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Quantum Manipulations of Single Trapped-Ions
Beyond the Lamb-Dicke Limit

M. Zhang and L. F. Wei
Quantum Optoelectronics Laboratory and School of Physics and Technology,

Southwest Jiaotong University, Chengdu 610031
China

1. Introduction

An ion can be trapped in a small region in three dimensional space by the electromagnetic trap,
and can be effectively manipulated by the applied laser pulses (1; 2; 3). The system of trapped
ions driven by laser pulses provides a powerful platform to engineer quantum states (4; 5; 6; 7)
and implement quantum information processings (QIPs) (8; 9; 10). Typically, manipulations
and detections quantum information can be utilized to test certain fundamental principles
(such as EPR and Shrödinger cat ”paradox”) in quantum mechanics and implement quantum
computation, quantum telegraph, and quantum cryptography, etc.(see, e.g., (11; 12; 13; 14)).
Up to now, several kinds of physical systems, e.g., cavity-QEDs (15), superconducting
Josephson junctions (16), nuclear magnetic resonances (NMRs) (17), and coupled quantum
dots (18), etc., have been proposed to physically implement the QIPs. The system of trapped
ions is currently one of the most advanced models for implementing the QIPs, due to its
relatively-long coherence time. Indeed, the coherent manipulations up to eight trapped ions
had already been experimentally demonstrated (14).
However, most of the quantum manipulations with the trapped cold ions are within
the Lamb-Dicke (LD) approximation, e.g., the famous Cirac-Zoller model (8). Such an
approximation requires that the coupling between the quantum bit (encoded by two atomic
levels of a trapped ion) and the data bus (the collective vibration mode of the ions) should be
sufficiently weak. Sometimes, the LD limits could be not rigorously satisfied for typical single
trapped-ion system, and thus higher-order powers of the LD parameter must be taken into
account (19). Alternatively, the laser-ion interaction beyond the LD approximation might be
helpful to reduce the noise in the ion-trap and improve the cooling rate(see, e.g., (20; 21; 22)),
and thus could be utilized to high-efficiently realize QIPs.
In this chapter, we summarize our works (23; 24; 25; 26; 27; 28; 29; 30; 31) on how to design
proper laser pulses for the desirable quantum-state engineerings with single trapped-ions,
including the preparations of various typical quantum states of the data bus and the
implementations of quantum logic gates beyond the LD approximation. The chapter is
organized as: In Sec. 2 we derivate the dynamical evolutions of a single trapped ion (driven
by a classical laser beam) with and beyond the LD approximation. Based on the quantum
dynamics beyond the LD approximation, in Sec. 3, we discuss how to use a series of laser
pulses to generate various vibrational quantum states of the trapped ion, e.g., coherence states,
squeezed coherent states, squeezed odd/even coherent states and squeezed vacuum states,
etc. We also present the approach (by properly setting the laser pulses) to realize control-NOT
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2 Laser Pulses

Fig. 1. (Color online) A sketch of an two-level ion trapped in one-dimensional
electromagnetic trap (Only the vibrational motion along the x-direction is considered) and
driven by a classical laser field propagating along the x direction.

(CNOT) gates (between the internal and external freedoms of a single trapped ion) beyond
the LD approximation. In Sec. 4 we give a brief conclusion.

2. Dynamics of single trapped ions driven by laser beams

An electromagnetic-trap can provides a three-dimensional potential to trap an ion (with mass
m and charge e). The potential function takes the form (3)

U(x,y,z) ≈ 1

2
(αx2 + βy2 + γz2), (1)

near the trap-center (x, y, z = 0), with α, β, and γ bing the related experimental parameters.
Therefore, a trapped ion (see, Fig.1) has two degrees of freedom: the vibrational motion
around the trap-center and the internal atomic levels of the ion. For simplicity, we consider
that the trap provides a pseudopotential whose frequencies satisfy the condition vx = v ≪
vy, vz. This implies that only the quantized vibrational motion along the x-direction (i.e., the
principal axes of the trap) is considered. For the internal degree of freedom of the trapped
ion, we consider only two selected levels, e.g., the ground state |g〉 and excited state |e〉. The
Hamiltonian describing the above two uncoupled degrees of freedom can be written as

Ĥ0 = h̄ν(â† â +
1

2
) +

h̄

2
ωaσ̂z, (2)

where, h̄ is the Planck’s constant divided by 2π, â† and â are the bosonic creation and
annihilation operators of the external vibrational quanta of the cooled ion with frequency
ν. σ̂z = |e〉〈e| − |g〉〈g| is the Pauli operator. The transition frequency ωa is defined by
ωa = (Ee − Eg)/h̄ with Eg and Ee being the corresponding energies of the two selected levels,
respectively.
In order to couple the above two uncoupled degrees of freedom of the trapped ion, we
now apply a classical laser beam E(x, t) = Acos(kl x − ωl t − φl) (propagating along the x
direction) to the trapped ion (see Fig. 1), where A, kl , ωl , and φl are its amplitude, wave-vector,
frequency, and initial phase, respectively. This yields the laser-ion interaction

V = erE(x, t). (3)

Certainly, x =
√

h̄/2mν(â + â†) and r = 〈g|r|e〉(|g〉〈e|+ |e〉〈g|), and thus the above interaction
can be further written as

Ĥint =
h̄Ω

2
σ̂x

(

eiη(â+â†)−iωl t−iϑl + e−iη(â+â†)+iωl t+iϑl

)

, (4)
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Quantum Manipulations of Single Trapped-Ions Beyond the Lamb-Dicke Limit 3

where, σ̂x = σ̂− + σ̂+ with σ̂− = |g〉〈e| and σ̂− = |e〉〈g| being the usual raising and lowering
operators, respectively. The Rabi frequency Ω = eA〈g|r|e〉/h̄ describes the strength of
coupling between the applied laser field and the trapped ion. Finally, η = kl

√
h̄/2mν is

the so-called LD parameter, which describes the strength of coupling between external and
internal degrees of freedom of the trapped ion.
Obviously, the total Hamiltonian, describing the trapped ion driven by a classical laser field,
reads

Ĥ = Ĥ0 + Ĥint = h̄ν(â† â +
1

2
) +

h̄

2
ωaσ̂z +

h̄Ω

2
σ̂x

(

eiη(â+â†)−iωl t−iϑl + e−iη(â+â†)+iωl t+iϑl

)

. (5)

This Hamiltonian yields a fundamental dynamics in this chapter for engineering the quantum
states of trapped cold ion.

2.1 Within Lamb-Dicke approximation

Up to now, most of the experiments (see, e.g., (10)) for engineering the quantum states of
trapped ions are operated under the LD approximation, i.e., supposing the LD parameters are
sufficiently small (η ≪ 1) such that one can make the following approximation:

e±iη(â+â†) ≈ 1 ± iη(â + â†). (6)

Under such an approximation, the Hamiltonian (5) can be reduced to

ĤLDA = Ĥ0 +
h̄Ω

2
σ̂x

[

e−iωl t−iϑl + eiωl t+iϑl + iηe−iωl t−iϑl (â + â†)− iηeiωl t+iϑl (â + â†)
]

, (7)

and can be further written as

Ĥ′
LDA = h̄Ω

2

(

e−iωatσ̂− + σ̂+eiωat
)

×
[

e−iωl t−iϑl + eiωl t+iϑl + iηe−iωl t−iϑl (e−iνt â + eiνt â†)− iηeiωl t+iϑl (e−iνt â + eiνt â†)
]

(8)
in the interaction picture defined by the unity operator Û = exp(−itĤ0/h̄). Note that, to
obtain the interacting Hamiltonian (8), we have used the following relations

⎧

⎪

⎪

⎨

⎪

⎪

⎩

e−iασ̂z σ̂zeiασ̂z = σ̂z

e−iασ̂z σ̂+eiασ̂z = ei2ασ̂+
e−iασ̂z σ̂−eiασ̂z = e−i2ασ̂−
e−iαâ† â f (â†, â)eiαâ† â = f (eiα â†, e−iα â).

(9)

Above, α is an arbitrary parameter and f (â†, â) is an arbitrary function of operators â† and â.
Now, we assume that the frequencies of the applied laser fields are set as ωl = ω0 + Kν,
with K = 0, ±1 corresponding to the usual resonance (K = 0), the first blue- (K = 1), and red-
(K = 1) sideband excitations (4), respectively. As a consequence, the Hamiltonian (8) can be
specifically simplified to (30)

Ĥ0
LDA =

h̄Ω

2

(

eiϑl σ̂− + e−iϑl σ̂+

)

for K = 0, (10)

Ĥr
LDA =

h̄Ω

2
iη
(

e−iϑl σ̂+ â − eiϑl σ̂− â†
)

for K = −1, (11)
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4 Laser Pulses

Ĥb
LDA =

h̄Ω

2
iη
(

e−iϑl σ̂+ â† − eiϑl σ̂− â
)

for K = −1, (12)

under the rotating-wave approximation (i.e., neglected the rapidly-oscillating terms in Eq. (8)).
Obviously, the Hamiltonian Ĥ0

LDA describes a Rabi oscillation and corresponds to a one-qubit

operation, and Hamiltonians Ĥr
LDA and Ĥb

LDA correspond to the Jaynes-Cummings (JC) model
(JCM) and anti-JCM (4), respectively. It is well-known that the JCM describes the basic
interaction of a two-level atom and a quantized electromagnetic field (15). Here, the quantized
electromagnetic field is replaced by the quantized vibration of the trapped ion, and thus the
entanglement between the external motional states and the internal atomic states of the ions
can be induced. Certainly, these JC interactions take the central role in the current trap-ion
experiments for implementing the QIPs (10).

2.2 Beyond the LD approximation

In principle, quantum motion of the trapped ions beyond the usual LD limit ( η ≪ 1) is also
possible. Utilizing the laser-ion interaction outside the LD regime might be helpful to reduce
the noise in the ion-trap and improve the cooling rate, and thus could be utilized to efficiently
realize QIPs. Indeed, several approaches have been proposed to coherently operate trapped
ions beyond the LD limit (see, e.g., (19)).
Because [â, â†] = 1, the term exp[±iη(â + â†)] in Eq. (5) can be expanded as

e±iη(â+â†) = e−η2/2e±iη â†
e±iη â = e−η2/2

∞

∑
n,m

(±iη â†)n(±iη â)m

n!m!
. (13)

Comparing to the expansion Eq. (6), the above expansion is exactly, and the LD parameter can
be taken as an arbitrary value. With the help of relation (9) and (13), the Hamiltonian (5) can
be written as:

Ĥ′
NLDA = h̄Ω

2 σ̂+

(

ei(ωa+ωl)teiϑl e−η2/2 ∑
∞
n,m

(−iη â†eiνt)n(−iη âe−iνt)m

n!m!

+ei(ωa−ωl)te−iϑl e−η2/2 ∑
∞
n,m

(iη â†eiνt)n(iη âe−iνt)m

n!m!

)

+ H.c
(14)

in the interaction picture defined by unity operator Û = exp(−itĤ0/h̄).
For the so-called sideband excitations ωl = ω0 + Kν with K being arbitrary integer, the above
Hamiltonian can be reduced to (23; 26)

Ĥr
NLDA =

h̄Ω

2
e−η2/2

⎡

⎣e−iϑl (iη)kσ̂+
∞

∑
j=0

(iη)2j(â†)j âj+k

j!(j + k)!
+ H.c

⎤

⎦ for K ≤ 0 (15)

Ĥb
NLDA =

h̄Ω

2
e−η2/2

⎡

⎣e−iϑl (iη)kσ̂+
∞

∑
j=0

(iη)2j(â†)j+k âj

j!(j + k)!
+ H.c

⎤

⎦ for K ≥ 0 (16)

under the rotating wave approximation. Above, K = 0, K < 0, and K > 0 correspond
to the resonance, the kth blue-, and red-sideband excitations (with k = |K|), respectively.
Comparing with Hamiltonian (10)-(12) with LD approximation, the above Hamiltonian
(without performing the LD approximation) can describes various multi-phonon transitions
(i.e., k > 1) (19). This is due to the contribution from the high order effects of LD parameter.
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Quantum Manipulations of Single Trapped-Ions Beyond the Lamb-Dicke Limit 5

2.3 Time evolutions of quantum states

The time evolution of the system governed by the above Hamiltonian can be solved by the
time-evolution operator T̂ = exp(−itĤ/h̄), with Ĥ taking Ĥ0

LDA, Ĥr
LDA, Ĥb

LDA, Ĥr
NLDA, and

Ĥb
NLDA, respectively. For an arbitrary initial state |ϕ(0)〉, the evolving state at time t reads

|ϕ(t)〉 = T̂|ϕ(0)〉 =
∞

∑
n=0

1

n!

(−it

h̄

)n

Ĥn |ϕ(0)〉. (17)

Typically, if the external vibrational state of the ion is initially in a Fock state |m〉 and the
internal atomic state is initially in the atomic ground sate |g〉 or excited one |e〉, then the above
dynamical evolutions can be summarized as follows (23; 26):
i) For the resonance or red-sideband excitations K ≤ 0:

⎧

⎨

⎩

|m〉|g〉 −→ |m〉|g〉, m < k,

|m〉|g〉 −→ cos(Ωm−k,kt)|m〉|g〉+ ik−1e−iϑl sin(Ωm−k,kt)|m − k〉|e〉; m ≥ k,

|m〉|e〉 −→ cos(Ωm,kt)|m〉|e〉 − (−i)k−1eiϑl sin(Ωm,kt)|m + k〉|g〉
(18)

ii) For the resonance or blue-sideband excitations K ≥ 0:

⎧

⎨

⎩

|m〉|g〉 −→ cos(Ωm,kt)|m〉|g〉+ ik−1e−iϑl sin(Ωm,kt)|m + k〉|e〉,
|m〉|e〉 −→ |m〉|e〉, m < k,

|m〉|e〉 −→ cos(Ωm−k,kt)|m〉|e〉 − (−i)k−1eiϑl sin(Ωm−k,kt)|m − k〉|g〉, m ≥ k.

(19)

The so-called effective Rabi frequency introduced above reads

Ωm,k =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ΩL
m,k =

Ω
2 ηk

√

(m+k)!
m! , k = 0, 1,

ΩN
m,k =

Ω
2 ηke−η2/2

√

(m+k)!
m! ∑

m
j=0

(iη)2jm!
(j+k)!j!(m−j)!

, k = 0, 1, 2, 3, ... .

(20)

The above derivations show that the dynamics either within or beyond the LD approximation
has the same form (see, Eqs. (18) and (19)), only the differences between them is represented
by the specifical Rabi frequencies ΩL

m,k and ΩN
m,k. Certainly, the dynamical evolutions without

LD approximation are more closed to the practical situations of the physical processes.
Furthermore, comparing to dynamics with LD approximation (where k = 0, 1), the dynamics
without LD approximation (where k = 0, 1, 2, 3, ...) can describes various multi-phonon
transitions.
Certainly, when the LD parameters are sufficiently small, i.e., η ≪ 1, the rate

γ =
ΩL

m,k

ΩN
m,k

=
eη2/2

∑
m
j=0

(iη)2jm!
(j+k)!j!(m−j)!

∼ 1, (21)

and thus the dynamics within LD approximation works well. Whereas, if the LD parameter
are sufficiently large, the quantum dynamics beyond the LD limit must be considered.
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6 Laser Pulses

3. Quantum-state engineerings beyond the LD limit

3.1 Preparations of various motional states of the single ions

The engineering of quantum states has attracted considerable attention in last two decades.
This is in order to test fundamental quantum concepts such as non-locality, and for
implementing various potential applications, including sensitive detections and quantum
information processings. Laser-cooled single trapped ions are the good candidates for various
quantum-state engineering processes due to their relatively-long decoherence times. Indeed,
various engineered quantum states of trapped cold ions have been studied. The thermal, Fock,
coherent, squeezed, and arbitrary quantum superposition states of motion of a harmonically
bound ion have been investigated (4; 5; 6; 7). However, most of the related experiments are
operated under the LD approximation. In this section we study the engineerings of various
typical vibrational states of single trapped ions beyond the LD limit.
There are serval typical quantum states in quantum optics: coherence states, odd/even
coherent states and squeezed states, etc.. They might show highly nonclassical properties,
such as squeezing, anti-bunching and sub-Poissonian photon statistics. In the Fock space,
coherence state |α〉 can be regarded as a displaced vacuum state, i.e.,

|α〉 = D(α)|0〉 = e−|α|2/2
∞

∑
n=0

αn

√
n!
|n〉, (22)

where D(α) = exp(αâ† − α∗ â) is the so-called displace operator, with α being a complex
parameter and describing the strength of displace. Similarly, the squeezed states |ψs〉 are
generated by applying the squeeze operator to a quantum state

|ψs〉 = Ŝ(ξ)|ψ〉, (23)

where Ŝ = exp(ξ∗ â2/2 − ξ â†2/2), and ξ is a complex parameter describing the strength of the
squeezes. On the other hand, the odd/even coherent states are the superposed states of two
coherent states with different phases

|αo〉 = Co(|α〉 − | − α〉), (24)

|αe〉 = Ce(|α〉+ | − α〉). (25)

Above, Co = [2 − 2exp(−2|α|2)]−1/2 and Ce = [2 + 2exp(−2|α|2)]−1/2 are the normalized
coefficients.
According to the above definitions: Eqs. (22)-(25), one can obtain the squeezed coherent state:

|αs〉 = Ŝ(ξ)|α〉 =
∞

∑
n=0

Gn(α,ξ)|n〉, (26)

squeezed vacuum state:

|0s〉 = Ŝ(ξ)|α = 0〉 =
∞

∑
n=0

Gn(0,ξ)|n〉, (27)

squeezed odd state:

|αo,s〉 = Ŝ(ξ)|αo〉 =
∞

∑
n=0

On(α,ξ)|n〉, (28)
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Quantum Manipulations of Single Trapped-Ions Beyond the Lamb-Dicke Limit 7

and squeezed even state:

|αe,s〉 = Ŝ(ξ)|αe〉 =
∞

∑
n=0

En(α,ξ)|n〉. (29)

respectively. Above,

Gn(α,ξ) =
1

√

cosh(r)n!

(

eiθ sinh(r)

2cosh(r)

)n/2

exp[
e−iθ sinh(r)α2

2cosh(r)
− |α|2

2
]Hn(

α
√

2eiθ sinh(r)cosh(r)
). (30)

with ξ = r exp(iθ), and Hn(x) being the hermitian polynomials. Finally,

On(α,ξ) = Co (Gn(α,ξ)− Gn(−α,ξ)) (31)

and
En(α,ξ) = Ce (Gn(α,ξ) + Gn(−α,ξ)) . (32)

Based on the quantum dynamics of laser-ion interaction beyond the LD limit, in what follows
we discuss how to use a series of laser pulses to generate the above vibrational quantum states
of the trapped ions. Assuming the trapped ion is initialized in the state |0〉|g〉, to generate the
desirable quantum states we use the following sequential laser pulses to drive the trapped
ion:
1) Firstly, a pulse with frequency ωl = ωa, initial phase ϑ1, and duration t1 is applied on the
trapped ion to yield the evolution:

|0〉|g〉 → |ψ1〉 = cos(Ω0,0t1)|0〉|g〉+ i−1e−iϑ1 sin(Ω0,0t1)|0〉|e〉 (33)

2) Secondly, a pulse with frequency ωl = ωa − ν, initial phase ϑ2, and duration t2 is applied
on the ion to generate:

|ψ1〉 → |ψ2〉 = cos(Ω0,0t1)|0〉|g〉+ iei(ϑ2−ϑ1) sin(Ω0,0t1)sin(Ω0,1t2)|1〉|g〉
+i−1e−iϑ1 sin(Ω0,0t1)cos(Ω0,1t2)|0〉|e〉

(34)

3) Thirdly, a pulse with frequency ωl = ωa − 2ν, initial phase ϑ3, and duration t3 is applied on
the ion to generate:

|ψ2〉 → |ψ3〉 = cos(Ω0,0t1)|0〉|g〉+ iei(ϑ2−ϑ1) sin(Ω0,0t1)sin(Ω0,1t2)|1〉|g〉
+ei(ϑ3−ϑ1) sin(Ω0,0t1)cos(Ω0,1t2)sin(Ω0,2t3)|2〉|g〉
+i−1e−iϑ1 sin(Ω0,0t1)cos(Ω0,1t2)cos(Ω0,2t3)|0〉|e〉

(35)

4) Successively, after the Nth pulse (with frequency ωl = ωa − (N − 1)ν, initial phase ϑN , and
duration tN) is applied on the ion, we have the following superposition state:

|ψN−1〉 → |ψN〉 =
N−1

∑
n=0

Cn|n〉|g〉+ BN |0〉|e〉 (36)

with

Cn =

⎧

⎪

⎨

⎪

⎩

cos(Ω0,0t1), n = 0,

iei(ϑ2−ϑ1) sin(Ω0,0t1)sin(Ω0,1t2), n = 1,

(−1)n−1inei(ϑn+1−ϑ1) sin(Ω0,0t1)sin(Ω0,ntn+1)∏
n
j=2 cos(Ω0,j−1tj), n > 1,

(37)
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8 Laser Pulses

and

BN =

{

i−1e−iϑ1 sin(Ω0,0t1), N = 1,

i−1e−iϑ1 sin(Ω0,0t1)∏
N
j=2 cos(Ω0,j−1tj), N > 1

(38)

If the duration of Nth (N > 1) laser pulse is set to satisfy the condition cos(Ω0,N−1tN) = 0,
then BN = 0. This implies that the internal state of the trapped ion is returned to the ground

state |g〉 and its external vibration is prepared on the superposition state |ψex
N 〉 = ∑

N−1
n=0 Cn|n〉.

Because the durations tN and initial phases ϑN are experimentally controllable, we can set
Cn = Gn(α,ξ), On(α,ξ), or En(α,ξ) with n ≤ N − 2 by selecting the proper tN and ϑN . As a
consequence, we have the vibrational superposition state:

|ψG
N〉 =

N−2

∑
n=0

Gn(α,ξ)|n〉+ CG
N−1|n − 1〉, (39)

|ψO
N〉 =

N−2

∑
n=0

On(α,ξ)|n〉+ CO
N−1|n − 1〉, (40)

|ψE
N〉 =

N−2

∑
n=0

En(α,ξ)|n〉+ CE
N−1|n − 1〉, (41)

and

|CG
N−1|2 = 1 −

N−2

∑
n=0

|Gn(α,ξ)|2, (42)

|CO
N−1|2 = 1 −

N−2

∑
n=0

|On(α,ξ)|2, (43)

|CE
N−1|2 = 1 −

N−2

∑
n=0

|En(α,ξ)|2. (44)

If the number of the laser pulses, i.e., N, are sufficiently large, the superposition states (39),
(40), and (41) can well approach the desirable squeezed coherent state, squeezed odd and
even coherent states, respectively. Specifically, when ξ = 0, the usual coherent state, odd/even
coherent states are generated.
Table 1 presents some numerical results for generating squeezed coherent states, where the
typical values of parameters α and ξ, e.g., α = 2 and ξ = 0.5, are considered. When α = 0,
the squeezed coherent states correspond to the squeezed vacuum states. On the other hand,
some results for generating squeezed odd/even coherent states are shown in table 2, and

α ξ N Ωt1(ϑ1) Ωt2(ϑ2) Ωt3(ϑ3) Ωt4(ϑ4) Ωt5(ϑ5) Ωt6(ϑ6) F

0 0.5 5 0.7080(0) 0(0) 53.9174(π) 0(0) 4065.1(π) 0.9983

0 0.8 5 1.0859(0) 0(0) 43.9507(π) 0(0) 4065.1(π) 0.9816

1 0.0 5 1.8966(0) 7.1614(3π/2) 46.0741(0) 343.5682(π/2) 4065.1(0) 0.9981

2 0.5 5 2.5666(0) 5.3267(3π/2) 43.7265(0) 371.8479(π/2) 4065.1(π) 0.9882

2 0.5 6 2.5666(0) 5.3267(3π/2) 43.7265(0) 371.8479(π/2) 1826.3(π) 3635.9(0) 0.9910

2 0.8 6 2.2975(0) 6.8280(3π/2) 43.9627(0) 59.8973(π/2) 1877.7(π) 3635.9(0) 0.9821

Table 1. Parameters for generating squeezed coherent states, with the typical η = 0.25

82 Coherence and Ultrashort Pulse Laser Emission

www.intechopen.com



Quantum Manipulations of Single Trapped-Ions Beyond the Lamb-Dicke Limit 9

odd/even α ξ N Ωt1(ϑ1) Ωt2(ϑ2) Ωt3(ϑ3) Ωt4(ϑ4) Ωt5(ϑ5) Ωt6(ϑ6) F

odd 1 0.0 5 3.2413(0) 9.6943(3π/2) 0(0) 436.5962(π/2) 4065.1(0) 0.9927

odd 2 0.5 6 3.2413(0) 7.7328(3π/2) 0(0) 438.6774(π/2) 0(0) 3635.9(0) 0.9974

odd 2 0.8 6 3.2413(0) 9.9520(3π/2) 0(0) 85.3471(π/2) 0(0) 3635.9(0) 0.9763

even 1 0.0 5 1.3106(0) 0(0) 59.9889(0) 0(0) 4065.1(0) 0.9995

even 2 0.5 5 2.2687(0) 0(0) 61.3354(0) 0(0) 4065.1(0) 0.9870

even 2 0.8 5 1.8498(0) 0(0) 51.1086(0) 0(0) 4065.1(0) 0.9900

Table 2. Parameters for generating squeezed odd/even coherent states, with the typical
η = 0.25

where, ξ = 0 corresponds to the usual odd/even coherent states. By properly setting the
durations tN and phases ϑN of each laser pulse, the desirable squeezed states of the trapped
ion could be generated with high fidelities (e.g., 99%), via few steps of laser pulse operations
(e.g., N = 6). Here, the fidelities F = 〈ψgenerated|ψexpected〉 are defined by the overlaps between

the generated quantum states |ψgenerated〉 (being |ψG
N〉, |ψO

N〉, or |ψE
N〉) and the expected states

|ψexpected〉.
Above, the frequencies, durations, phases, and powers of the laser pulses should be set
sufficiently exact for realizing the high fidelity quantum state operations. In fact, it is not
difficult to generate the desired laser pulse with current experimental technology. It has been
experimentally demonstrated that, a Fock state up to |n = 16〉 can be generated from the
vibrational ground state |0〉, by sequentially applying laser pulses (with exact frequencies,
durations, and phases, etc.) to the trapped ion (2; 4). This means that here the generation
of the superposed Fock states, being coherent state, even/odd coherent states, or squeezed
quantum states, etc., is also experimentally realizability.
On the other hand, the generation of the superposed Fock states is limited in practice by
the existing decays of the vibrational and atomic states. Experimentally, the lifetime of the
atomic excited states |e〉 reaches 1s and the coherence superposition of vibrational states |0〉
and |1〉 can be maintained for up to 1ms (32; 33). Therefore, roughly say, preparing the above
superposed vibrational Fock states is experimentally possible, as the durations of quantum
operation are sufficiently short, e.g., < 0.1 ms. To realize a short operation time, the Rabi
frequencies Ω (describing the strength of the laser-ion interaction) should be set sufficiently
large, e.g., when Ω = 105 kHz, the total duration t = t1 + t2 + t3 ≈ 0.04 ms for generating
squeezed vacuum state (see, table 1).

Certainly, by increasing the Rabi frequency Ω ∝
√

P via enhancing the power P of the applied
laser beams, the operational durations can be further shorten. For example, if the Rabi
frequency Ω increases ten times, then the total durations presented above for generating the
desired quantum states could be shortened ten times. Therefore, the desired quantum states
could be realized more efficiently. Indeed, the power of the laser applied to drive the trapped
cold ion is generally controllable, e.g., it can be adjusted in the range from a few microwatts
to a few hundred milliwatts (32).

3.2 Implementations of fundamental quantum logic gates

There is much interest in constructing quantum computer, which uses the principles of
quantum mechanics to solve certain problems that could never been solved by any classical
computer. An quantum computer is made up of many interacting units called quantum bits
or qubits, which usually consist of two quantum states, e.g., |0〉 and |1〉. Unlike the classical
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bit, which hold either 0 or 1, qubit can hold |0〉, |1〉, or any quantum superposition of these
states. Therefor, an quantum computer can solve certain problems much faster than any of
our current classical computers, such as factoring large numbers (34) and searching large
databases (35).
It has been shown that a quantum computer can be built using a series of one-qubit operations
and two-qubit controlled-NOT (CNOT) gates, because any computation can be decomposed
into a sequence of these basic logic operations (36; 37; 38). Therefore, a precondition work
for realizing quantum computation is to effectively implement these fundamental logic gates.
Indeed, since the first experiment of demonstrating quantum gates (10), with a single trapped
cold ion, much attention has been paid to implement the elementary quantum gates in the
systems of trapped cold ions, due to its relatively-long coherence times. However, most of
previous approaches are work in LD limit. Following, we study the generations of CNOT
gates beyond the LD limit.
A CNOT gate of a single trapped ion can be expressed as (10)

Input state Output state
|0〉|g〉 −→ |0〉|g〉
|0〉|e〉 −→ |0〉|g〉
|1〉|g〉 −→ |1〉|e〉
|1〉|e〉 −→ |1〉|g〉

(45)

Above, two lowest occupation number states |0〉 and |1〉 of the external vibration of the ion
encode the control qubit and selected two atomic levels |g〉 and |e〉 of the internal degree of
freedom of the ion define the target qubit. It is seen that, if the control qubit is in |0〉 the target
qubit unchanged, whereas, if the control qubit is in |1〉 the target qubit is changed: |g〉⇄ |e〉,
and thus a CNOT operation is implemented.
Without preforming the LD approximation, the CNOT gate could be implemented by
sequentially applying three pulses of the laser beams:
1) A resonance pulse with frequency ωl = ωa, initial phase ϑ1, and the duration t1 is applied
to implement the operation:

|0〉|g〉 −→ |ψ(1)
a 〉 = α

(1)
11 |0〉|g〉+ α

(1)
12 |0〉|e〉

|0〉|e〉 −→ |ψ(1)
b 〉 = α

(1)
21 |0〉|e〉+ α

(1)
22 |0〉|g〉

|1〉|g〉 −→ |ψ(1)
c 〉 = α

(1)
31 |1〉|g〉+ α

(1)
32 |1〉|e〉

|1〉|e〉 −→ |ψ(1)
d 〉 = α

(1)
41 |1〉|e〉+ α

(1)
42 |1〉|g〉

(46)

2) A red sideband pulse with the frequency ωl = ωa − ν, initial phase ϑ2, and duration t2 is
applied to implement the evolution

|ψ(1)
a 〉 −→ |ψ(2)

a 〉 = α
(2)
11 |0〉|g〉+ α

(2)
12 |0〉|e〉+ α

(2)
13 |0〉|g〉

|ψ(1)
b 〉 −→ |ψ(2)

b 〉 = α
(2)
21 |0〉|g〉+ α

(2)
22 |0〉|e〉+ α

(2)
23 |1〉|g〉

|ψ(1)
c 〉 −→ |ψ(2)

c 〉 = α
(2)
31 |0〉|e〉+ α

(2)
32 |1〉|g〉+ α

(2)
33 |1〉|e〉+ α

(2)
34 |2〉|g〉

|ψ(1)
d 〉 −→ |ψ(2)

d 〉 = α
(2)
41 |0〉|e〉+ α

(2)
42 |1〉|g〉+ α

(2)
43 |1〉|e〉+ α

(2)
44 |2〉|g〉

(47)
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3) A resonance pulse with the initial phase ϑ3 = −π/2 and duration t3 = π/(4ΩL
0,0) is again

applied to implement the following operation

|ψ(2)
a 〉 −→ |ψ(3)

a 〉 = α
(3)
11 |0〉|g〉+ α

(3)
12 |0〉|e〉+ α

(3)
13 |1〉|g〉+ α

(3)
14 |1〉|e〉

|ψ(2)
b 〉 −→ |ψ(3)

b 〉 = α
(3)
21 |0〉|g〉+ α

(3)
22 |0〉|e〉+ α

(3)
23 |1〉|g〉+ α

(3)
24 |1〉|e〉

|ψ(2)
c 〉 −→ |ψ(3)

c 〉 = α
(3)
31 |0〉|g〉+ α

(3)
32 |0〉|e〉+ α

(3)
33 |1〉|g〉+ α

(3)
34 |1〉|e〉+ α

(3)
35 |2〉|g〉+ α

(3)
36 |2〉|e〉

|ψ(2)
d 〉 −→ |ψ(3)

d 〉 = α
(3)
41 |0〉|g〉+ α

(3)
42 |0〉|e〉+ α

(3)
43 |1〉|g〉+ α

(3)
44 |1〉|e〉+ α

(3)
45 |2〉|g〉+ α

(3)
46 |2〉|e〉

(48)

Above, the coefficients α
(1)
11 , α

(1)
12 , and α

(1)
13 et. al. are derived in APPENDIX A, basing on the

dynamical evolution Eqs. (18) and (19).
With the above sequential three operations, the system undergoes the following evolution:

Input state Output state

|0〉|g〉 −→ |ψ(1)
a 〉 −→ |ψ(2)

a 〉 −→ |ψ(3)
a 〉

|0〉|e〉 −→ |ψ(1)
b 〉 −→ |ψ(2)

b 〉 −→ |ψ(3)
b 〉

|1〉|g〉 −→ |ψ(1)
c 〉 −→ |ψ(2)

c 〉 −→ |ψ(3)
c 〉

|1〉|e〉 −→ |ψ(1)
d 〉 −→ |ψ(2)

d 〉 −→ |ψ(3)
d 〉

(49)

Obviously, if |ψ(3)
a 〉= |0〉|g〉, |ψ(3)

b 〉= |0〉|e〉, |ψ(3)
c 〉= |1〉|e〉, and |ψ(3)

d 〉= |1〉|g〉, the CNOT gate
(45) is realized. This means that the coefficients should satisfy the condition (see, Eq. (48)):

α
(3)
11 = α

(3)
22 = α

(3)
34 = α

(3)
43 = 1, (50)

i.e.,(see, APPENDIX A):
⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 = cos(Ω0,0t1)cos(Ω0,0t3)− ei(ϑ3−ϑ1) sin(Ω0,0t1)cos(Ω0,1t2)sin(Ω0,0t3),
1 = −ei(ϑ1−ϑ3) sin(Ω0,0t1)sin(Ω0,0t3) + cos(Ω0,0t1)cos(Ω0,1t2)cos(Ω0,0t3),
1 = −ie−iϑ3 cos(Ω1,0t1)cos(Ω0,1t2)sin(Ω1,0t3)− ie−iϑ1 sin(Ω1,0t1)cos(Ω1,1t2)cos(Ω1,0t3),
1 = −ieiϑ3 cos(Ω1,0t1)cos(Ω1,1t2)sin(Ω1,0t3)− ieiϑ1 sin(Ω1,0t1)cos(Ω0,1t2)cos(Ω1,0t3).

(51)

In the previous approaches, within the LD limit, for implementing quantum gate, the kπ
pulses k = 1, 2, 3, ... of the laser beams are usually applied to drive the ions. The relevant
LD parameters should be set sufficiently small such that the LD approximation could be
satisfied. Here, in order to realize the desirable quantum gate with arbitrarily LD parameters
(i.e., beyond the LD limit), we assume that the durations of the applied laser beams could be
arbitrarily set (instead of the so-called kπ in the previous approaches). Indeed, the desired
quantum gate could be implemented for arbitrarily experimental LD parameters, as long
as the durations tN and initial phases ϑN of the applied three laser beams (N = 1, 2, 3) are
accurately set such that Eq. (50) is satisfied.
For equation (50), there maybe exist many solutions for any selected LD parameter. However,
the practical existence of decoherence imposes the limit that the total duration of the
present three-step pulse should be shorter than the decoherence times of both the atomic
and motional states. This implies that exact solutions to Eq. (50) do not exist for certain
experimental LD parameters. Certainly, for these parameters approximative solutions to Eq.
(50) still exist and the CNOT gate could be approximately generated. The fidelity F for such
an approximated realization is defined as the minimum among the probability amplitudes:

α
(3)
11 , α

(3)
22 , α

(3)
34 , and α

(3)
43 , i.e. (27),
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η Ωt1 = Ωt3 Ωt2 F

0.17 192.01 673.50 0.9935
0.18 292.03 637.85 0.9984
0.20 1.6690 255.07 0.9935
0.25 1.7287 207.94 0.9986
0.30 9.0200 438.00 0.9998
0.31 31.000 552.89 1.0000
0.35 177.00 1107.0 1.0000
0.40 2.0260 170.07 0.9999
0.50 97.304 57.310 0.9975
0.60 61.710 75.480 1.0000
0.70 66.900 160.85 0.9969
0.75 175.99 665.98 0.9998
0.85 73.110 105.91 0.9985
0.90 12.400 460.43 0.9992
0.95 25.300 415.21 0.9973

Table 3. Parameters for generating high-fidelity CNOT gates with arbitrarily selected LD
parameters from 0.17 to 0.95 (27). Here ϑ1 = −ϑ3 = π/2, and t1 = t3.

F = min
{

α
(3)
11 , α

(3)
22 , α

(3)
34 , α

(3)
43

}

(52)

It has been shown that the lifetime of the atomic excited state |e〉 reaches 1 s and the coherence
superposition of vibrational states |0〉 and |1〉 can be maintained for up to 1 ms (32; 33). These
allow us to perform the required three-step sequential laser manipulations; e.g., for Ω/(2π)≈
500 kHz and η = 0.20 (4) the total duration t = t1 + t2 + t3 ≈ 0.08 ms. Table 3 provides some
numerical results for arbitrarily selected LD parameters (not limited within the LD regime
requiring η ≪ 1) from 0.17 to 0.95. Here, the durations of the applied laser beam pulses are
defined by the parameters Ωti with i = 1, 2, 3. It is seen that the fidelities of implementing the
desirable CNOT gate for these LD parameters are significantly high (all of them larger than
99%).

3.3 Simplified approaches for implementing quantum logic gates

In fact, the above approach (with three laser pulses) for generating CNOT gate can be
simplified, by using only two laser pulses (28). With the sequential two operations 1) and
2), the system undergoes the following evolutions:

Input state Output state

|0〉|g〉 −→ |ψ(1)
a 〉 −→ |ψ(2)

a 〉
|0〉|e〉 −→ |ψ(1)

b 〉 −→ |ψ(2)
b 〉

|1〉|g〉 −→ |ψ(1)
c 〉 −→ |ψ(2)

c 〉
|1〉|e〉 −→ |ψ(1)

d 〉 −→ |ψ(2)
d 〉

(53)

If
α
(2)
11 = α

(2)
22 = α

(2)
33 = α

(2)
42 = 1, (54)
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i.e.,(see, APPENDIX A):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 = cos(Ω0,0t1),
1 = cos(Ω0,0t1)cos(Ω0,1t2),
1 = i−1e−iϑ1 sin(Ω1,0t1)cos(Ω1,1t2),
1 = i−1eiϑ1 sin(Ω1,0t1)cos(Ω0,1t2),

(55)

then |ψ(2)
a 〉 = |0〉|g〉, |ψ(2)

b 〉 = |0〉|e〉, |ψ(2)
c 〉 = |1〉|e〉, and |ψ(2)

d 〉 = |1〉|g〉. Thus, the desirable
CNOT gate (45) is realized.
The above condition could be achieved by properly setting the relevant experimental
parameters, t1, t2, ϑ1, and η as

t1 =
2pπ

Ω0,0
, t2 =

2mπ

Ω0,1
, θ1 = (−1)q+1 π

2
, (56)

with p,q,m = 1,2,3..., and

η2 = 1 − q − 0.5

2p
= 2 −

√
2(n − 0.5)

m
, (57)

with n = 1,2,3, .... This means that the CNOT gate (45) could be implemented, since all
the experimental parameters related above are accurately controllable. This implies that the
required laser pulses for implementing a CNOT gate could be really reduced to two ones.
Due to decoherence(i.e., the limit of durations t1 + t2), the integers p,q,m,n could not take
arbitrary large values to let (57) be satisfied exactly, although their approximated solutions

η t1Ω t2Ω θ1 = ±π
2 F

0.18 689.6666 993.3470 + 0.9907
0.20 1525.600 1410.200 + 0.9958
0.22 1261.700 1463.000 + 0.9984
0.25 1504.000 1192.800 - 0.9978
0.28 457.4064 326.7189 + 0.9967
0.30 328.6193 438.1591 - 0.9993
0.38 351.1877 284.3625 + 0.9994
0.40 490.0675 170.1623 + 0.9975
0.44 304.5596 283.1649 - 0.9980
0.53 347.0706 190.9979 + 0.9970
0.57 443.4884 492.7649 + 0.9993
0.64 385.5613 481.9516 - 0.9967
0.68 316.7005 395.8756 - 0.9950
0.73 377.2728 292.1111 - 0.9953
0.80 276.8880 281.2143 - 0.9980
0.86 436.5392 486.4535 + 0.9999
0.90 471.0198 460.5527 - 0.9971
0.96 318.7519 394.2894 + 0.9969

Table 4. CNOT gates implemented with sufficiently high fidelities for arbitrarily selected
parameters (28).
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η t1Ω α
(1)
11 = α

(1)
21 α

(1)
12 = α

(1)
22 α

(1)
31 = α

(1)
41 α

(1)
32 = α

(1)
42

0.18 267.75 0.97520 -0.22135 -0.21954 0.97560
0.20 243.65 0.99948 0.03218 0.03193 0.99949
0.22 179.76 0.97284 -0.23146 -0.23053 0.97306
0.24 168.13 1.00000 0.00000 0.00000 1.00000
0.26 129.49 0.97165 -0.23640 -0.24006 0.97076
0.28 130.92 0.99376 0.11153 0.11041 0.99389
0.30 104.95 0.99505 -0.09935 -0.09778 0.99521
0.32 92.35 0.99374 -0.11172 -0.10790 0.99416
0.34 79.49 0.98271 -0.18517 -0.18852 0.98207
0.36 80.64 0.99586 0.09088 0.09407 0.99557
0.38 67.33 0.99541 -0.09572 -0.09377 0.99559
0.40 68.44 0.98505 0.17225 0.16794 0.98580
0.42 54.57 0.98859 -0.15063 -0.15383 0.98810
0.44 55.56 0.99646 0.08411 0.08530 0.99636
0.46 111.30 0.97957 -0.20111 -0.19843 0.98012
0.48 41.83 0.97796 -0.20881 -0.20607 0.97854
0.50 42.72 1.00000 0.00000 0.00000 1.00000
0.52 43.67 0.97497 0.22234 0.21915 0.97570
0.54 87.23 1.00000 0.00000 0.00000 1.00000
0.56 132.93 0.96361 0.26731 0.26592 0.96400
0.58 118.42 0.97544 -0.22027 -0.22025 0.97544
0.60 29.81 0.99320 -0.11640 -0.11358 0.99353

Table 5. CNOT gates implemented with high fidelities for arbitrarily selected
parameters(from 0.18 to 0.60) (29).

are still exists. This implies that the desirable CNOT gate is approximately implemented
with a fidelity F < 1. Similar to that of Sec. 3.2, here the fidelity F of implementing the

desirable gate is defined as the minimum among the values of α
(2)
11 , α

(2)
22 , α

(2)
33 and α

(2)
42 , i.e.,

F = min{α
(2)
11 ,α

(2)
22 ,α

(2)
33 ,α

(2)
42 }.

In table 4, we present some experimental parameters arbitrarily selected to implement the
expected CNOT gate (45), with sufficiently high fidelities F > 99%. For example, we have
F = 99.58% for the typical LD parameter η = 0.2. It is also seen from the table that the present
proposal still works for certain large LD parameters, e.g., 0.90, 0.96, etc.. For the experimental
parameters η = 0.2 and Ω/(2π) ≈ 500 kHz, the total duration t1 + t2 for this implementation
is about 0.9 ms. By increasing the Rabi frequency Ω via enhancing the power of the applied
laser beams, the durations can be further shorten, and thus the CNOT gates could be realized
more efficiently.
In fact, a CNOT gate (apart from certain phase factors) (39) could be still realized by a single laser
pulse. By setting ϑ1 = π/2 and

cos(Ω0,0t1) = sin(Ω1,0t1) = 1, (58)
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η t1Ω α
(1)
11 = α

(1)
21 α

(1)
12 = α

(1)
22 α

(1)
31 = α

(1)
41 α

(1)
32 = α

(1)
42

0.62 30.64 0.99720 0.07473 0.07201 0.99740
0.64 31.52 0.96241 0.27158 0.26906 0.96312
0.66 62.42 0.99952 -0.03096 -0.03027 0.99954
0.68 95.26 0.99509 0.09898 0.09985 0.99500
0.70 353.53 0.99224 0.12437 0.12458 0.99221
0.72 178.61 0.97983 -0.19981 -0.20082 0.97963
0.74 82.49 0.99876 -0.04974 -0.05286 0.99860
0.76 50.12 0.99715 -0.07548 -0.07608 0.99710
0.78 186.67 0.96719 -0.25406 -0.25835 0.96605
0.80 155.88 0.99888 0.04737 0.04576 0.99895
0.82 175.54 0.99258 -0.12162 -0.12311 0.99239
0.84 17.27 0.97693 -0.21356 -0.21395 0.97685
0.86 18.04 0.99867 -0.05149 -0.05191 0.99865
0.88 18.88 0.99205 0.12582 0.12453 0.99221
0.90 19.79 0.95031 0.31129 0.31157 0.95022
0.92 153.85 0.99324 0.11610 0.11507 0.99336
0.94 39.40 0.99517 0.09817 0.09647 0.99534
0.96 60.04 0.99627 0.08632 0.08611 0.99629
0.98 122.12 0.99709 0.07617 0.07482 0.99720

Table 6. CNOT gates implemented with high fidelities for arbitrarily selected
parameters(from 0.62 to 0.98) (29).

the operation (46) can realize the following two-qubit quantum operation (see, APPENDIX A)

|0〉|g〉 −→ |0〉|g〉
|0〉|e〉 −→ |0〉|e〉
|1〉|g〉 −→ −|1〉|e〉
|1〉|e〉 −→ |1〉|g〉

(59)

which is equivalent to the standard CNOT gate (45) between the external and internal states
of the ion, apart from the phase factors −1.
Obviously, the condition (58) can be satisfied by properly setting the relevant experimental
parameters: t1 and η, as

t1 =
2nπ

Ω0,0
, η2 = 1 − m − 3

4

n
, n,m = 1,2,3...., (60)

with n and m being arbitrary positive integers. Because of the practical existence of
decoherence, as we discussed above, the duration of the present pulse should be shorter than
the decoherence times of both the atomic and motional states of the ion. This limits that the
integers n could not take arbitrary large values to let Eq. (60) be exactly satisfied.
In tables 5 and 6 we present some numerical results for setting proper experimental
parameters Ωt1 (all of them � 0.1 ms for the experimental Rabi frequency Ω/(2π) ≈
500 KHz), to implement quantum operation (59) for the arbitrarily selected LD parameters
(not limited within the LD regime requiring η ≪ 1) from 0.18 to 0.98. It is seen that, the
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probability amplitudes α
(1)
11 = α

(1)
21 and α

(1)
32 = α

(1)
42 are desirably large, most of them could

reach to 0.99. While, unwanted probability amplitudes α
(1)
12 = α

(1)
22 and α

(1)
31 = α

(1)
41 are really

significantly small; all of them is less than 0.32. This implies that the lowest fidelity F =

min{α
(1)
11 ,α

(1)
21 ,α

(1)
32 ,α

(1)
42 } for implementing the quantum operation (59) is larger than 95%.

Certainly, the above approximated solutions could be further improved by either relaxing the
limit from the decoherence time or increasing Rabi frequency Ω (via increasing the powers of
the applied laser beams) to shorten the operational time. Designing the applied laser pulse
with so short duration is not a great difficulty for the current experimental technology, e.g.,
the femto-second (10−15s) laser technique. Also, our numerical calculations show that the
influence of the possibly-existing fluctuations of the applied durations is really weak. For
example, for the Rabi frequency Ω/(2π)≈ 500 kHz, the fluctuation δt ≈ 0.1µs of the duration

lowers the desirable probability amplitudes, i.e., α
(1)
11 and α

(1)
32 presented in tables 5 and 6,

just about 5%. Thus, even consider the imprecision of the durations, the amplitude of the

desirable elements, α
(1)
11 and α

(1)
32 , are still sufficiently large, e.g., up to about 0.95. Therefore,

the approach proposed here to implement the desirable quantum operation (59) for arbitrary
LD parameters should be experimentally feasible.
Finally, we consider how to generate the standard CNOT gate (45) from the quantum
operation (59) produced above. This could be achieved by just eliminating the unwanted
phase factors in (59) via introducing another off-resonant laser pulse (10). Indeed, a first
blue-sideband pulse (of frequency ωL = ωea + ν and initial phase ϑ2) induces the following
evolution

|1〉|e〉 −→ cos(Ω0,1t2)|1〉|e〉 − eiϑ2 sin(Ω0,1t2)|0〉|a〉, (61)

but does not evolve the states |0〉|g〉, |1〉|g〉 and |0〉|e〉. Above, |a〉 is an auxiliary atomic level,
and ωea being the transition frequency between it and the excited state |e〉. Obviously, a
“π-pulse” defined by Ω0,1t2 = π generates a so-called controlled-Z logic operation (10)

|0〉|g〉 −→ |0〉|g〉
|0〉|e〉 −→ |0〉|e〉
|1〉|g〉 −→ |1〉|g〉
|1〉|e〉 −→ −|1〉|e〉

(62)

For the LD parameters from 0.18 to 0.98, and Ω/(2π) ≈ 500 kHz, the durations for this
implementation are numerically estimated as 3.3 × 10−3 ∼ 1.2 × 10−2 ms. Therefore, the
standard CNOT gate (45) with a single trapped ion could be implemented by only two
sequential operations demonstrated above.

4. Conclusions

In this chapter, we have summarized our works on designing properly laser pulses for
preparing typical motional quantum states and implementing quantum logic gates with single
trapped ions beyond the LD approximation. To generate the typical vibrational states (e.g., the
coherence states, squeezed coherent states, odd/even coherent states and squeezed states) and
implement CNOT gates of a single trapped ion, serval sequential laser pules are proposed to
be applied to the trapped ion. It is shown that by properly set the frequency, duration, and
phase, etc., of the each laser pulse the desired vibrational states and CNOT gates of a single
trapped ion could be well generated with high fidelities.
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5. APPENDIX A:

α
(1)
11 = α

(1)
21 = cos(Ω0,0t1)

α
(1)
12 = i−1e−iϑ1 sin(Ω0,0t1)

α
(1)
22 = i−1eiϑ1 sin(Ω0,0t1)

α
(1)
31 = α

(1)
41 = cos(Ω1,0t1)

α
(1)
32 = i−1e−iϑ1 sin(Ω1,0t1)

α
(1)
42 = i−1eiϑ1 sin(Ω1,0t1)

(63)

α
(2)
11 = cos(Ω0,0t1)

α
(2)
12 = i−1e−iϑ1 sin(Ω0,0t1)cos(Ω0,1t2)

α
(2)
13 = −i−1ei(ϑ2−ϑ1) sin(Ω0,0t1)sin(Ω0,1t2)

α
(2)
21 = i−1eiϑ1 sin(Ω0,0t1)

α
(2)
22 = cos(Ω0,0t1)cos(Ω0,1t2)

α
(2)
23 = −e−iϑ2 cos(Ω0,0t1)sin(Ω0,1t2)

(64)

α
(2)
31 = e−iϑ2 cos(Ω1,0t1)sin(Ω0,1t2)

α
(2)
32 = cos(Ω1,0t1)cos(Ω0,1t2)

α
(2)
33 = i−1e−iϑ1 sin(Ω1,0t1)cos(Ω1,1t2)

α
(2)
34 = −i−1ei(ϑ2−ϑ1) sin(Ω1,0t1)sin(Ω1,1t2)

(65)

α
(2)
41 = i−1ei(ϑ1−ϑ2) sin(Ω1,0t1)sin(Ω0,1t2)

α
(2)
42 = i−1eiϑ1 sin(Ω1,0t1)cos(Ω0,1t2)

α
(2)
43 = cos(Ω1,0t1)cos(Ω1,1t2)

α
(2)
44 = −eiϑ2 cos(Ω1,0t1)sin(Ω1,1t2)

(66)
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α
(3)
11 = cos(Ω0,0t1)cos(Ω0,0t3)− ei(ϑ3−ϑ1) sin(Ω0,0t1)cos(Ω0,1t2)sin(Ω0,0t3)

α
(3)
12 = −ie−iϑ3 cos(Ω0,0t1)sin(Ω0,0t3)− ie−iϑ1 sin(Ω0,0t1)cos(Ω0,1t2)cos(Ω0,0t3)

α
(3)
13 = iei(ϑ2−ϑ1) sin(Ω0,0t1)sin(Ω0,1t2)cos(Ω0,1t3)

α
(3)
14 = iei(ϑ2−ϑ1−ϑ3) sin(Ω0,0t1)sin(Ω0,1t2)sin(Ω0,1t3)

(67)

α
(3)
21 = −ieiϑ1 sin(Ω0,0t1)cos(Ω0,0t3)− ieiϑ3 cos(Ω0,0t1)cos(Ω0,1t2)sin(Ω0,0t3)

α
(3)
22 = −ei(ϑ1−ϑ3) sin(Ω0,0t1)sin(Ω0,0t3) + cos(Ω0,0t1)cos(Ω0,1t2)cos(Ω0,0t3)

α
(3)
23 = −eiϑ2 cos(Ω0,0t1)sin(Ω0,1t2)cos(Ω1,0t3)

α
(3)
24 = −ei(ϑ2−ϑ3) cos(Ω0,0t1)sin(Ω0,1t2)sin(Ω1,0t3)

(68)

α
(3)
31 = −iei(ϑ3−ϑ2) cos(Ω1,0t1)sin(Ω0,1t2)sin(Ω0,0t3)

α
(3)
32 = e−iϑ2 cos(Ω1,0t1)sin(Ω0,1t2)cos(Ω0,0t3)

α
(3)
33 = cos(Ω1,0t1)cos(Ω0,1t2)cos(Ω1,0t3)− ei(ϑ3−ϑ1) sin(Ω1,0t1)cos(Ω1,1t2)sin(Ω1,0t3)

α
(3)
34 = −ie−iϑ3 cos(Ω1,0t1)cos(Ω0,1t2)sin(Ω1,0t3)− ie−iϑ1 sin(Ω1,0t1)cos(Ω1,1t2)cos(Ω1,0t3)

α
(3)
35 = iei(ϑ2−ϑ1) sin(Ω1,0t1)sin(Ω1,1t2)cos(Ω2,0t3)

α
(3)
36 = ei(ϑ2−ϑ1−ϑ3) sin(Ω1,0t1)sin(Ω1,1t2)sin(Ω2,0t3)

(69)

α
(3)
41 = −ei(ϑ1−ϑ2+ϑ3) sin(Ω1,0t1)sin(Ω0,1t2)sin(Ω0,0t3)

α
(3)
42 = −iei(ϑ1−ϑ2) sin(Ω1,0t1)sin(Ω0,1t2)cos(Ω0,0t3)

α
(3)
43 = −ieiϑ3 cos(Ω1,0t1)cos(Ω1,1t2)sin(Ω1,0t3)− ieiϑ1 sin(Ω1,0t1)cos(Ω0,1t2)cos(Ω1,0t3)
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α
(3)
44 = cos(Ω1,0t1)cos(Ω1,1t2)cos(Ω1,0t3)− ei(ϑ1−ϑ3) sin(Ω1,0t1)cos(Ω0,1t2)sin(Ω1,0t3)

α
(3)
45 = −ieiϑ2 cos(Ω1,0t1)sin(Ω1,1t2)cos(Ω2,0t3)

α
(3)
46 = iei(ϑ2−ϑ3) cos(Ω1,0t1)sin(Ω1,1t2)sin(Ω2,0t3)

(70)
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