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1. Introduction

The multiple traveling salesman problem (mTSP) is a generalization of the well-known
traveling salesman problem (TSP; see Applegate et al., 2006; Greco, 2008; Gutin and Punnen,
2007; or Lawler et al., 1985) ) in which each of c cities must be visited by exactly one of s

(1 < s < c) traveling salesmen. When there is a single depot (or “base”) for all the salesmen,
the problem is called the single depot mTSP. On the other hand, when the salesmen are initially
based at different depots, then the problem is referred to as the multi-depot mTSP (MmTSP). If
the salesmen are required to return to their respective original bases at the end of the travels,
the problem is referred to as the fixed destination MmTSP. When the salesmen are not required
to return to their original bases, the problem is referred to as the nonfixed destination MmTSP.
It is often also stipulated in the nonfixed destination MmTSP that the number of salesmen at a
given depot at the end of the travels be the same as the number of salesmen that were initially
there. Also, if there is no requirement that every salesman be activated, then fixed costs are
(typically) associated with the salesmen and included in the cost-minimization objective of
the problem, along with (or in lieu of) the usual total inter-site travel costs. More detailed
discussions of these and other variations of the problem can be found in Bektas (2006), and
Kara and Bektas (2006), among others.
Bektas (2006) discusses many contexts in which the mTSP has been applied including combat
mission planning, transportation planning, print scheduling, satellite suveying systems
design, and workforce planning contexts, respectively. More recent applications that are
described in the literature include those of routing unmanned combat aerial vehicles (Shetty
et al., 2008), scheduling quality inspections (Tang et al., 2007), scheduling trucks for the
transportation of containers (Zhang et al., 2010), and scheduling workforce (Tang et al., 2007).
Also, beyond these specific contexts, one can easily argue that most of the practical contexts
in which the TSP has been applied could be more realistically modeled as mTSP’s. Hence, the
problem has a very wide range of applicability.
Mathematical Programming models that have been developed to solve the mTSP are reviewed
in Bektas (2006). Additional formulations are proposed in Kara and Bektas (2006). Because
of the complexity of the models, solution methods have been mostly heuristic approaches.
The exact procedures are the cutting planes approach of Laporte and Norbert (1980), and
the branch-and-bound approaches of Ali and Kennington (1986), Gavish and Srikanth (1986),
and Gromicho et al. (1992), respectively (see Bektas, 2006). The heuristic approaches that have
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2 Traveling Salesman Problem, Theory and Applications

been developed are reviewed in Bektas (2006) and Ghufurian and Javadian (2010). They can be
classified into two broad groups that we label as the “transformation-based” and the “direct”
heuristics, respectively. The “transformation-based” heuristics consist of transforming the
problem into a standard TSP on expanded graphs, and then using TSP heuristics to solve
it (see Betkas, 2006). The “direct” heuristics tackle the problem in its natural form. They
include evolutionary, genetic, k-opt, neural network, simulated annealing, and tabu search
procedures, respectively (see Bektas, 2006, and Ghufurian and Javadian, 2010 for detailed
discussions).
A general limitation of the existing literature is the fragmentation of models over the different
types of mTSP’s discussed above. In general, models developed for one type of mTSP cannot
be applied in a straightforward manner to other types. Also, to the best of our knowledge,
except for the VRP model of Christofides et al. (1981), and the fixed destination MmTSP Integer
Programming (IP) model of Kara and Bektas (2006), none of the existing models can be
extended in a straightforward manner to handle differentiated travel costs for the salesmen.
Differentiated travel costs are more realistic in many practical situations however, such as in
contexts of routing/scheduling vehicles for example, where there may be differing pay rates
for drivers, vehicle types, and/or transportation modes.
In this chapter, we consider a generalization of the mTSP where there are differentiated
intersite travel costs associated with the salesmen. There are several depots from which
travels start (i.e., the problem considered is the MmTSP), the salesmen are required to return
to their respective staring bases at the end of their travels (i.e., destinations are fixed), and the
number of salesmen to be activated is a decision variable. We present a linear programming
(LP) formulation of this problem. The complexity orders of the number of variables and the
number of constraints of the proposed LP are O

(

c9·s3
)

and O
(

c8·s3
)

, respectively, where c

and s are the number of customer sites and the number of salesmen in the MmTSP instance,
respectively. Hence, the model goes beyond the scope of the mTSP per se, to a re-affirmation
of the equality of the computational complexity classes “P” and “NP.” Also, the proposed
model can be adjusted in a straightforward manner to accommodate nonfixed destinations
and/or situations where it is required that all the salesmen be activated. It is therefore a
more comprehensive model than existing ones that we know of (see Bektas (2006), and Kara
and Bektas (2006)). In formulating our proposed LP, we first develop a bipartite network
flow-based model of the problem. Then, we use a path-based modeling framework similar
to that used in Diaby (2006b, 2007b, 2010a, and 2010b). The approach is illustrated with a
numerical example.
Three reports (by a same author) with negative claims having some relation to the modeling
approach used in this paper have been publicized through the internet (Hofman, 2006, 2007,
and 2008b). These are the only such reports (and negative claims) that we know of. There is
a counter-example claim in Hofman (2006) that has to do with the relaxation of the model
in Diaby (2006b) suggested in Diaby (2006a) (see Diaby, 2006a, p. 20: “Proposition 6”).
There is another counter-example claim (Hofman (2008b)) that pertains to a simplification
of the model in Diaby (2007b) discussed in Diaby (2008). Indeed further checking revealed
flawed developments in both of the papers against which these counter-example claims were
made, specifically, “Proposition 6” for Diaby (2006a), and Theorem 25 and Corollary 26 for
Diaby (2008). However, these are not aaplicable to the respective published, peer-reviewed
papers dealing with the respective “full” models (Diaby(2006b), and Diaby (2007b)).Hence,
the counter-example claims may have had some merit, but only for the relaxations to
which they pertain. The claim in Hofman (2007) rests on the premise that an integral
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polytope with an exponential number of vertices cannot be completely described using
a polynomially-bounded number of linear constraints (see Hofman, 2007, p. 3). It is a
well-established fact however, that the Assignment Polytope for example, is integral, has n!
extreme points (where n is the number of assignments), and is completely described by 2n
linear constraints (see Burkard et al., 2007, pp. 24-26, and Schrijver, 1986, pp. 108-110, among
others). Other contradictions of the premise of Hofman (2007) include the Transportation
Polytope (see Bazaraa et al, 2010, pp. 513-535), and the general Min-Cost Network Flow
Polytope (see Ahuja et al., 1993, 294-449, or Bazaraa et al., 2010, pp. 453-493, for example).
Characterizations of integral polytopes in general and additional examples (including some
non-network flow-based ones) contradicting the premise of Hofman (2007) are discussed
in Nemhauser and Wolsey, 1988, pp. 535-607, and Schrijver, 1986, pp. 266-338, among
others. Hence, the foundations and implications of the claim in Hofman (2007) are in strong
contradiction of well-established Operations Research knowledge.
It should be noted also that our overall approach consists essentially of developing an
alternate linear programming reformulation of the Assignment Polytope (see Burkard et al.,
2007, pp. 24-34) in terms of “complex flow modeling”variables we introduce (see section 4 of
this chapter). Hence, the developments in Yannakakis (1991) in particular, are not applicable
in the context of this work, since we do not deal with the TSP polytope per se (see Lawler et
al., 1988, pp.256-261).
The plan of the chapter is as follows. Our BNF-based model of the MmTSP is developed
in section 2. A path representation of the BNF-based solutions is developed in section 3.
An Integer Programming (IP) model of the path representations in developed in section 4.
A path-based LP reformulation of the BNF-based Polytope is developed in section 5. Our
proposed overall LP model is developed model in section 6. Conclusions are discussed in
section 7.

Definition 1 (“MmTSP schedule”) We will refer to any feasible solution to the fixed destination
MmTSP as a “MmTSP schedule.”

The following notation will be used throughout the rest of the chapter.

Notation 2 (General notation) :

1. d : Number of depot sites/nodes;

2. D := {1,2, . . . ,d} (index set for the depot sites);

3. c : Number of customer sites/nodes;

4. C := {1,2, . . . ,c} (index set for the customer sites);

5. s : Number of salesmen;

6. S := {1,2, . . . ,s} (index set for the salesmen);

7. ∀p ∈ S, bp : Index of the starting base (or initial depot) for salesman p (bp ∈ D);

8. ∀p ∈ S, fp : Fixed cost associated with the activation of salesman p;

9. ∀p ∈ S, ∀(i, j) ∈ (D ∪ C)2, epij : Cost of travel from site i to site j by salesman p;

10. A MmTSP schedule wherein salesman p visits mp customers with ip,k being the kth

customer visited will be denoted as the ordered set ((p, ip,k) : p ∈ S,k = 1, . . . ,mp), where

S ⊆ S denotes the subset of activated salesmen;
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4 Traveling Salesman Problem, Theory and Applications

11. R : Set of real numbers;

12. For two column vectors x and y,

(

x
y

)

= (xT ,yT)T will be written as “(x, y)” (where

(·)Tdenotes the transpose of (·)), except for where that causes ambiguity;

13. For two column vectors a and b, and a function or expression A having (a, b) as an
argument, “A ((a, b))” will be written as “A(a, b)”, except for where that causes ambiguity;

14. xi : ith component of vector x;

15. “0” : Column vector (of comfortable size) that has every entry equal to 0;

16. “1” : Column vector (of comfortable size) that has every entry equal to 1;

17. Conv(·) : Convex hull of (·);

18. Ext(·) : Set of extreme points of (·);

19. The notation “∃
〈

i1 ∈ A1; . . . ; ip ∈ Ap
〉

:
〈

B1; . . . ; Bq
〉

” stands for “There exists at least p
objects with at least one from each Ar (r = 1, . . . , p), such that each expression Bs (s = 1, . . . , q)
holds true.” Where that does not cause ambiguity, the brackets (one or both sets) will be
omitted.

Assumption 3 We assume, without loss of generality (w.l.o.g.), that:

1. c≥ 5;

2. d≥ 1;

3. ∀j ∈ D, {p ∈ S : bp = j} �=∅;

4. ∀p ∈ S, ∀i ∈ C, epii = ∞;

5. ∀p ∈ S, ∀(i, j) ∈ D2, epij = ∞

6. The set of cutomers/customer sites has been augmented with a fictitious customer/site,
indexed as c := c+ 1, with ep,c,c = 0 for all p ∈ S, ep,i,c = ep,i,bp

for all (p, i) ∈ (S,C), and

ep,c,i = ∞ for all (p, i) ∈ (S,C);

7. Fictitious customer site c can be visited multiple times by one or more of the traveling
salesmen in any MmTSP schedule.

2. Bipartite network flow-based model of MmTSP schedules

The purpose of the bipartite network flow (BNF)-based model developed in this section is to
simplify the exposition of the development of our overall LP model discussed in sections 5
and 6 of this chapter. However, as far as we know, it is a first such model for the MmTSP,

and we believe it can also serve as the basis of good (near-optimal) heuristic procedures for
solving large-scale (practical-sized) MmTSP’s. We will first present the model. Then, we will
illustrate it with a numerical example.

Notation 4 :

1. C := C ∪ {c} = C ∪ {c+ 1}

2. ∀p ∈ S, Tp : = {1, . . . ,c} (index set for the order (or “times”) of visits for salesman p);
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3. ∀p ∈ S, ∀i ∈ C, ∀t ∈ Tp, xp,i,t denotes a non-negative variable that is greater than zero iff i

is the tth customer to be visited by salesman p.

Definition 5 (“BNF-based Polytope”) Let P1 :=
{

x ∈ Rscc : x satisfies (1)-(6)
}

, where (1)-(6) are
specified as follows:

∑
p∈S

∑
t∈Tp

xp,i,t = 1; i ∈ C (1)

∑
p∈S

∑
t∈Tp

xp,c,t = (s− 1)c; (2)

∑
i∈C

xp,i,t = 1; p ∈ S, t ∈ Tp (3)

xp,c,t−1 − xp,c,t ≤ 0; p ∈ S, t ∈ Tp : t > 1 (4)

xpit ∈ {0,1}; p ∈ S, i ∈ C, t ∈ T (5)

xp,c,t ≥ 0; p ∈ S, t ∈ Tp (6)

We refer to Conv(P1) as the “Bipartite Network Flow (BNF)-based Polytope.”

Theorem 6 There exists a one-to-one mapping of the points of P1 (i.e., the extreme points of the
BNF-based Polytope) onto the MmTSP schedules.

Proof. It is trivial to verify that a unique point of P1 can be constructed from any given MmTSP
schedule and vice versa.
The BNF-based formulation is illustrated in Example 7.

Example 7 Fixed destination MmTSP with:

– d= 2, D = {1,2};

– s= 2, S = {1,2}, b1 = 1,b2 = 2;

– c= 5, C = {1,2,3,4,5};
BNF tableau form of the BNF-based formulation (where entries in the body are “technical
coefficients,” and entries in the margins are “right-hand-side values”):

salesman “1” salesman “2”
time of visit, t = 1 2 3 4 5 1 2 3 4 5 “Demand”

customer “1” 1 1 1 1 1 1 1 1 1 1 1
customer “2” 1 1 1 1 1 1 1 1 1 1 1
customer “3” 1 1 1 1 1 1 1 1 1 1 1
customer “4” 1 1 1 1 1 1 1 1 1 1 1
customer “5” 1 1 1 1 1 1 1 1 1 1 1
customer “6” 1 1 1 1 1 1 1 1 1 1 5

“Supply” 1 1 1 1 1 1 1 1 1 1 −

- Illustrations of Theorem 6:
- Illustration 1:
Let the MmTSP schedule be: ((1,1), (1,3), (1,2), (2,5), (2,4)) .
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6 Traveling Salesman Problem, Theory and Applications

The unique point of P1 corresponding to this schedule is obtained by setting the entries of x as follows:

∀(i, t) ∈ (C,T1), x1,i,t =

{

1 if (i, t) ∈ {(1,1), (3,2), (2,3),{6,4), (6,5)}
0 otherwise

∀(i, t) ∈ (C,T2), x2,i,t =

{

1 if (i, t) ∈ {(5,1), (4,2), (6,3),{6,4), (6,5)}
0 otherwise

This solution can be shown in tableau form as follows (where only non-zero entries of x are shown):

salesman “1” salesman “2”
time of visit, t = 1 2 3 4 5 1 2 3 4 5

customer “1” 1
customer “2” 1
customer “3” 1
customer “4” 1
customer “5” 1
customer “6” 1 1 1 1 1

- Illustration 2:
Let x ∈ P1 be as follows:

∀(i, t) ∈ (C,T1), x1,i,t =

{

1 for (i, t) ∈ {(6,1), (6,2), (6,3),{6,4), (6,5)}
0 otherwise

∀(i, t) ∈ (C,T2), x2,i,t =

{

1 for (i, t) ∈ {(3,1), (5,2), (1,3),{4,4), (2,5)}
0 otherwise

The unique MmTSP schedule corresponding to this point is ((2,3), (2,5), (2,1), (2,4), (2,2)) .

3. Path representation of BNF-based solutions

In this section, we develop a path representation of the extreme points of the BNF-based
Polytope (i.e., the points of P1). The framework for this representation is the multipartite
digraph, G = (V, A), illustrated in Example 10. The nodes of this graph correspond to the
variables of the BNF-based formulation (i.e., the “cells” of the BNF-based tableau). The
arcs of the graph represent (roughly) the inter-site movements at consecutive times of travel,
respectively.

Definition 8

1. The set of nodes of Graph G that correspond to a given pair (p,k) ∈ (S,Tp) is referred to as
a stage of the graph;

2. The set of nodes of Graph G that correspond to a given customer site i ∈ C is referred to as
a level of the graph.

For the sake of simplicity of exposition, we perform a sequential re-indexing of the stages of
the graph and formalize the specifications of the nodes and arcs accordingly, as follows.

262 Traveling Salesman Problem, Theory and Applications
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Notation 9 (Graph formalization)

1. n := s · c (Number of stages of Graph G);

2. R := {1, . . . ,n} (Set of stages of Graph G);

3. R := R\{n} (Set of stages of Graph G with positive-outdegree nodes);

4. ∀ p ∈ S, rp := ((p − 1)c + 1) (Sequential re-indexing of stage (p,1));

5. ∀ p ∈ S, rp := p · c (Sequential re-indexing of stage (p,c));

6. ∀ r ∈ S, pr := max{p ∈ S : rp ≤ r} (Index of the salesman associated with stage r);

7. V := {(i,r) : i ∈ C, r ∈ R} (Set of nodes/vertices of Graph G);

8. ∀ r ∈ R; i ∈ C,

Fr(i) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

C\{i} for r < n; i ∈ C;
{c} for r < rpr

; i = c

C for rpr
= r < n; i = c

∅ for r = n
(Forward star of node (i,r) of GraphG);

9. ∀ r ∈ R; i ∈ C,

Br(i) :=

{

∅ for r = 1

{j ∈ C : i ∈ Fr−1(j)} for r > 1
(Backward star of node (i,r) of Graph G);

10. A := {(i,r, j) ∈ (C, R,C) : j ∈ Fr(i)} (Set of arcs of Graph G).

The notation for the multipartite graph representation is illustrated in Example 10 for the
MmTSP instance of Example 7.

Example 10 The multipartite graph representation of the MmTSP of Example 7 is summarized as
follows:

-n = 2 × 5 = 10; R = {1,2, . . . ,10}; R = {1, . . . ,9};
- Stage indices for the salesmen:

Salesman, p First stage, rp Last stage, rp

1 1 5

2 6 10

- Salesman index for the stages:

Stage, r Salesman index, pr

r ∈ {1,2,3,4,5} 1

r ∈ {6,7,8,9,10} 2

- Forward stars of the nodes of Graph G:
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8 Traveling Salesman Problem, Theory and Applications

Stage, r
Level, i 1 2 3 4 5 6 7 8 9 10

i = 1 C\{1} C\{1} C\{1} C\{1} C\{1} C\{1} C\{1} C\{1} C\{1} ∅

i = 2 C\{2} C\{2} C\{2} C\{2} C\{2} C\{2} C\{2} C\{2} C\{2} ∅

i = 3 C\{3} C\{3} C\{3} C\{3} C\{3} C\{3} C\{3} C\{3} C\{3} ∅

i = 4 C\{4} C\{4} C\{4} C\{4} C\{4} C\{4} C\{4} C\{4} C\{4} ∅

i = 5 C\{5} C\{5} C\{5} C\{5} C\{5} C\{5} C\{5} C\{5} C\{5} ∅

i = 6 {6} {6} {6} {6} C {6} {6} {6} {6} ∅

- Backward stars of the nodes of Graph G:

Stage, r
Level, i 1 2 3 4 5 6 7 8 9 10

i = 1 ∅ C\{1} C\{1} C\{1} C\{1} C\{1} C\{1} C\{1} C\{1} C\{1}
i = 2 ∅ C\{2} C\{2} C\{2} C\{2} C\{2} C\{2} C\{2} C\{2} C\{2}
i = 3 ∅ C\{3} C\{3} C\{3} C\{3} C\{3} C\{3} C\{3} C\{3} C\{3}
i = 4 ∅ C\{4} C\{4} C\{4} C\{4} C\{4} C\{4} C\{4} C\{4} C\{4}
i = 5 ∅ C\{5} C\{5} C\{5} C\{5} C\{5} C\{5} C\{5} C\{5} C\{5}
i = 6 ∅ C C C C C C C C C

- Graph illustration: Graph G

Definition 11 (“MmTSP-path-in-G”)

1. We refer to a path of Graph G that spans the set of stages of the graph (i.e., a walk of length
(n − 1) of the graph) as a through-path of the graph;

264 Traveling Salesman Problem, Theory and Applications
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2. We refer to a through-path of Graph G that is incident upon each level of the graph pertaining
to a customer site in C at exactly one node of the graph as a “MmTSP-path-in-G” (plural:
“MmTSP-paths-in-G”); that is, a set of arcs, ((i1,1, i2), (i2,2, i3), ..., (in−1,n − 1, in)) ∈ An−1,
is a MmTSP-path-in-G iff (∀t ∈ C, ∃ p ∈ R : ip = t, and ∀(p,q) ∈ (R, R\{p}) : (ip, iq) ∈ C2,
ip �= iq).

An illustration of a MmTSP-path-in-G is given in Figure 1 for the MmTSP instance of Example
7. The MmTSP-path-in-G that is shown on the figure corresponds to the MmTSP schedule:
((1,1), (1,3), (1,2), (2,5), (2,4)).

Fig. 1. Illustration of a MmTSP-path-in-G

Theorem 12 The following statements are true:

(i) There exists a one-to-one mapping between the MmTSP-paths-in-G and the extreme
points of the BNF-based Polytope (i.e., the points of P1);

(ii) There exists a one-to-one mapping between the MmTSP-paths-in-G and the MmTSP
schedules.

Proof. The theorem follows trivially from definitions.

Theorem 13 A given MmTSP-path-in-G cannot be represented as a convex combination of other
MmTSP-paths-in-G.
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10 Traveling Salesman Problem, Theory and Applications

Proof. The theorem follows directly from the fact that every MmTSP-path-in-G represents an
extreme flow of the standard shortest path network flow polytope associated with Graph G,

W :=

⎧

⎨

⎩

w ∈ [0,1]|A| : ∑
i∈C

∑
j∈F1(i)

wi,1,j = 1;

∑
j∈Fr(i)

wirj − ∑
j∈Br(i)

wj,r−1,i = 0, r ∈ R\{1}, i ∈ C

⎫

⎬

⎭

(where w is the vector of flow variables associated with the arcs of Graph G) (see Bazaraa et al.,
2010, pp. 619-639).

Notation 14 We denote the set of all MmTSP-paths-in-G as Ω; i.e.,

Ω :=
{

((i1,1, i2), (i2,2, i3), ..., (in−1,n − 1, in)) ∈ An−1 :
(

∀ t ∈ C, ∃ p ∈ R : ip = t
)

;
(

∀ (p,q) ∈ (R, R\{p}) : (ip, iq) ∈ C
2, ip �= iq

)}

.

4. Integer programming model of the path representations

Notation 15 (“Complex flow modeling” variables) :

1. ∀(p,r, s) ∈ R3 : r < s < p, ∀(i, j,k, t,u,v) ∈ (C, Fr(i),C, Fs(k),C, Fp(u)), z(irj)(kst)(upv) denotes
a non-negative variable that represents the amount of flow in Graph G that propagates from
arc (i,r, j) on to arc (k, s, t), via arc (u, p,v); z(irj)(kst)(upv) will be witten as z(i,r,j)(k,s,t)(u,p,v)
whenever needed for clarity.

2. ∀(r, s) ∈ R2 : r < s, ∀(i, j,k, t) ∈ (C, Fr(i),C, Fs(k)), y(irj)(kst) denotes a non-negative variable

that represents the total amount of flow in Graph G that propagates from arc (i,r, j) on to arc
(k, s, t); y(irj)(kst) will be witten as y(i,r,j)(k,s,t) whenever needed for clarity.

The constraints of our Integer Programming (IP) reformulation of P1 are as follows:

∑
i∈C

∑
j∈F1(i)

∑
t∈F2(j)

∑
v∈F3(t)

z(i,1,j)(j,2,t)(t,3,v) = 1 (7)

∑
v∈Bp(u)

z(irj)(kst)(v,p−1,u) − ∑
v∈Fp(u)

z(irj)(kst)(upv) = 0;

p,r, s ∈ R : r < s < p − 1; i ∈ C; j ∈ Fr(i); k ∈ C; t ∈ Fs(k); u ∈ C (8)

∑
v∈Bp(u)

z(irj)(v,p−1,u)(kst) − ∑
v∈Fp(u)

z(irj)(upv)(kst) = 0;

p,r, s ∈ R : r + 1 < p < s; i ∈ C; j ∈ Fr(i); k ∈ C; t ∈ Fs(k); u ∈ C (9)
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∑
v∈Bp(u)

z(v,p−1,u)(irj)(kst) − ∑
v∈Fp(u)

z(upv)(irj)(kst) = 0;

p,r, s ∈ R : 1 < p < r < s; i ∈ C; j ∈ Fr(i); k ∈ C; t ∈ Fs(k); u ∈ C (10)

y(irj)(kst) − ∑
u∈C

∑
v∈Fp(u)

z(irj)(kst)(upv) = 0;

p,r, s ∈ R : r < s < p; i ∈ C; j ∈ Fr(i); k ∈ C; t ∈ Fs(u) (11)

y(irj)(upv) − ∑
k∈C

∑
t∈Fs(k)

z(irj)(kst)(upv) = 0;

p,r, s ∈ R : r < s < p; i ∈ C; j ∈ Fr(i); u ∈ C; v ∈ Fp(u) (12)

y(kst)(upv) − ∑
i∈C

∑
j∈Fr(i)

z(irj)(kst)(upv) = 0;

p,r, s ∈ R : r < s < p; k ∈ C; t ∈ Fs(k); u ∈ C; v ∈ Fp(u) (13)

y(irj)(kst) − ∑
p∈R:
p<r

∑
v∈Fp(u)

z(upv)(irj)(kst) − ∑
p∈R:

r<p<s

∑
v∈Fp(u)

z(irj)(upv)(kst)

− ∑
p∈R:
s<p

∑
v∈Bp+1(u)

z(irj)(kst)(vpu) = 0;

r, s ∈ R : r < s; i ∈ C; j ∈ Fr(i); k ∈ C; t ∈ Fs(k); u ∈ C\{i, j,k, t} (14)

∑
k∈C\{j}

∑
t∈Fr+1(k)

y(irj)(k,r+1,t) = 0; r ∈ R\{n − 1}; i ∈ C; j ∈ Fr(i) (15)

∑
(r,s)∈R2 :

s>r

∑
j∈Fr(i)

∑
k∈Bs+1(i)

y(irj)(ksi) + ∑
(r,s)∈R2 :

s>r

∑
j∈Fr(i)

∑
k∈Fs(i)

y(irj)(isk) +

∑
(r,s)∈R2 :

s>r

∑
j∈Br+1(i)

∑
k∈Bs+1(i)

y(jri)(ksi) + ∑
(r,s)∈R2 :

s>r+1

∑
j∈Br+1(i)

∑
k∈Fs(i)

y(jri)(isk) = 0;

i ∈ C (16)
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y(irj)(kst) ∈ {0,1}; r, s ∈ R : r < s; (i, j, k, t) ∈ (C, Fr(i), C, Fs(k)) (17)

z(irj)(kst)(upv) ∈ {0,1}; p,r, s ∈ R : r < s < p;

(i, j, k, t, u, v) ∈ (C, F1(i), C, Fs(k), C, Fp(u)). (18)

One unit of flow is initiated at stage 1 of Graph G by constraint (7). Constraints (8), (9), and (10)
are extended Kirchhoff Equations (see Bazaraa et al., 2010, pp. 454) that ensure that all flows
initiated at stage 1 propagate onward, to stage n of the graph, in a connected and balanced
manner. Specifically, the total flow that traverses both of two given arcs (i,r, j) and (k, s, t)
(where s > r) and also enters a given node (u, p) is equal to the total flow that traverses
both arcs and also leaves the node. Constraints (8), (9) and (10) enforce this condition for
“downstream” nodes relative to the two arcs (i.e., when p > s), “intermediary” nodes (i.e.,
when r < p < s), and “upstream” nodes (i.e., when p < r), respectively. Constraints (11), (12),
and (13) ensure the consistent accounting of the flow propagation amount between any given
pair of arcs of Graph G across all the stages of the graph. We refer to constraints (14) as the
“visit requirements”constraints. They stipulate that the total flow on any given arc of Graph G
must propagate on to every level of the graph pertaining to a non-fictitious customer site, or
be part of a flow propagation that spans the levels of the graph pertaining to non-fictitious
customer sites. Constraints (15) ensure that the initial flow propagation from any given arc
of Graph G occurs in an “unbroken” fashion. Finally, constraints (16) stipulate (in light of the
other constraints) that no part of the flow from arc (i,r, j) of Graph G can propagate back onto
level i of the graph if i pertains to a non-fictitious customer site or onto level j if j pertains to a
non-fictitious customer site.
The correspondence between the constraints of our path-based IP model above and those
of Problem BNF are as follows. Constraints (1) and (2) of Problem BNF are “enforced” (i.e.,
the equivalent of the condition they impose is enforced) in the path-based IP model by the
combination of constraints (7), (14), and (16). Constraints (3) of Problem BNF are enforced
through the combination of constraints (7)-(10) of the path-based IP model. Finally, constraints
(4) of the BNF-based model are enforced in the path-based IP model through the structure of
Graph G itself (since travel from the fictitious customer site to a non-fictitious customer site is
not allowed for a given salesman). Hence, the “complicating” constraints of the BNF-based
model are handled only implicitly in our path-based IP reformulation above.

Remark 16 Following standard conventions, any y- or z-variable that is not used the system (7)-(18)
(i.e., that is not defined in Notation 15) is assumed to be constrained to equal zero throughout the
remainder of the chapter.

Definition 17

1. Let QI := {(y,z) ∈ Rm : (y,z) satis f ies (7)-(18)}, where m is the number of variables in the
system (7)-(18). We refer to Conv(QI) as the “IP Polytope;”

2. We refer to the linear programming relaxation of QI as the “LP Polytope,” and denote it
by QL; i.e., QL := {(y,z) ∈ Rm : (y,z) satisfies (7)-(16), and 0 ≤ (y, z) ≤ 1}, where m is the
number of variables in the system (7)-(16).
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Theorem 18 The following statements are true for QI and QL:

(i) The number of variables in the system (7)-(16) is O
(

c9 · s3
)

;

(ii) The number of constraints in the system (7)-(16) is O
(

c8 · s3
)

.

Proof. Trivial.

Theorem 19 (y,z) ∈ QI ⇐⇒ There exists exactly one n-tuple (ir ∈ C, r = 1, . . . ,n) such that:
(i)

z(arb)(csd)(ep f ) =

{

1 for p,r, s ∈ R : r < s < p; (a,b, c,d, e, f ) = (ir, ir+1, is, is+1, ip, ip+1)
0 otherwise

(ii)

y(arb)(csd) =

{

1 for r, s ∈ R : r < s; (a,b, c,d) = (ir, ir+1, is, is+1)
0 otherwise

(iii) ∀ t ∈ C, ∃p ∈ R : ip = t;

(iv) ∀ (p,q) ∈ (R, R\{p}), (ip, iq) ∈ C2 =⇒ ip �= iq.

Proof. Let (y,z) ∈ QI . Then, given (17)-(18):
(a) =⇒:

(a.1) Constraint (7) =⇒There exists exactly one 4-tuple (ir ∈ C, r = 1, . . . ,4) such that:

z(i1,1,i2)(i2, 2,i3)(i3, 3,i4) = 1 (19)

Condition (i) follows directly from the combination of (19) with constraints (8)-(10).

(a.2) Condition (ii) follows from the combination of condition (i) with constraints (11)-(13),
and constraints (15).

(a.3) Condition (iii) follows from the combination of conditions (i) and (ii) with constraints
(14).

(a.4) Condition (iv) follows from the combination of Conditions (i) and (ii) with constraints
(16).

(b)⇐=: Trivial.

Theorem 20 The following statements hold true:

(i) There exists a one-to-one mapping between the points of QI and the MmTSP-paths-in-G;

(ii) There exists a one-to-one mapping between the points of QI , and the extreme points of
the BNF-based polytope (i.e., the points of P1);

(iii) There exists a one-to-one mapping between the points of QI and the MmTSP schedules.

Proof. Conditions (i) follows directly from the combination of Theorem 19 and Definition
11.2. Conditions (ii) and (iii) follow from the combination of condition (i) with Theorem 12.

Definition 21 Let (y,z) ∈ QI . Let (ir ∈ C, r = 1, . . . ,n) be the n-tuple satisfying Theorem 19 for
(y,z). We refer to the solution to Problem BNF corresponding to (y,z) as the “MmTSP schedule
corresponding to (y,z),” and denote it by the ordered set M(y,z) :=

(

(pr, ir), r ∈ R : ir �= c
)

.
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5. Linear programming reformulation of the BNF-based Polytope

Our linear programming reformulation of the BNF-based Polytope consists of QL. We show
that every point of QL is a convex combination of points of QI , thereby establishing (in light
of Theorems 13 and 20) the one-to-one correspondence between the extreme points of QL and
the points of QI .

Theorem 22 (Valid constraints) The following constraints are valid for QL:
(i) ∀(r, s, t) ∈ R3 : r < s < t,

∑
ir∈C

∑
jr∈Fr(ir)

∑
is∈C

∑
js∈Fs(is)

∑
it∈C

∑
jt∈Ft(it)

z(ir ,r,jr)(is ,s,js)(it ,t,jt) = 1

(ii) ∀(r, s) ∈ R2 : r < s,

∑
ir∈C

∑
jr∈Fr(ir)

∑
is∈C

∑
js∈Fs(is)

y(ir ,r,jr)(is ,s,js) = 1

Proof. (i) Condition (i). First, note that by constraint (7), condition (i) of the theorem holds for
(r, s, t) = (1,2,3).
Now, assume 1 < r < s < t. Then, we have:

∑
ir∈C

∑
jr∈Fr(ir)

∑
is∈C

∑
js∈Fs(is)

∑
it∈C

∑
jt∈Ft(it)

z(ir ,r,jr)(is ,s,js)(it ,t,jt)

= ∑
ir∈C

∑
jr∈Fr(ir)

∑
is∈C

∑
js∈Fs(is)

y(ir ,r,jr)(is ,s,js) (Using (11))

= ∑
ir∈C

∑
jr∈Fr(ir)

∑
is∈C

∑
js∈Fs(is)

∑
i1∈C

∑
j1∈F1(i1)

z(i1,1,j1)(ir ,r,jr)(is ,s,js) (Using (13))

= ∑
i1∈C

∑
j1∈F1(i1)

∑
is∈C

∑
js∈Fs(is)

∑
ir∈C

∑
jr∈Fr(ir)

z(i1,1,j1)(ir ,r,jr)(is ,s,js) (Re-arranging)

= ∑
i1∈C

∑
j1∈F1(i1)

∑
is∈C

∑
js∈Fs(is)

y(i1,1,j1)(is ,s,js) (Using (12))

= ∑
i1∈C

∑
j1∈F1(i1)

∑
is∈C

∑
js∈Fs(is)

∑
i2∈C

∑
j2∈F2(i2)

z(i1,1,j1)(i2,2,j2)(is ,s,js) (Using (12))

= ∑
i1∈C

∑
j1∈F1(i1)

∑
i2∈C

∑
j2∈F2(i2)

∑
is∈C

∑
js∈Fs(is)

z(i1,1,j1)(i2,2,j2)(is ,s,js) (Re-arranging)

= ∑
i1∈C

∑
j1∈F1(i1)

∑
i2∈C

∑
j2∈F2(i2)

y(i1,1,j1)(i2,2,j2) (Using (11))

= ∑
i1∈C

∑
j1∈F1(i1)

∑
i2∈C

∑
j2∈F2(i2)

∑
i3∈C

∑
j3∈F3(i3)

z(i1,1,j1)(i2,2,j2)(i3,3,j3) (Using (11))

= 1 (Using (7)).

(ii) Condition (ii) of the theorem follows directly from the combination of condition (i) and
constraints (11)-(13).
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Lemma 23 Let (y,z) ∈ QL. The following holds true:

∀r ∈ R : r ≤ n − 3, ∀(ir, ir+1, ir+2, ir+3) ∈ (C, Fr(ir),C, Fr+2(ir+2)),

y(ir ,r,ir+1)(ir+2,r+2,ir+3) > 0 ⇐⇒

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(i) ir+2 ∈ Fr+1(ir+1);
and

(ii) z(ir ,r,ir+1)(ir+1,r+1,ir+2)(ir+2,r+2,ir+3) > 0.

(20)

Proof. For r ∈ R, constraints (12) for s = r + 1 and p = r + 2 can be written as:

y(ir ,r,ir+1)(ir+2,r+2,ir+3) − ∑
k∈C

∑
t∈Fr+1(k)

z(ir ,r,ir+1)(k,r+1,t)(ir+2,r+2,ir+3) = 0

∀(ir, ir+1, ir+2, ir+3) ∈ (C, Fr(ir),C, Fr+2(ir+2)). (21)

Constraints (11)-(13), and (15) =⇒

∀(ir, ir+1, ir+2, ir+3,k, t) ∈ (C, Fr(ir),C, Fr+2(ir+2),C,C),
z(ir ,r,ir+1)(k,r+1,t)(ir+2,r+2,ir+3) > 0 =⇒ (k = ir+1, and t = ir+2).

(22)

Using (22), (21) can be written as:

y(ir ,r,ir+1)(ir+2,r+2,ir+3) − z(ir ,r,ir+1)(ir+1,r+1,ir+2)(ir+2,r+2,ir+3) = 0

∀(ir, ir+1, ir+2, ir+3) ∈ (C, Fr(ir),C, Fr+2(ir+2)). (23)

Condition (ii) of the equivalence in the lemma follows directly from (23).
Condition (i) follows from Remark 16 and the fact that z(ir ,r,ir+1)(ir+1,r+1,ir+2)(ir+2,r+2,ir+3) is not

defined if ir+2 /∈ Fr+1(ir+1).

Notation 24 (“Support graph” of (y,z)) For (y,z) ∈ QL :

1. The sub-graph of Graph G induced by the positive components of (y,z) is denoted as:

G(y,z) :=(V(y,z), A(y,z)),

where:

V(y,z) :=

⎧

⎨

⎩

(i,1) ∈ V : ∑
j∈F1(i)

∑
t∈F2(j)

y(i,1,j)(j,2,t) > 0

⎫

⎬

⎭

∪

⎧

⎨

⎩

(i,r) ∈ V : 1 < r < n; ∑
a∈C

∑
b∈F1(a)

∑
j∈Fr(i)

y(a,1,b)(irj) > 0

⎫

⎬

⎭

∪

⎧

⎨

⎩

(i,n) ∈ V : ∑
a∈C

∑
b∈F1(a)

∑
j∈Bn(i)

y(a,1,b)(j,r−1,i) > 0

⎫

⎬

⎭

; (24)
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A(y,z) :=

⎧

⎨

⎩

(i,1, j) ∈ A : ∑
t∈F2(j)

y(i,1,j)(j,2,t) > 0

⎫

⎬

⎭

∪

⎧

⎨

⎩

(i,r, j) ∈ A : r > 1; ∑
a∈C

∑
b∈F1(a)

y(a,1,b)(irj) > 0

⎫

⎬

⎭

. (25)

2. The set of arcs of G(y,z) originating at stage r of G(y,z) is denoted Ar(y,z);

3. The index set associated with Ar(y,z) is denoted Λr(y,z) := {1,2, . . . , |Ar(y,z)|}. For
simplicity Λr(y,z) will be henceforth written as Λr;

4. The νth arc in Ar(y,z) is denoted as ar,ν(y,z). For simplicity ar,ν(y,z) will be henceforth
written as ar,ν;

5. For (r,ν) ∈ (R,Λr), the tail of ar,ν is labeled tr,ν(y,z); the head of ar,ν is labeled hr,ν(y,z).
For simplicity, tr,ν(y,z) will be henceforth written as tr,ν, and hr,ν(y,z), as hr,ν;

6. Where that causes no confusion (and where that is convenient), for (r, s) ∈ R2 : s > r, and
(ρ,σ) ∈ (Λr,Λs), “y(ir,ρ ,r,jr,σ)(is,σ ,s,js,σ)” will be henceforth written as “y(r,ρ)(s,σ).” Similarly, for

(r, s, t) ∈ R3 with r < s < t and (ρ,σ,τ) ∈ (Λr,Λs,Λt), “z(ir,ρ ,r,jr,ρ)(is,σ ,s,js,σ)(it,τ ,t,jt,τ)” will be

henceforth written as “z(r,ρ)(s,σ)(t,τ);”

7. ∀(r, s) ∈ R2 : s ≥ r + 2, ∀(ρ,σ) ∈ (Λr,Λs), the set of arcs at stage (r + 1) of G(y, z) through
which flow propagates from ar,ρ onto as,σ is denoted:

I(r,ρ)(s,σ)(y,z) := {λ ∈ Λr+1 : z(r,ρ)(r+1,λ)(s,σ) > 0};

8. ∀(r, s) ∈ R2 : s ≥ r + 2, ∀(ρ,σ) ∈ (Λr,Λs), the set of arcs at stage (s − 1) of G(y, z) through
which flow propagates from ar,ρ onto as,σ is denoted:

J(r,ρ)(s,σ)(y,z) := {µ ∈ Λs−1 : z(r,ρ)(s−1,µ)(s,σ) > 0}.

Remark 25 Let (y,z) ∈ QL. An arc of G is included in G(y,z) iff at least one of the flow variables (or
entries of (y,z)) associated with the arc (as defined in Notation 15) is positive.

Theorem 26 Let (y,z) ∈ QL. Then,

∀ (r, s) ∈ R2 : s ≥ r + 2, ∀(ρ,σ) ∈ (Λr,Λs),

( (i) y(r,ρ)(s,σ) > 0 ⇐⇒ I(r,ρ)(s,σ)(y,z) �=∅;

(ii) y(r,ρ)(s,σ) > 0 ⇐⇒ J(r,ρ)(s,σ)(y,z) �=∅;

(iii) y(r,ρ)(s,σ) = ∑
λ∈I(r,ρ)(s,σ)(y,z)

z(r,ρ)(r+1,λ)(s,σ) = ∑
µ∈J(r,ρ)(s,σ)(y,z)

z(r,ρ)(s−1,µ)(s,σ) ).

Proof. The theorem follows directly from the combination of constraints (12) and constraints
(15).
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Definition 27 (“Level-walk-in-(y,z)”) Let (y,z) ∈ QL. For (r, s) ∈ R2 : s ≥ r + 2, we refer to the
set of arcs, {ar,νr , ar+1,νr+1

, . . . , as,νs}, of a walk of G(y,z) as a “level-walk-in-(y,z) from (r,νr) to

(s,νs)” (plural: “level-walks-in-(y,z) from (r,νr) to (s,νs)”) if ∀(g, p,q) ∈ R3 : r ≤ g < p < q ≤ s,
z(g,νg)(p,νp)(q,νq) > 0.

Notation 28 Let (y,z) ∈ QL. ∀(r, s) ∈ R2 : s ≥ r + 2, ∀(ρ,σ) ∈ (Λr,Λs),

1. The set of all level-walks-in-(y,z) from (r,ρ) to (s,σ) is denoted W(r,ρ)(s,σ)(y,z);

2. The index set associated with W(r,ρ)(s,σ)(y,z) is denoted Π(r,ρ)(s,σ)(y,z) := {1, 2, . . . ,
∣

∣

∣W(r,ρ)(s,σ)(y,z)
∣

∣

∣
};

3. The kth element of W(r,ρ)(s,σ)(y,z) (k ∈ Π(r,ρ)(s,σ)(y,z)) is denoted P(r,ρ),(s,σ),k(y,z);

4. ∀k ∈ Π(r,ρ)(s,σ)(y,z), the (s − r + 2)-tuple of customer site indices included in

P(r,ρ),(s,σ),k(y,z) is denoted C(r,ρ),(s,σ),k(y,z); i.e., C(r,ρ),(s,σ),k(y,z) := (tr,ir,k
, . . . , ts+1,is+1,k

),

where the (p, ip,k)’s index the arcs in P(r,ρ),(s,σ),k(y,z), and ts+1,is+1,k
:= hs,is,k

.

Theorem 29 Let (y,z) ∈ QL. The following holds true:
∀(r, s) ∈ R2 : s ≥ r + 2, ∀(ρ,σ) ∈ (Λr,Λs),

y(r,ρ)(s,σ) > 0 ⇐⇒

⎧

⎨

⎩

(i) W(r,ρ)(s,σ)(y,z) �=∅;and

(ii) ∀p ∈ R : r < p < s, ∀νp ∈ Λp,
z(r,ρ)(p,νp)(s,σ) > 0 ⇐⇒ ∃ k ∈ Π(r,ρ)(s,σ)(y,z) : ap,νp ∈ P(r,ρ),(s,σ),k(y,z).

Proof. First, note that it follows directly from Lemma 23 that the theorem holds true for all
(r, s) ∈ R2 with s = r + 2, and all (νr,νs) ∈ (Λr,Λs).
(a) =⇒:
Assume there exists an integer ω ≥ 2 such that the theorem holds true for all (r, s) ∈ R2 with s
= r + ω, and all (νr,νs) ∈ (Λr,Λs). We will show that the theorem must then also hold for all
(r, s) ∈ R2 with s = r + ω + 1, and all (νr,νs) ∈ (Λr,Λs).
Let (p,q) ∈ R2 with q = p + ω + 1, and (α, β) ∈ (Λp,Λq) be such that:

y(p,α)(q,β) > 0. (26)

(a.1) Relation (26) and Theorem 26=⇒

I(p,α)(q,β)(y,z) �=∅. (27)

It follows from (27), Definition 24.7, and constraints (13) that:

∀λ ∈ I(p,α)(q,β)(y,z), y(p+1,λ)(q,β) > 0. (28)

By assumption (since q = (p + 1) + ω), (28) =⇒

(a.1.1) ∀λ ∈ I(p,α)(q,β)(y,z), W(p+1,λ)(q,β)(y,z) �=∅; and (29a)

(a.1.2) ∀λ ∈ I(p,α)(q,β)(y,z), ∀t ∈ R : p + 1 < t < q, ∀τ ∈ Λt,

z(p+1,λ)(t,τ)(q,β) > 0 ⇐⇒ ∃ i ∈ Π(p+1,λ)(q,β)(y,z) : at,τ ∈ P(p+1,λ)(q,β),i(y,z). (29b)
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(a.2) Relation (26) and Theorem 26 =⇒

J(p,α)(q,β)(y,z) �=∅. (30)

It follows from (30), Definition 24.8, and constraints (11) that:

∀µ ∈ J(p,α)(q,β)(y,z), y(p,α)(q−1,µ) > 0. (31)

By assumption (since (q − 1) = p + ω), (31) =⇒

(a.2.1) ∀µ ∈ J(p,α)(q,β)(y,z), W(p,α)(q−1,µ)(y,z) �=∅; and (32a)

(a.2.2) ∀µ ∈ J(p,α)(q,β)(y,z), ∀t ∈ R : p < t < q − 1, ∀τ ∈ Λt,

z(p,α)(t,τ)(q−1,µ) > 0 ⇐⇒ ∃ k ∈ Π(p,α)(q−1,µ)(y,z) : at,τ ∈ P(p,α)(q−1,µ),k(y,z). (32b)

(a.3) Constraints (11)-(14) and Theorem 26.iii =⇒

(a.3.1) ∀µ ∈ Λq−1, ∃ 〈λ ∈ I(p,α)(q,β)(y,z); i ∈ Π(p+1,λ)(q,β)(y,z)〉 :
〈

aq−1,µ ∈ P(p+1,λ)(q,β),i(y,z)
〉

; and (33a)

(a.3.2) ∀λ ∈ Λp+1, ∃ 〈µ ∈ J(p,α)(q,β)(y,z); k ∈ Π(p,α)(q−1,µ)(y,z)〉 :
〈

ap+1,λ ∈ P(p,α)(q−1,µ),k(y,z)
〉

. (33b)

(a.4) From the combination of (33a), (33b), constraints (9), and constraints (14), we must have
that:

∃ 〈λ ∈ I(p,α)(q,β)(y,z); i ∈ Π(p+1,λ)(q,β)(y,z); µ ∈ J(p,α)(q,β)(y,z); k ∈ Π(p,α)(q−1,µ)(y,z)〉 :

〈

∀t ∈ R : p < t < q, ∀τ ∈ Λt : at,τ ∈ P(p+1,λ)(q,β),i(y,z), z(p,α)(t,τ)(q,β) > 0;
(

P(p+1,λ)(q,β),i(y,z)\{aq,β}
)

=
(

P(p,α)(q−1,µ),k(y,z)\{ap,α}
)

�=∅

〉

. (34)

(In words, (34) says that there must exist level-walks-in-(y,z) from (p + 1,λ) to (q, β), and
level-walk-in-(y,z) from (p,α) to (q− 1, β) that “overlap” at intermediary stages between (p+ 1)
and (q − 1) (inclusive)).
(a.5) Let λ ∈ I(p,α)(q,β)(y,z), i ∈ Π(p+1,λ)(q,β)(y,z), µ ∈ J(p,α)(q,β)(y,z), and k ∈ Π(p,α)(q−1,µ)(y,z)
be such that they satisfy (34). Then, it follows directly from definitions that

P := {ap,α} ∪ P(p+1,λ)(q,β),i(y,z) = {aq,β} ∪ P(p,α)(q−1,µ),k(y,z) (35)

is a level-walk-in-(y,z) from (p,α) to (q, β).
Hence, we have that W(p,α)(q,β)(y,z) �=∅.
(b) ⇐=: Follows directly from definitions and constraints (12).
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Theorem 30 Let (y,z) ∈ QL. Then, ∀(α, β) ∈ (Λ1,Λn−1) : y(1,α)(n−1,β) > 0, the following are true:

(i) W(1,α)(n−1,β)(y,z) �=∅, and Π(1,α)(n−1,β)(y,z) �=∅;

(ii) ∀k ∈ Π(1,α)(n−1,β)(y,z), C(1,α)(n−1,β),k(y,z) ⊇ C;

(iii) ∀k ∈ Π(1,α)(n−1,β)(y,z), ∀(p,q) ∈ (R, R\{p}),
(

(ip, iq) ∈ C(1,α)(n−1,β),k(y,z))2, and (ip, iq) �= (c,c)
)

=⇒ ip �= iq.

Proof.
Condition (i) follows from Theorem 29.
Condition (ii) follows from constraints (14).
Condition (iii) follows from the combination of condition (i) and constraints (16).

Definition 31 (“MmTSP-path-in-(y,z)”) Let (y,z) ∈ QL. ∀(ν1,νn−1) ∈ (Λ1,Λn−1), a
level-walk-in-(y,z) from (1,ν1) to (n − 1,νn−1) is referred to as a “MmTSP-path-in-(y,z) (from
(1,ν1) to (n − 1,νn−1))” (plural: “MmTSP -paths-in-(y,z) (from (1,ν1) to (n − 1,νn−1))).”

Theorem 32 (Equivalences for MmTSP-paths-in-(y,z)) For (y,z) ∈ QL :

(i) Every MmTSP-path-in-(y,z) corresponds to exactly one MmTSP-path-in-G;

(ii) Every MmTSP-path-in-(y,z) corresponds to exactly one extreme point of the BNF-based
Polytope;

(iii) Every MmTSP-path-in-(y,z) corresponds to exactly one point of QI ;

(iv) Every MmTSP-path-in-(y,z) corresponds to exactly one MmTSP schedule.

Proof. Condition (i) follows from Definition 11.2 and Theorem 30. Conditions (ii) − (iv)
follow from the combination of condition (i) with Theorem 20.

Theorem 33 Let (y,z) ∈ QL. The following hold true:
(i) ∀r ∈ R, ∀ρ ∈ Λr,

∃
〈

α ∈ Λ1; β ∈ Λn−1; ι ∈ Π(1,α)(n−1,β)(y,z)
〉

: ar,ρ ∈ P(1,α),(n−1,β),ı(y,z).

(ii) ∀(r, s) ∈ R2 : r < s, ∀ρ ∈ Λr; σ ∈ Λs,

y(r,ρ)(s,σ) > 0 ⇐⇒ ∃
〈

α ∈ Λ1; β ∈ Λn−1; ι ∈ Π(1,α)(n−1,β)(y,z)
〉

:

(ar,ρ, as,σ) ∈ P2
(1,α),(n−1,β),ı(y,z);

(iii) ∀(r, s, t) ∈ R3 : r < s < t, ∀ρ ∈ Λr, ∀σ ∈ Λs, ∀τ ∈ Λt,

z(r,ρ)(s,σ)(t,τ) > 0 ⇐⇒ ∃
〈

α ∈ Λ1; β ∈ Λn−1; ι ∈ Π(1,α)(n−1,β)(y,z)
〉

:

(ar,ρ, as,σ, at,τ) ∈ P3
(1,α),(n−1,β),ı(y,z).

Proof. The theorem follows directly from Theorem 29.

Theorem 34 (“Convex independence” of MmTSP-paths-in-(y,z)) Let (y,z) ∈ QL. A given
MmTSP-path-in-(y,z) cannot be represented as a convex combination of other MmTSP-paths-in-(y,z).
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Proof. The theorem follows directly from the combination of Theorems 13 and 32.

Definition 35 (“Weights” of MmTSP-paths- in-(y,z)) Let (y,z) ∈ QL. For (α, β) ∈ (Λ1,Λn−1)
such that y(1,α)(n−1,β) > 0, and k ∈ Π(1,α)(n−1,β)(y,z), we refer to the quantity

ωαβk(y,z) := min
(r,s,t)∈R3 :r<s<t;

(ρ,σ,τ) ∈ (Λr ,Λs ,Λt): (ar,ρ , as,σ , at,τ) ∈ P3
(1,α),(n−1,β),k(y,z)

{

z(r,ρ)(s,σ)(t,τ)

}

(36)

as the ”weight” of (MmTSP-path-in-(y,z)) P(1,α),(n−1,β),k(y,z).

Lemma 36 Let (y,z) ∈ QL. The following holds true:
(i) ∀(r, s, t) ∈ R3 : r < s < t, ∀(νr,νs,νt) ∈ (Λr,Λs,Λt),

z(r,νr)(s,νs)(t,νt) ≥ ∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z):

(ar,νr , as,νs , at,νt
)∈P3

(1,α),(n−1,β),ı(y,z)

ωαβι(y,z);

(ii) ∀(r, s) ∈ R2 : r < s, ∀(νr,νs) ∈ (Λr,Λs),

y(r,νr)(s,νs) ≥ ∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z):

(ar,νr , as,νs )∈P
2
(1,α),(n−1,β),ı(y,z)

ωαβι(y,z).

Proof. The theorem follows directly from the combination of Theorem 33, Theorem 34 and the
flow conservations implicit in constraints (11)-(13) (see Bazaraa et al., 2006, pp. 453-474).

Theorem 37 Let (y,z) ∈ QL. The following holds true:
(i) ∀(r, s, t) ∈ R3 : r < s < t, ∀(νr,νs,νt) ∈ (Λr,Λs,Λt),

z(r,νr)(s,νs)(t,νt) = ∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z):

(ar,νr , as,νs , at,νt
)∈P3

(1,α),(n−1,β),ı(y,z)

ωαβι(y,z).

(ii) ∀(r, s) ∈ R2 : r < s, ∀(νr,νs) ∈ (Λr,Λs),

y(r,νr)(s,νs) = ∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z):

(ar,νr , as,νs )∈P
2
(1,α),(n−1,β),ı(y,z)

ωαβι(y,z).

Proof.
(i) Let (r, s, t) ∈ R3 : r < s < t.
From the combination of constraints (7)-(10) and Theorems 22 and 34, we have:

∑
ρ∈Λr

∑
σ∈Λs

∑
τ∈Λt

z(r,ρ)(s,σ)(t,τ) = ∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z)

ωαβι(y,z) = 1 (37)

Using Theorem 33, we have:
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∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z)

ωαβι(y,z) =

∑
ρ∈Λr

∑
σ∈Λs

∑
τ∈Λt

∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z):

(ar,ρ , as,σ , at,τ)∈P3
(1,α),(n−1,β),ı(y,z)

ωαβι(y,z) (38)

Combining (37) and (38), we have:

∑
ρ∈Λr

∑
σ∈Λs

∑
τ∈Λt

⎛

⎜

⎜

⎜

⎜

⎝

z(r,ρ)(s,σ)(t,τ) − ∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z):

(ar,ρ , as,σ , at,τ)∈P3
(1,α),(n−1,β),ı(y,z)

ωαβι(y,z)

⎞

⎟

⎟

⎟

⎟



= 0. (39)

Condition (i) of the theorem follows directly from the combination of (39) and Lemma 36.i.
(ii) Let (r, s) ∈ R2 : s > r.
From the combination of constraints (7)-(13) and Theorems 22 and 34, we have:

∑
ρ∈Λr

∑
σ∈Λs

y(r,ρ)(s,σ) = ∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z)

ωαβι(y,z) = 1 (40)

Using Theorem 33, we have:

∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z)

ωαβι(y,z) =

∑
ρ∈Λr

∑
σ∈Λs

∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z):

(ar,ρ , as,σ)∈P2
(1,α),(n−1,β),ı(y,z)

ωαβι(y,z) (41)

Combining (40) and (41), we have:

∑
ρ∈Λr

∑
σ∈Λs

⎛

⎜

⎜

⎜

⎜

⎝

y(r,ρ)(s,σ) − ∑
α∈Λ1

∑
β∈Λn−1

∑
ι∈Π(1,α)(n−1,β)(y,z):

(ar,ρ , as,σ)∈P2
(1,α),(n−1,β),ı(y,z)

ωαβι(y,z)

⎞

⎟

⎟

⎟

⎟



= 0. (42)

The theorem follows directly from the combination of (42) and Lemma 36.ii.

Theorem 38

(i) (y, z) ∈ QL ⇐⇒ (y,z) corresponds to a convex combination of MmTSP-paths-in-G with
coefficients equal to the weights of the corresponding MmTSP-paths-in-(y,z);

(ii) (y, z) ∈ QL ⇐⇒ (y,z) corresponds to a convex combination of extreme points
of the BNF Polytope with coefficients equal to the weights of the corresponding
MmTSP-paths-in-(y,z);
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(iii) (y, z) ∈ QL ⇐⇒ (y,z) corresponds to a convex combination of MmTSP schedules with
coefficients equal to the weights of the corresponding MmTSP-paths-in-(y,z).

Proof. The theorem follows directly from Definition 35 and the combination of Theorems 34,
and 37.

Theorem 39 The following hold true:

(i) Ext(QL) = QI ;

(ii) QL = Conv(QI);

Proof. The theorem follows directly from the combination of Theorems 32, 34, and 38.

6. Linear Programming formulation of the MmTSP

6.1 Reformulation of the travel costs

We will now discuss the costs associated with the arcs of Graph G (or, equivalently, with
the variables of the BNF-based model), and the objective function costs to apply over QL,
respectively.

Notation 40 (Reformulated travel costs)

1. ∀r ∈ R, ∀(i, j) ∈ C
2

: (i,r, j) ∈ A,

δirj :=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

fpr
+ epr,bpr ,i + epr,i,j if (r = rp; i �= c);

0 if ((r = rp; i = c) or (rp = r = n − 1; i = j = c));

epr,i,j if ((rp < r < rp) or (rp = r < n − 1; i = c));

epr,i,bpr
if ((rp = r < n − 1; i ∈ C) or (rp = r = n − 1; i �= c; j = c));

epr,i,j + epr,j,bpr
if (rp = r = n − 1; i �= c; j �= c).

(Reformulated travel costs for the arcs of Graph G);

2. ∀(p,r, s) ∈ R3 : r < s < p, ∀(u, v, i, j, k, t) ∈ (C, Fr(i), C, Fs(k), C, Fp(u)),

δ(irj)(kst)(upv) :=

⎧

⎨

⎩

δirj + δkst + δupv if (r = 1; s = 2; p = 3);

δupv if (r = 1; s = 2; p > 3);
0 otherwise.

(Reformulated travel costs for the “complex flow modeling” variables).

Example 41 Consider the MmTSP of Example 7:

Let the original costs be:

- Salesman “1”:
- f1= 80
- Inter-site travel costs: b1 1 2 3 4 5

b1 − 18 16 9 21 15
1 18 − 24 14 14 7
2 4 6 − 21 17 13
3 20 18 3 − 14 28
4 14 27 13 5 − 8
5 29 6 8 16 22 −
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- Salesman “2”:
- f2= 90
- Inter-site travel costs: b2 1 2 3 4 5

b2 − 27 8 5 28 13
1 22 − 21 24 16 11
2 3 11 − 15 14 10
3 18 3 12 − 7 28
4 19 1 17 20 − 6
5 16 24 17 9 20 −

The costs to apply to the arcs of Graph G are illustrated for i = 4, j ∈ {3,6}, and r ∈ {1,2,5,9}, as
follows:

r = 1 r = 2 r = 5 r = 9
j = 3 80 + 21 + 5 = 106 5 14 20 + 18 = 38
j = 6 80 + 21 + 14 = 115 14 14 19

6.2 Overall linear program

Theorem 42 Let:

ϑ(y,z) := δT · z + 0T · y

= ∑
(p,r,s)∈R3 :p<r<s

∑
i∈C

∑
j∈Fr(i)

∑
k∈C

∑
t∈Fs(k)

∑
u∈C

∑
v∈Fp(u)

δ(irj)(kst)(upv)z(irj)(kst)(upv)

Then, for (y,z) ∈ Ext(QL), ϑ(y,z) accurately accounts the cost of the MmTSP sschedule
corresponding to (y, z).

Proof. From Theorem 39,

(y,z) ∈ Ext(QL)⇐⇒ (y,z) ∈ QI

Now, using Theorem 19, it can be verified directly that for (y,z) ∈ QI , ϑ(y,z) accurately
accounts the total of cost of the MmTSP schedule corresponding to (y,z), M(y,z) (see
Definition 21).

Theorem 43 The following statements are true of basic feasible solutions (BFS) of

Problem LP : min{ϑ(y,z) : (y,z) ∈ QL}

and MmTSP schedules:

(i) Every BFS of Problem LP corresponds to a MmTSP schedule;

(ii) Every MmTSP schedule corresponds to a BFS of Problem LP;

(iii) The mapping of BFS’s of Problem LP onto MmTSP schedule is surjective.

Proof. Statements (i) and (ii) of the theorem follow directly from the combination of Theorem
39 and the correspondence between BFS’s of LP models and extreme points of their associated
polyhedra (see Bazaraa et al., 2010, pp. 94-104). Statement (iii) follows from the primal
degeneracy of Problem LP (see Nemhauser and Wolsey, 1988, p. 32).
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Corollary 44 Problem LP solves the MmTSP.

7. Conclusions

We have developed a first linear programming (LP) formulation of the multi-depot multiple
traveling salesman problem. The computational complexity order of the number of variables
and the number of constraints of our proposed LP are O(c9 · s3) and O(c8 · s3), respectively,
where c and s are the number of customer sites and the number of salesmen in the MmTSP
instance, respectively. Hence, our development represents a new re-affirmation of the
important “P = NP” result. With respect to solving practical-sized problems, the major
limitation of our LP model is its very-large-scale nature. However, we believe that to the
extend that the solution method for the proposed model can be streamlined along the lines of
procedures for special-structured LP (see Ahuja et al., 1993, pp 294-449; Bazaraa et al., 2010,
pp. 339-392, 453-605; Desaulniers et al., 2005; and Ho and Loute, 1981; for examples), it may
eventually become possible to solve large-sized problems to optimality or near-optimality.
The summary of one idea we are currently pursuing for such a streamlining is as follows:
(i) Use a column generation/Dantzig-Wolfe decomposition framework where constraints
(15)-(16) of our proposed model are handled implicitly, constraints (11)-(14) are “convexified”
into the Master Problem (MP), and columns of the overall problem are generated using the
“complex flow modeling” constraints (7) and (8)-(10); (ii) Manage size further by using
revised simplex (see Bazaraa et al., 2010, pp. 201-233) in solving the MP; (iii) Adapt
the threaded-indexing method for solving the Assignment Problem (see Barr et al., 1977;
Cunningham, 1976; Golver and Klingman, 1970, 1973; and Glover et al., 1972, 1973) using
the correspondence between Basic Feasible Solutions (BFS’s) of the Assignment Problem and
BFS’s of our model to streamline pivoting operations and to avoid degenerate pivots.
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[12] Desrosiers, J., and M.E. Lübbecke (2005). A primer in column generation. In G.

Desaulniers, J. Desrosiers, and M.M. Salomon, eds., Column Generation, Springer Science
and Business Media, New York, NY, pp. 1-32.

[13] Diaby, M. (2008). A O(nˆ8)× O(nˆ8) Linear Programming Model
of the Traveling Salesman Problem. Unpublished ( Available:
http://arxiv.org/PS cache/arxiv/pdf/0803/0803.4354v1.pdf).

[14] Diaby, M. (2006a). Equality of the Complexity Classes P and NP: A Linear
Programming Formulation of the Quadratic Assignment Problem. Unpublished
(Available: http://arxiv.org/abs/cs/0609004v4.pdf).

[15] Diaby, M. (2010a). Linear programming formulation of the set partitioning problem.
International Journal of Operational Research 8:4, pp. 399-427.

[16] Diaby, M. (2010b). Linear programming formulation of the vertex coloring problem.
International Journal of Mathematics in Operational Research 2:3, pp. 259-289.

[17] Diaby, M. (2006b). On the Equality of Complexity Classes P and NP: Linear Programming
Formulation of the Quadratic Assignment Problem. Proceedings of the IMECS 2006, Hong
Kong, China, pp. 774-779.

[18] Diaby, M. (2007b). The Traveling Salesman Problem: A Linear Programming
Formulation. WSEAS Transactions on Mathematics 6:6, pp. 745-754.

[19] Garey, M.R. and D.S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness (Freeman, San Francisco, 1979).

[20] Gavish, B., and K. Srikanth (1986). An optimal solution method for large-scale multiple
traveling salesman problems. Operations Research 34, pp. 698-717.

[21] Ghafurian, S., and N. Javadian (2010). An ant colony algorithm for solving fixed
destination multi-depot multiple traveling salesman problem. Applied Soft Computing
(forthcoming).

[22] Glover, F., D. Karney, and D. Klingman (1972). The augmented predecessor index method
for locating stepping-stone paths and assigning dual prices in distribution problems.
Transportation Science 6:2, pp. 171-179.

[23] Glover, F., and D. Klingman (1973). A note on the computational simplifications in
solving generalized transportation problems. Transportation Science 7:4, pp. 351-361.

[24] Glover, F., and D. Klingman (1970). Locating stepping-stone paths in distribution
problems via the predecessor index method. Transportation Science 4:2, pp. 351-361.

[25] Glover, F., D. Klingman, and J. Stutz (1973). Extentions of the augmented predecessor
index method to generalized network flow problems. Transportation Science 7:4, pp.
377-384.

[26] Greco, F., ed (2008). Traveling Salesman Problem. Intech, Vienna, Austria.
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