amide, and –diacid, Figure 2). The degradation is mediated 

by microorganisms as confirmed by the cyhalofop-butyl stability in autoclaved soils. 

The water solubility of cyhalofop-butyl is unchanged in DOM solution at pH 6.0. This 

probably results from the highly hydrophilicity of these DOMs in contrast with the 

completly hydrophobic character of CB molecule. On the contrary, the solubility of CA 

doubles suggesting interaction with the DOMs. Since at working pH (about 6.0) cyhalofop- 
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pH 
Soil 

H2O CaCl2 

TOCa 
(g kg-1) 

CECb 
(cmol(+) kg-1) 

Paddy-field 
sediment 

6.00 5.50 14.0 2.00 

Forest soil 7.10 6.80 73.0 9.90 

Table 3. Summary of the characteristics of investigated soils. a TOC: Total Organic Carbon;  
b CEC: Cationic Exchange Capacity (modified from Blasioli et al., 2008). 

acid, characterized by a pKa of 3.8 (APVMA, 2005), mostly exists in anionic form, a 
molecular interaction, responsible for this increase in solubility, must occur despite the 
repulsion between DOM and CA negative charges. Similarly to water and cation bridgings 
formed between the carboxylate groups of humic substances and the soil phases in the 
presence of base metals (Sposito, 1984), polar and/or ionic interactions between metal 
cations-rich DOM and CA anionic moiety may be assumed to be responsible for the increase 
of CA solubility. 
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Fig. 2.  Structure of cyhalofop-butyl and its byproducts. 

The adsorption of cyhalofop-butyl and cyhalofop-acid is higher on the forest soil than on the 
sediment (Table 4). The pretreatment of soils with DOM solutions significantly decreases the 
cyhalofop-butyl adsorption but increases that of the acid. Since the DOM does not interact 
with the cyhalofop-butyl, the adsorption decrease may be due to the occupation by the 
DOM of soil sites available for the pro-herbicide.  
The adsorption of acid is reversible on the paddy-field sediment but not reversible on the 
forest soil before and after soil pretreatment with DOM solutions. Reversible adsorption can 
be explained by two mechanisms: i) DOM which was previously adsorbed on soil surfaces 
increases the number of organic sites available to interact with CA by polar/ionic 
mechanisms; ii) the addition of base cations increases the base metal saturation degree of the 
sediment, hence linking CA carboxylate moiety to a higher extent via cation and water 
bridges (Sposito, 1984).  
On the forest soil, the amount of adsorption sites available for hydrophobic interaction with 
CA does not vary as a consequence of DOM adsorption on the soil. This is reasonably 
supported by the very high content of organic matter in forest soil (TOC 73.0 g kg-1, Table 3).  
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Cyhalofop-butyl Cyhalofop-acid 

Sample 
Kd 

L kg-1 
KFads 

μg(1-1/n) mL1/n g-1 

Paddy-field sediment 1.30 0.52 
Paddy-field sediment + 
DOMA 

n.a. 4.70 

Paddy-field sediment + 
DOMM 

n.a. 2.60 

   
Forest soil 3.34 3.00 
Forest soil + DOMA 0.85 4.90 
Forest soil + DOMM 0.61 3.50 

Table 4. Distribution coefficient of cyhalofop-butyl and Freundlich constants for cyhalofo-
acid adsorbed in soils. n.a.: not available because no adsorption was observed (modified 
from Blasioli et al., 2008). DOMA and DOMM extracted from compost A (blend of winery 
byproducts) and M (blend of municipal solid waste), respectively. 

The increases of the adsorption extent after pretreatment of forest soil with DOMs may be 

due to the ionic content of DOM solutions whose cationic component, complexing the 

negatively charged groups, lowers the repulsion between the negative charges and hence 

favours hydrophobic interactions of both soil organic matter and CA.  

Adsorption data interpretation has been confirmed by CA leaching experiments on soil 
colums (Figure 3). The leaching of column with DOM solutions reduces the mobility of 
cyhalofop-acid in both soils. In fact, on the paddy-field sediment, which is poor in organic 
matter, the increase in base metal saturation degree due to DOM addition, promotes cation 
and water brigding formation with the carboxylate CA group. On the forest soil, which is 
rich in organic matter, the metals contained in the DOM, decrease the electrostatic repulsion 
between the soil organic matter and the carboxylate groups of the cyhalofop in acid, amide, 
and diacid forms, by reducing their mobility along the soil profile. 
Further confirmation for the adsorption data was obtained by eluting the soil columns 
with K+ and Ca2+ solutions (the most representative monovalent and divalent cations 
found in DOMM solution). In both soils, the K+ ion reduces the mobility of cyhalofop–acid 
whereas the Ca2+ ion decreases the mobility in the paddy-field sediment but not in the 
forest soil. The difference in the binding activity of the two cations in the adsorbed form 
towards the carboxylates can be explained. In fact, while in adsorbed form K+ may give 
rise to a cation bridge with carboxylates due to the formation of an inner-sphere complex, 
Ca2+ forms a water bridge, a weaker outer-sphere complex mediated by water molecules 
(Sposito, 1984; Theng, 1982). The different strength between the K- and Ca-complexes may 
be responsible for the best CA retention in soils eluted with K ions in comparison with Ca 
ions. 
In conclusion, the saline component of compost extracts seems to account to a large extent 

for the increased adsorption of the anionic herbicide cyhalofop-acid in both paddy-field and 

forest soils, generating highly reversible complexes with the former and non-reversible 

complexes with the latter, both involving the CA carboxylate group. 
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Fig. 3. Mobility of cyhalofop-acid and byproducts along the paddy-field sediment and forest 
soil column profiles leached with exogenous dissolved organic matter (DOMA or DOMM) or 
metal (K+ or Ca2+) solutions (mean of two replicates) (modified from Blasioli et al., 2008). 

6. Conclusions 

The prediction of the movement and the fate of herbicides in soils represents an important 
strategy in limiting their environmental impact. The chemico-physical properties of 
herbicides affect their behaviour in soil and regulate their interaction mechanisms with 
organic and inorganic soil phases. Among these, dissolved organic matter plays an 
important role: DOM influences the mobility of herbicides by complex interactions that can 
facilitate or reduce the movement of chemicals along the soil profile.  
The knowledge of soil phase characteristics and the mechanisms involved in herbicide 
transformation can help to understand the fate of herbicides in soil.  
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