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1. Introduction     

The study of Underwater Wireless Networks as a research field has grown significantly in 
recent years offering a multitude of proposal to resolve the communication between the 
nodes and protocols for information exchange networks. Acoustics has been used by nature 
for years to communicate in the underwater environment using it as a language, dolphins 
and whales for instance are able to use it to send information between their groups. The first 
reference to the underwater sound propagation can be found in what Leonardo Da Vinci 
wrote in 1490: "If you cause your ship to stop and place the head of a long tube in the water 
and place the outer extremity to your ear, you will hear ships at a great distance from you". 
 
Years later in 1826 the first scientific studies were done by picking real data measures 
(Colladon, 1893). The physicist Jean-Daniel Colladon, and his partner Charles-Francois 
Sturm a mathematic, made the first recorded attempt at Lake Geneva, Switzerland, to find 
out the speed of sound in water. After experimenting with an underwater bell with ignition 
of gunpowder on a first boat, the sound of the bell and flash from the gunpowder were 
observed 10 miles away on a second boat. With this collection of data of the time between 
the gunpowder flash and the reception of the sound reaching to the second boat they were 
able to establish a pretty accurate value for the speed of the sound in water, tested with this 
empirical method. 
 
In the early XX century in 1906, the first sonar type was developed for military purpose by 
Lewis Nixon; there was a great interest in this technology during World War I so as to be 
able to detect submarines. It was in 1915, when the "echo location to detect submarines" was 
released by physicist Paul Langévin and the engineer Constantine Chilowski, device capable 
for detecting submarines using the piezoelectric properties of the quartz. It was not useful 
for the war as it arrived too late, but it established the roots of the upcoming design for 
sonar devices. 
 
The first targets in which the developing of underwater sound technology was involved 
were to determine the distance to the shore or to other ships. After experimenting it was 
quickly discovered by researchers that pointing the sound device down towards the 
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seafloor, the depth could also be collected with enough precision. Then, by picking a lot of 
values it was used for new purposes like measuring the relief of the ocean (bathymetry), 
seafloor shape registering, search for geological resources (i.e. oil, gas, etc.), detecting and 
tracking fish banks, submarine archaeology, etc. 
 
These were the main underwater acoustic application mainly use for the exploration of 
seafloor and fishery with sonar devices. In the 90’s the researchers became aware of a new 
feature applicable to underwater communications, multipoint connections could be capable 
of translating the networked communication technology to the underwater environment. 
One of the former deployments was the Autonomous Oceanographic Surveillance Network 
(AOSN), supported by the US Office of Naval Research (ONR) (Curtin et al, 1993). It calls for 
a system of moorings, surface buoys, underwater sensor nodes and Autonomous 
Underwater Vehicles (AUVs) to coordinate their sampling via an acoustic telemetry 
network. 
 

Wireless terrestrial networking technologies have experienced a considerably development 
in the last fifteen years, not only in the standardization areas but also in the market 
deployment of a bunch of devices, services and applications. Among all these wireless 
products, wireless sensor networks are exhibiting an incredible boom, being one of the 
technological areas with greater scientific and industrial development step (Akyildiz et al, 
2002).  
 
The interest and opportunity in working on wireless sensor network technologies is 
endorsed by (a) technological indicators like the ones published by MIT (Massachusetts 
Institute of Technology) in 2003 (Werff, 2003) where wireless sensor network technology 
was defined as one of the 10 technologies that will change the world, and (b) economic and 
market forecasts published by different economic magazines like (Rosenbush et al, 2004), 
where investment in Wireless Sensor Network (WSN) ZigBee technology was estimated 
over 3.500 Million dollars during 2007.  
 
Recently, wireless sensor networks have been proposed for their deployment in underwater 
environments where many of applications such us aquiculture, pollution monitoring, 
offshore exploration, etc. would benefit from this technology (Cui et al, 2006). Despite 
having a very similar functionality, Underwater Wireless Sensor Networks (UWSNs) exhibit 
several architectural differences with respect to the terrestrial ones, which are mainly due to 
the transmission medium characteristics (sea water) and the signal employed to transmit 
data (acoustic ultrasound signals) (Akyildiz et al, 2006).  
 
Then, the design of appropriate network architecture for UWSNs is seriously hardened by 
the conditions of the communication system and, as a consequence, what is valid for 
terrestrial WSNs is perhaps not valid for UWSNs. So, a general review of the overall 
network architecture is required in order to supply an appropriate network service for the 
demanding applications in such an unfriendly submarine communication environment.  
 
 
 

•

•
•

•
•
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Major challenges in the design of underwater acoustic networks (Llor & Malumbres 2009) 
are:  
 

• Battery power is limited and usually batteries cannot be recharged because solar energy 
cannot be exploited;  

• The available bandwidth is severely limited;  
• The channel suffers from long and variable propagation delays, multi-path and fading 

problems;  
• Bit error rates are typically very high;  
• Underwater sensors are prone to frequent failures because of fouling, corrosion, etc.  
 

This chapter will give an overview of underwater wireless networks going-through all the 
layers with emphasis on the physical layer and how it behaves in different and changing 
environment conditions. Besides a brief outline of the most outstanding MAC layer 
protocols as the ones of the routing layer algorithms will be presented. Also the main 
application are presented and finally the conclusions. 
 
In the next section, we briefly describe the main issues in the design of efficient underwater 
wireless sensor networks. Following a bottom-to-top approach, we will review the network 
architecture, highlighting some critical design parameters at each of the different network 
layers, and overcoming the limitations and problems introduced by UWSN environments. 

 
2. Topology 

In (Partan et al, 2006), taxonomy of UWSN regimes is outlined. They classify different UWSNs 
in terms of both spatial coverage and node density. For every kind of network topology, 
different architectural approaches have to be considered in order to improve the network 
performance (throughput, delay, power consumption, packet loss, etc.). So, it is important to 
design the network architecture taking into account the intended network topology.  

 
3. Physical Layer: Acoustic Link 

The most common way to send data in underwater environments is by means of acoustic 
signals, dolphins and whales use it to communicate. Radio frequency signals have serious 
problems to propagate in sea water, being operative for radio-frequency only at very short 
ranges (up to 10 meters) and with low-bandwidth modems (terms of Kbps). When using 
optical signals the light is strongly scattered and absorbed underwater, so only in very clear 
water conditions (often very deep) does the range go up to 100 meters with high bandwidth 
modems (several Mbps). 
 
The theory of the sound propagation is according to the description by Urick (Urick & 
Robert, 1983), a regular molecular movement in an elastic substance that propagates to 
adjacent particles. A sound wave can be considered as the mechanical energy that is 
transmitted by the source from particle to particle, being propagated through the ocean at 
the sound speed. The propagation of such waves will refract upwards or downwards in 
agreement with the changes in salinity, temperature and the pressure that have a great 
impact on the sound speed, ranging from 1450 to 1540 m/s. 
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Fig. 1. This diagram offers a basic illustration of the depth at which different colors of light 
penetrate ocean waters. Water absorbs warm colors like reds and oranges and scatters the 
cooler colors 
 
  

 
Fig. 2. Temperature variation  depending on latitude and season 
 

Depth (m) Salinity (ppm) 

0 37.45 

50 36.02 

100 35.34 

500 35.11 

1000 34.90 

1500 34.05 

Table 1. Salinity depending on the depth 
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The transmission loss (TL) is defined as the decrease of the sound intensity through the path 
from the sender to the receiver. There have been developed diverse empirical expressions to 
measure the transmission loss. Thorp formula (Urick & Robert, 1983) defines the signal 
transmission loss as: 

 � � 0.11 f �1 � f � � 44 f �4100 � f � �d���m� 
 �� � 20 �o� r 
 T� � �� � � � 10�� 

(1) 
 

where f is frequency in kHz, r is the range in meters; SS is the spherical spreading factor and 
α is the attenuation factor. Then a more accurate expression for the attenuation factor was 
presented, the one proposed in the Thorp formula in (Berkhovskikh & Laysanov, 1982): 
 � � 0.11 f �1 � f � � 44 f �4100 � f � � 2.�5 � 10��f � � 0.00� (2) 

                                        
Since acoustic signals are mainly used in UWSNs, it is necessary to take into account the 
main aspects involved in the propagation of acoustic signals in underwater environments, 
including: (1) the propagation speed of sound underwater is around 1500 m/s (5 orders of 
magnitude slower than the speed of light), and so the communication links will suffer from 
large and variable propagation delays and relatively large motion-induced Doppler effects; 
(2) phase and magnitude fluctuations lead to higher bit error rates compared with radio 
channels’ behaviour,  this makes necessary the use of forward error correction codes (FEC); 
(3) as frequency increases, the attenuation observed in the acoustic channel also increases, 
which is a serious bandwidth constraint; (4) multipath interference in underwater acoustic 
communications is severe due mainly to the surface waves or vessel activity, that are an 
important issue to attain good bandwidth efficiency. 
 
Several works in the literature propose models for an acoustic underwater link, taking into 
account environment parameters as salinity degree, temperature, depth, environmental 
interference, etc. Other physical aspects of the ocean as noise in the medium (Coates, 1989), 
the wind, thermal noise, the turbulence and the ship noise are included by these formulas, 
depending on the frequency and this factors: 
 10 �o� ����� � 1� � �0 �o� �10 �o� ����� � 40 � 20 �� � 0.5� � 2� �o� �10 �o� ����� � 50 � �.5 ��� � 20 �o� � � 40 �o��� � 0.4� 10 �o� ������ � �15 � 20 �o� � 

 
 

(3) 
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where Nt is the noise due to turbulence, Ns is the noise due to shipping, Nw is the noise due 
to wind, and Nth represents the thermal noise. The overall noise power spectral density for a 
given frequency f is then: 
 � ��� � ����� � ����� � ����� � ������ (4) 

 
In (Xie & Gibson, 2006) the authors present the Monterey-Miami Parabolic Equation to 
describe the behavior of the propagation of the sound. In (Porter & Liu 2010) Bellhop, a ray 
tracing tool shows how the physical environment conditions and terrain shapes have a great 
impact in the sound attenuation. 

 
3.1 MMPE 
Monterey-Miami Parabolic Equation (MMPE) model is used to predict underwater acoustic 
propagation using a parabolic equation which is closer to the Helmholzt equation (wave 
equation), this equation is based on Fourier analysis. The sound pressure is calculated in 
small increments changes in range and depth, forming a grid. If we increase the step size, 
we can obtain better performance. The propagation loss formula based on the MMPE model: 
 ���t� � m�f, s, dA, dB � � ��t� � ���  (5) 

where: 
PL(t): propagation loss while transmitting from node A to node B. 
m(): propagation loss without random and periodic components; obtained from regression 
using MMPE data. 
f: frequency of transmitted acoustic signals (in kHz). 
dA: sender’s depth (in meters). 
dB: receiver’s depth (in meters). 
r: horizontal distance between A and B nodes, called range in MMPE model (in meters). 
s: Euclidean distance between A and B nodes (in meters). 
w(t): periodic function to approximate signal loss due to wave movement. 
e():  signal loss due to random noise or error. 
 
The m() function represents the propagation loss provided by the MMPE model. According 
to the logarithmic nature of the data, a nonlinear regression is the best option to provide an 
approach to the model based on the coefficients supplied by the preliminary model. The 
proposed expression to calculate this function is the following one: 
 

���, �, ��, ��� � �o� ��� �0.914��� ������������� � ���������� �  ����� �� �� � 

��� � ������ � ��������� � 0.002�5� � 0.00�� � � ����� � �� � �� � �� � �           (6) 

 
The w() function considers the movement of a particle that will oscillate around its location 
in a sinusoidal way. That movement is represented as circular oscillations that reduce their 
radius as the depth of the particle increases. The length of that radius is dependent of the 

���� � ���� , ���, ��,��� ���, ���

���� , �� , �, ��,��� � ��� �1 � �2���� ���0.5 � �sin �2π�mod T���� ��

��� � 20 � ������ RN
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���t� � m�f, s, dA, dB � � ��t� � ���

���, �, ��, ��� � �o� ��� �0.914��� ������������� � ���������� �  ����� �� �� �
��� � ������ � ��������� � 0.002�5� � 0.00�� � � ����� � �� � �� � �� � �

 

 

energy of the wave and is related to the height of the wave. The common waves have 
hundreds of meters of wavelength and have an effect up to 50 meters of depth 
 
For the calculation of the effects of the wave we will consider: 
 ���� � ���� , ���, ��,��� ���, ���                                   (7) 

 
where 
w(t): periodic function to approximate the lost signal by the wave movement. 
h():  scale factor function. 
lW: ocean wave length (meters). 
dB: depth of the receiver node. 
hW: wave height (meters). 
TW: wave period (seconds).  
E(): function of wave effects in nodes. 
 
This function contains the elements that are resembled the node movement, first calculating 
the scale factor h() and then the wave effect in a particular phase of the movement. The 
calculation of the scale factor is as follows: 

 

���� , �� , �, ��,��� � ��� �1 � �2���� ���0.5 � �sin �2π�mod T���� �� (8) 

 
The e() function represents a random term to explain background noise. As the number of 
sound sources is large and undetermined, this random noise follows a Gaussian distribution 
and is modeled to have a maximum of 20dB at the furthest distance. This function is 
calculated by the following equation: 
 ��� � 20 � ������ RN  (9) 

where: 
 
e(): random noise function 
s: distance between the sender and receiver (in meters). 
smax: maximum distance (transmission range) 
hw: height of the wave (in meters). 
RN: random number, Gaussian distribution centered in 0 and with variance 1. 
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Fig. 3. MMPE Transmission Loss (db) 

 
3.2 Bellhop 

Ray tracing requires the solution of the ray equations to determine the ray coordinates. 
Amplitude and acoustic pressure requires the solution of the dynamic ray equations. For a 
system with cylindrical symmetry the ray equations can be written: 
 drds � �ξ�s� , dξds � � 1�� ���r 

(10) 

 
where r(s) and z(s) represent the ray coordinates in cylindrical coordinates and s is the 
arclenght along the ray; the pair c(s) [ ξ (s),ζ(s)] represents the tangent versor along the ray. 
Initial conditions for and r(s), and z(s) , ξ(s) and ζ(s) are 
 r�0� � r� , z�0� � z� , ξ�0� � �os θ��� , ζ�0� � sin θ���    (11) 

 

θ

τ � � ds��s�Γ
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drds � �ξ�s� , dξds � � 1�� ���r
ξ ζ
ξ ζ

r�0� � r� , z�0� � z� , ξ�0� � �os θ��� , ζ�0� � sin θ���   

 

 

 
Fig. 4. Bellhop ray trace 

 
where θs represents the launching angle,  ( rs  , zs ) is the source position, and cs is the sound 
speed at the source position. The coordinates are sufficient to obtain the ray travel time: 
                                                            

τ � � ds��s�Γ
 

(12) 

 
which is calculated along the curve, [ r  , zs ]. 
 

 
Fig. 5. Bellhop pressure 
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4. Mac Layer 

The main task of MAC protocols is to provide efficient and reliable access to the shared 
physical medium in terms of throughput, delay, error rates and energy consumption. 
However, due to the different nature of the underwater environment, there are several 
drawbacks with respect to the suitability of the existing terrestrial MAC solutions for the 
underwater environment. In fact, channel access control in UWSNs poses additional 
challenges due to the aforementioned peculiarities of underwater channels (Molins and 
Stojanovic, 2006). 
 
In the MAC Layer we have different types of protocols and ones of the latest examples 
presented in each one of the categories. The first ones are the non handshaking protocol 
such as Aloha-like, an on the opposite side we have the handshaking protocols like DACAP 
(Distance Aware Collision Avoidance Protocol) a collision avoidance protocol based on 
virtual Medium Access Control carrier sensing. A number of adaptations have been 
proposed to adopt MACA (Multiple Access with Collision Avoidanc) (Karn, 1990), 
MACAW (Media Access Protocol for Wireless LAN's) (Bharghavan et al, 1994), and FAMA 
(Floor Acquisition Multiple Access) (Fullmer & Luna-Acebes, 1995) for underwater 
networks in (Molins & Stojanovic, 2006). But also new protocols such as T-Lohi (between 
handshake and non-handshake) are becoming more popular as they have also a great 
efficiency in terms of the battery use. 

 
4.1 Aloha-like 
In Aloha like mode the source node sends its data frames as soon as it receives a packet from 
the upper-layer protocol. It does not check the medium to see if it is busy and so it does not 
perform any back-off, it. The node that receives the data will answer with and acknowledge 
data frame, if there was no problem at the reception such as a collision or packet lost during 
the transmission (i.e. when there is overlapping of the receiving periods of two or more 
frames at the destination location, or the receiver was transmitting). 
 
If the source, does not receive an ACK because either the frame was not correctly delivered 
or the ACK was lost, the sender will timeout, wait a random period (back-off) and 
retransmit the frame. This protocol follows the stop-and-wait paradigm. That is, the source 
must receive an acknowledgement for each data frame before the next frame can be sent. In 
addition, after a successful frame transmission, the sender will perform a back off, even if it 
has additional frames to send from the same packet or from a new packet. 
 
There different version called Aloha-based protocols, a couple of proposals modification for 
underwater networks of the protocol can be found in (Chirdchoo, 2007) that presents Aloha 
with Collision Avoidance (Aloha-CA) and Aloha with Advance Notification (Aloha AN).  
 

 Aloha-CA: Pays close attention to every packet it overhears, picking the information of 
who are the sender and receiver. With this information it can easily calculate the busy 
duration due to the packet at every one of the nodes. Each node will store in a database 
table the information of the monitored packets with the busy durations of every node of 
the neighbourhood. 






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 Aloha-AN: This protocol has all the features of Aloha-CA and adds the sending of a 
small advanced notification packet with the necessary information to let the other nodes 
build the databases tables. The sender will wait after this packet for a lag time before 
sending the actual data packet. Whenever a node has a packet to transmit, it will check 
the database table to ensure that the packet does not result in a collision at any other 
reachable nodes. 

 
4.2 DACAP 
DACAP is a handshaking protocol Distance Aware Collision Avoidance Protocol (Peleato & 
Stojanovic 2007) for Ad Hoc Underwater Acoustic Sensor Networks. This protocol is a non-
synchronized data access that uses control messages to decide when to start the 
communication Request-To-Send (RTS) / Clear-To-Send (CTS) handshake. If a collision 
happens during the handshake, the transmitter will not receive a CTS that enables him to 
send the data packet. 
 
The protocol is describe in Figure 6 and Figure 7 and explained in the following steps: 
 

 RTS reception: After this event, the node sends a CTS to the sender, and waits for a data 
packet. If another RTS is received the node sends a warning short packet to give and 
advice to the sender of the last one that the medium is in use. 
 

 
Fig. 6. Transmission in DACAP 

 

 CTS reception: When the transmitter receives this message it waits for those nodes 
whose transmissions are still happening to avoid any collisions. If it happens to receive 
another CTS or a warning packet reception the current data packet to send will be 
deferred for a random back-off time, if the waiting time expires the transmission 
proceeds normally.  
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Fig. 7. Reception in DACAP 
 
DACAP is a collision avoidance protocol with an easy scalable adaptation to big networks 
involving more nodes and a greater area. The protocol is aware of power consumption by 
avoiding collisions at the same time that maximizes the throughput. It minimizes the 
handshake time using the tolerance to interference of the receiver node, when this one is 
close to the limit of the range reception range. It works with a half-duplex communication 
link, the nodes do not need to be synchronized and it supports mobile nodes.  
 
The throughput with this protocol is several times higher than the one achieved with Slotted 
FAMA, while offering similar protection to collisions, i.e. savings in energy. Although CS-
ALOHA offers higher throughput in most cases, it wastes too much power on collisions. 

 
4.3 T-Lohi 
Tone-Lohi is a contention-based Mac protocol that uses short packet as wake up tone to 
reserve the medium. It is a full distributed reservation process and one of its main features is 
the power consumption, the nodes will be in an idle mode with low energy requirement 
until it receives the wake up tone. 
 

 
Fig. 8. T-Lohi Protocol Scheme 
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The main goals of T-Lohi are to make an efficient use of channel utilization, achieve a stable 
throughput, and save as much energy as possible without having an impact in the 
performance. This energy conservation is approached in two ways: (1) the reservation to 
prevent data packet collisions or at least reduce them, (2) and the usage of wake-up tones for 
the receivers to keep them in low power while in listening mode. 

 
5. Network Layer 

This layer is mainly responsible of routing packets to the proper destinations. So, a routing 
protocol is required when a packet must go through several hops to reach its destination. It 
is responsible for finding a route for the packet and making sure it is forwarded through the 
appropriate path. The way paths are selected for every source destination pair will have a 
direct impact on the overall network performance. 
 
Most of the routing proposals for UWSN are based on the ones developed for terrestrial ad-
hoc and wireless sensor networks. Some of the protocols designed exclusively for 
underwater wireless networks are: 

 
5.1 DBR 
Depth-Based Routing (Xie et al, 2008). It can handle network dynamics efficiently without 
the assistance of a localization service, it needs only local depth information. It is a greedy 
algorithm that tries to deliver a packet from a source node to sinks. 
 

 
Fig. 9. Multiple sink underwater sensor network architecture 
 
The source nodes send the data packets seeking for the sinks, in this process as the packet 
hops from one node to another the depth decreases as it gets closer to the final sink receiver. 
Finally the packet can achieve to reach to the surface. The decision that is taken in each one 
of the nodes during the transmission is based on its own depth and the depth of the 
previous sender. 
 
When a node receives a packet it extracts the information of the depth of the previous node 
and compares against its own depth. After comparing the node will have two behaviours: 
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(1) The node is closer to the surface dc < dp so it will forward the packet. (2) If the current 
node depth is greater dc > dp, it will discard the packet as it comes from a node with a better 
position. 
 
Probably specially at the beginning of the transmission in the first hops, a lot of receivers of 
the packet will decide to forward it. To avoid the collisions that these retransmissions would 
bring and the high power requirements needed in the network, the number of forwarded 
messages must be controlled. 
 
Also it can happen that as it is been using a multiple omnidirectional path algorithm to 
route the packets, that a node receive several times the same packet and in the same way 
forward it the same number of times. In order to save energy a node will know which 
packets have already sent so as not to send a packet more than one time.  
 

 
Fig. 10. DBR Packet Format 
 
The Packet Format will be divided in:  
 

 Sender ID: is the identifier of the source node. 

 Packet Sequence Number: is a unique sequence number assigned by the source node to 
the packet. Together with Sender ID, Packet Sequence Number is used to differentiate 
packets in later data forwarding. 

 Depth: is the depth information of the recent forwarder, which is updated hop-by-hop 
when the packet is forwarded. 

 
As mention before there is need to reduce power consumption forwarding only the 
necessary packets. To achieve this protocol uses the Redundant Packet Suppression, which 
consist of two features for avoiding redundant packet. One is that multiple paths are 
naturally used to forward packets. The other is that a node may send a packet many times. 
Although multiple paths in DBR cannot be completely eliminated, a priority queue is 
created to reduce the number of forwarding nodes, and thus control the number of 
forwarding paths. To solve the second problem, a packet sent buffer is used in DBR to 
ensures that a node forwards the same packet only once in a certain time interval. 

 
5.2 VBF 

Vector-Based Forwarding protocol (Xie et al, 2006) is an algorithm that allows the nodes to 
weigh the benefit to forward packets and reduce energy consumption by discarding the low 
benefit packets. One of the main factors in underwater wireless networks is to safe power so 
as not to let nodes run out of batteries, not being able to recharge them during long period 
of times. This protocol tries to focus its features in this direction. To aim this target each 
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




 

 

packet will include the information of the location of the sender the final receiver and the 
one of next hop of the packet.  
 
To be able to run this protocol it is assumed that every node have the capacity of measuring 
the distance and angle of arrival (AOA) of the signal. The route of the packet is compute in 
the sender and included in the packet. When a node receives a packet it calculates its 
relative position towards the target. This works recursively in all the nodes during the 
transmission. If the node knows that is close enough to the routing vector (it will be under 
the threshold value established for this purpose) it will include its position and forward the 
packet, in other case it drops the packet. In this way, all the packet forwarders in the sensor 
network form a “routing pipe”: the sensor nodes in this pipe are eligible for packet 
forwarding, and those which are out do not forward. 
 

 
Fig. 11. High Level view of VBR for UWSN. 

 
The figure represents the nodes that are within the routing pipe that forward the packet, 
“w” the threshold used to measure the width of the pipe. And the nodes that are out of this 
path discard the packets. This protocol is scalable to the size of the network. This kind of 
forwarding path (specified by the routing vector) involving nodes for packet routing has as 
result the energy of the network. 

 
5.3 FBR 

Focus Beam Routing, a routing protocol (Jornet & Stojanovic 2008) based on location is 
presented as a way to find the path between two nodes in a random deployed network.  The 
figure 8 shows a simple two-dimensional network to explain the protocol, although it works 
in the same way in three-dimensional scenarios. 
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Fig. 12. Nodes within the transmitter’s cone θ are candidate relays. 
 
Assuming a communication between node A and node B, node A will send and Request to 
Send (RTS) multicast message to all the reachable neighbours. This packet will include the 
information of the source (node A) and final receiver (node B). As the protocol works with 
power levels, the first try is done at the lowest level and it increases if there is a need 
because it receives no answers within a wait time established for each power level. 
 
 This request is a short control packet that contains the location of the source node (A) and of 
the final destination (B). Note that this is in fact a multicast request. The initial transaction is 
performed at the lowest power level and the power is increased only if necessary. Power 
control is performed as an integral part of routing and medium access control. 
 
Each power level will have a radius and though it will reach to a certain number of nodes. 
This will be the nodes that receive the RTS and its information that will be used to calculate 
the relative position to the AB line. This is done to know if the node is a candidate to be a 
relay node. Candidate nodes are inside a cone of ±θ/2 from the line AB. Every candidate 
node will answer to with a Clear to Send (CTS) to the transmitter; the nodes out of the 
candidate zone will stay in silence. 
 
After sending the RTS the transmitter will wait to receive CTS messages from other nodes, 
three possible things can occur: (1) The transmitter receive no answers, the RTS has not 
reach any neighbour, therefore the transmitter increases the power level an tries again as it 
is shown in the example. (2) The transmitter receives one CTS, the sender of this message is 
selected as a relay for the next hop, sending him the DATA message. (3) The transmitter 
receives more than one CTS message, looking at the location information of the candidates 
included in CTS message the node that is closer to the final destination is selected as relay 
receiving the DATA message. After sending data the transmitter will wait for an 
acknowledgement message. This process will continue until we reach the final destination. 
 
Packet collisions can happen but always will involve short packet as the link is safe for data 
packets which have no risk of collisions. Although the chances of collision are small, if the 

•

•
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source node detects a collision, it will detect signal but it will not decode the information of 
the data, it will resend the RTS once again, without increasing the power level. 

 
6. Applications 

As established in the introduction, underwater acoustic wireless sensor networks can be 
used in a wide range of different applications, as it is done by radio frequency air networks. 
Ones of the main places we can use UWSN are: 
 
• Environmental Monitoring. Pollution is nowadays one of the greatest problems, oil spills 

from ships or broken tubes can make a lot of harm to the marine biological activity, the 
industry and tourist places. Monitoring ecosystems can help understanding and 
predicting the human and climate or weather effect in underwater environment. 

• Prevention of natural disaster. By measuring the seismic activity from different remote 
location the sensors could alert to the coast places by detecting tsunami or submarine 
earthquakes alarms. 

• Underwater Navigation. The sensor can be placed to make routing, identifying hazards 
on the seafloor, rocks or shoals in shallow water,  

• Assisted Navigation. Sensors can be used to identify hazards on the seabed, locate 
dangerous rocks or shoals in shallow waters, mooring positions and drawing the 
bathymetry profile of the area. 

• Underwater Discovery. Underwater wireless sensor networks can be used to find 
oilfields or reservoirs, locate routes for placing connections for intercontinental 
submarine cables. Also they could seek for shipwrecks or archaeology or lost sink cities. 

• Underwater Autonomous Vehicles (UAVs). Distributed sensor in movement can help 
monitoring area for surveillance, recognition and intrusion detection.  

 
7. Future Trends 

A lot of advantages can be achieved by using underwater sensor networks, but a lot of 
research must be done in the next years. The developing of this technology will have a great 
impact in the industry. 
 
It is necessary to improve the physical layer performance in terms of efficiency, building low 
power acoustic modem that are able to make a make best use of the bandwidth, reducing 
the error rate with forward error correcting coders.  
 
Although there many proposal in the MAC layer, it seems that the collision avoidance 
protocols in the top for been chosen for underwater networks. In any case this decision can 
vary according to the application or topology type. These protocols should be also aware of 
power consumption, making one of their main objectives. 
 
Currently there is a lot of works related to MAC layer proposals since this is one of the more 
sensible parts of the UWSN architecture. It seems that distributed CDMA-based schemes are 
the candidates for underwater environments, but it depends of many factors such as the 

www.intechopen.com



 

 

application and network topology. Also, MAC protocols should be designed taking energy 
consumption into account as a main design parameter. 
 
According to the routing layer protocols, there is a need to be able to adapt to the changing 
conditions, to include mobility patterns and also be capable of saving energy. Most of the 
routing protocols need to know the location of all the nodes, geographically-based 
algorithms may be appropriate for underwater networks. They have to include methods to 
avoid errors, deal with shadow zones or disconnections or failures and mobility. Cross layer 
communication between the layers should be required to share the information and adjust 
the parameters depending on the environment condition variation.  
 
8. Conclusions 

Underwater Acoustic Wireless Sensor Networks is still growing and following the path of 
Radio Frequency in Terrestrial Networks, although having a very different environment 
with a lot of challenges to achieve in changing conditions. There are many potential research 
fields in which it can be applied, and needs to solve some open issues so as to be able to 
provide a reliable and efficient way to communicate in the network. 
 
The development of new modem and the incorporation of companies and research to the 
UWSN technology will come with new commercial products and solutions to take 
advantage of the possibilities that underwater bring us, building and industry around 
submarine technologies.  
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