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1. Introduction     

The travelling salesman problem (TSP) is a problem in combinatorial optimization studied 
in operations research and theoretical computer science. Given a list of cities and their pair-
wise distances, the task is to find a shortest possible tour that visits each city exactly once 
(Aarts & Laarhoven, 1985; Beale & Jackson, 1990; Bout & Miller, 1988; Cichock & Unbehaun, 
1993; Lin, 1965; Zurada, 1992). The problem was first formulated as a mathematical problem 
in 1930 and is one of the most intensively studied problems in optimization. It is used as a 
benchmark for many optimization methods. Even though the problem is computationally 
difficult, a large number of heuristics and exact methods are known, so that some instances 
with tens of thousands of cities can be solved (Beale & Jackson, 1990; Freeman & Skapura, 
1991; Lin, 1965). 
The TSP has several applications even in its purest formulation, such as planning, logistics, 
and the manufacture of microchips. Slightly modified, it appears as a sub-problem in many 
areas, such as DNA sequencing. In these applications, the concept city represents, for 
example, customers, soldering points, or DNA fragments, and the concept distance 
represents travelling times or cost, or a similarity measure between DNA fragments (Beale 
& Jackson, 1990; Cichock & Unbehaun, 1993; Freeman & Skapura, 1991; Zurada, 1992). In 
many applications, additional constraints such as limited resources or time windows make 
the problem considerably harder. 
In the theory of computational complexity, the decision version of TSP belongs to the class 
of NP-complete problems (Aarts & Laarhoven, 1985; Abe et al., 1992; Burke, 1994; Freeman 
& Skapura, 1991; Hopfield & Tank, 1985). Thus, it is assumed that there is no efficient 
algorithm for solving TSPs. In other words, it is likely that the worst case running time for 
any algorithm for TSP increases exponentially with the number of cities, so even some 
instances with only hundreds of cities will take many CPU years to solve exactly. The 
travelling salesman problem is regarded as difficult to solve. If there is a way to break this 
problem into smaller component problems, the components will be at least as complex as 
the original one. This is what computer scientists call NP-hard problems (Aarts & 
Laarhoven, 1985; Abe et al., 1992; Freeman & Skapura, 1991). 
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Many people have studied this problem. The easiest (and most expensive solution) is to 
simply try all possibilities. The problem with this is that for n cities you have (n-1)! 
possibilities. This means that for only 11 cities there are about 3.5 million combinations to 
try (Freeman & Skapura, 1991). In recent years, many algorithms for solving the TSP have 
been proposed (Cichock & Unbehaun, 1993; Dorigo et al., 1991; Goldberg, 1989; Lin & 
Kernighan, 1971; Mascato, 1989; Szu & Hartley, 1987). However, these algorithms sustain 
several disadvantages. First, some of these algorithms are not optimal in a way that the 
solution they obtain may not be the best one. Second, their runtime is not always defined in 
advance, since for every problem there are certain cases for which the computation time is 
very long due to unsuccessful attempts for optimization. They will often consistently find 
good solutions to the problem. These good solutions are typically considered to be good 
enough simply because they are the best that can be found in a reasonable amount of time. 
Therefore, optimization often takes the role of finding the best solution possible in a 
reasonable amount of time. There have been several types of approaches taken to solving 
the TSP [10-30] of the numerical methods and the neural networks (NNs) (Beale & Jackson, 
1990; Cichock & Unbehaun, 1993; Freeman & Skapura, 1991; Goldberg, 1989; Zurada, 1992). 
Recently, NN is well suited for this type of problems. 
An NN, also known as a parallel distributed processing network, is a computing paradigm 
that is loosely modeled after cortical structures of the brain (Beale & Jackson, 1990; Cichock 
& Unbehaun, 1993; Freeman & Skapura, 1991; Zurada, 1992). It consists of interconnected 
processing elements called nodes or neurons (Beale & Jackson, 1990; Zurada, 1992). NN, due 
to its massive parallelism, has been rigorously studied as an alternative to the conventional 
numerical approach for fast solving of the combinatorial optimization or the pattern 
recognition problems. The optimization is to find the neuron that lead to the energy 
minimum by applying repeatedly the optimization algorithm.  
Hopfield model is energy-minimizing network, and is useful as a content addressable 
memory or an analog computer for solving combinatorial optimization problems (Abe et al., 
1992; Abe, 1993, 1996; Aiyer et al., 1990; Andresol et al., 1997; Gall & Zissimopoulos 1999; 
Hegde et al., 1988; Sharbaro, 1994; Wilson & Pawley, 1988). Generally, Hopfield model may 
be operated in a discrete-time mode and continuous-time mode, depending on the model 
adopted for describing the neurons. The discrete-time mode is useful as a content 
addressable memory, and the continuous-time mode is also useful as an analog computer 
for solving combinatorial optimization problems. In formulating the energy function for a 
continuous-time Hopfield model, the neurons are permitted to have self-feedback loops. On 
the other words, a discrete-time Hopfield model is no self-feedback loops (Beale & Jackson, 
1990; Cichock & Unbehaun, 1993; Freeman & Skapura, 1991). 
Gradient-type NNs are generalized Hopfield model in which the computational energy 
decreases continuously in time loops (Beale & Jackson, 1990; Cichock & Unbehaun, 1993; 
Freeman & Skapura, 1991).. The continuous-time model is called the gradient-type model 
and converges to one of the stable minima in the state space. The evaluation of model is in 
the general direction of the negative gradient of energy function. Typically, the energy 
function is made equivalent to a certain objective function that needs to be minimized. The 
search for an energy minimum performed by gradient-type model corresponds to the search 
for a solution of an optimization problem loops (Beale & Jackson, 1990; Cichock & 
Unbehaun, 1993; Freeman & Skapura, 1991).  
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The major drawbacks of the continuous-time Hopfield model when it is used to solve some 
combinatorial problems, for instance, the TSP, are the non feasibility of the obtained 
solutions and the trial-and-error setting of the model parameters loops (Beale & Jackson, 
1990; Bout & Miller, 1988; Cichock & Unbehaun, 1993; Freeman & Skapura, 1991). Most of 
the researches have been concentrated on the improvement of either the convergence speed 
or the convergence rate to the global minimum in consideration of the weight parameter of 
the energy function, etc. But there are few that try to solve both global convergence and 
speedup by simultaneously setting the initial neuron outputs (Baba, 1989; Biro et al., 1996; 
Gall & Zissimopoulos 1999;  Gee & Prager, 1995; Heung, 2005). 
This chapter proposes an efficient method for improving the convergence performances of 
the NN by applying a global optimization method. The global optimization method is a 
hybrid of a stochastic approximation (SA) (Styblinski & Tang, 1990) and a gradient descent 
method. The approximation value inclined toward a global escaping from a local minimum 
is estimated first by the stochastic approximation, and then the gradient-type update rule of 
Hopfield model is applied for high-speed convergence. The proposed method has been 
applied to the 7- and 10-city TSPs, respectively. We demonstrate the convergence 
performance to the conventional Hopfield model with randomized initial neuron outputs 
setting. 
The rest of the chapter is organized as follows. The travelling salesman problem is 
introduced in section 2. Section 3 presents the Hopfield model for solving the TSP. Section 4 
presents the method for estimating an initial value of optimization problems by using 
stochastic approximation. Section 5 describes how the proposed method can be applied for 
globally optimizing the neural network. Section 6 describes the experiments with the 
proposed global optimization method focusing on the TSP. The performance comparison of 
the experiment results with the Hopfield model is also given. Finally an outlook to future 
research activities is presented.  

2. Travelling salesman problem 

Generally, the optimization problems are typically posed in terms of finding the best way to 
do something, subject to certain constraints. When solving these problems with computers, 
often the only possible approach is to calculate every possible solution and then choose the 
best of those as the answer. Unfortunately, some problems have such large solution spaces 
that this is impossible to do. These are problems where the solution cannot be found in a 
reasonable time. These problems are referred to as NP-hard or NP-complete problems. In 
many cases, these problems are described in term of a cost function (Aarts & Laarhoven, 
1985; Beale & Jackson, 1990; Cichock & Unbehaun, 1993; Freeman & Skapura, 1991).   
One such problem is the TSP. The TSP describes a salesman who must travel between cities. 
The order in which he does so is unimportant, provided he visits each one during his trip, 
and finishes in his starting location. Each city is connected to other close by cities, or nodes. 
Each of those links between the cities has one or more weights (cost) attached. The cost 
describes how "difficult" it is to traverse this edge on the graph, and may be given, for 
example, by the cost of an airplane ticket or train ticket, or perhaps by the length of the edge, 
or time required for completing the traversal (Beale & Jackson, 1990; Bout & Miller, 1988; 
Cichock & Unbehaun, 1993; Lin, 1965; Zurada, 1992). The salesman wants to keep both the 
travel costs, as well as the distance he travels as low as possible. That is, the problem is to 
find the right sequence of cities to visit. The constraints are that all cities are visited, each is 
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visited only once, and the salesman returns to the starting city at the end of the travel. The 
cost function to be minimized is the total distance or cost travelled in the course of the 
travel. 
The TSP is computationally intensive if an exhaustive search is to be performed comparing 
all possible routes to find the best one (Freeman & Skapura, 1991). For an n-city trip, there 
are n! possible paths. Due to degeneracy, the number of distinct solutions is less than n!. The 
term distinct in this case refers to trips with different total distances. For a given trip, it does 
not matter which of the n cities is the starting location, in terms of the total distance traveled. 
This degeneracy reduces the number of distinct tours by a factor of n. Similarly, for a given 
trip, it does not also matter which of two directions the salesman travels. This fact further 
reduces the number of distinct trips by a factor of two. Thus, for n-city trip, there are n!/2n 
distinct tours to consider. 
For a 5-city trip, there would be 120!/10=12 distinct trips-hardly a problem worthy of 
solution by a computer! A 10-city trip, however, has 3,628,800/20=181,440 distinct trips; a 
30-city trip has over 4x1030 possibilities. Adding a single city to a trip results in an increase 
in the number of distinct trips by a factor of n. Thus, a 31-city trip requires that we examine 
31 times as many trips as we must for a 30-city trip. The amount of computation time 
required by a digital computer to solve this problem grows exponentially with the number 
of cities. 
There have been many approaches to solving the Traveling Salesman Problem. These 
approaches range from a simple heuristic algorithm to algorithms based on the physical 
workings of the human mind to those based on ant colonies (Andresol et al., 1997; Dorigo et 
al., 1991; Dorigo & Gambardella, 1997; Lin & Kernighan, 1971; Mascato, 1989; Szu & Hartley, 
1987). These algorithms all have the same ultimate goal: in a graph with weighted edges, 
find the shortest Hamiltonian path (the path through all nodes with the smallest sum of 
edge weights). Unfortunately, this goal is very hard to achieve.  The algorithms therefore 
settle for trying to accomplish two smaller goals: (1) to more quickly find a good solution 
and (2) to find a better good solution. A good solution is one that is close to being optimal 
and the best of these good solutions is, of course, the optimal solution itself. There have been 
several types of approaches taken to solving the TSP. They include heuristic approaches, 
memetic algorithms, ant colony algorithms, simulated annealing, genetic algorithms, neural 
networks, and various other methods for more specific variations of the TSP (Abe, 1993; 
Andresol et al., 1997; Dorigo et al., 1991; Dorigo & Gambardella, 1997; Lin & Kernighan, 
1971; Mascato, 1989; Szu & Hartley, 1987; Xavier & Suykens, 2006; Mühlenbein, 1992). 
These approaches do not always find the true optimal solution. Instead, they will often 
consistently find good solutions to the problem. These good solutions are typically 
considered to be good enough simply because they are the best that can be found in a 
reasonable amount of time. Therefore, optimization often takes the role of finding the best 
solution possible in a reasonable amount of time. 

2.1 Heuristic algorithms  

The heuristic means that a rule of thumb, simplification or educated guess that reduces or 
limits the search for solutions in domains that are difficult and poorly understood (Lin & 
Kernighan, 1971). Unlike algorithms, heuristics do not guarantee optimal, or even feasible, 
solutions and are often used with no theoretical guarantee.  In contrast, an algorithm is 
defined as “a precise rule (or set of rules) specifying how to solve some problem” (Andresol 
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et al., 1997; Lin & Kernighan, 1971). To combine these together into a heuristic algorithm, we 
would have something like “a set of rules specifying how to solve some problem by 
applying a simplification that reduces the amount of solutions checked”. In other words, the 
algorithm is the instructions for choosing the correct solution to the problem while the 
heuristic is the idea of how to shrink the list of possible solutions down to a reasonable size. 
An example of a heuristic approach to the TSP might be to remove the most weighted edge 
from each node to reduce the size of the problem (Lin & Kernighan, 1971). The programmer in 
this situation may assume that the best solution would not have the most weighted edge. 
Upon close inspection, this heuristic may not actually give the best solution, maybe not even a 
feasible solution (if all of the most weighted edges from each node are connected with the 
same node) but it may be a calculated risk that the programmer takes (Lin & Kernighan, 1971). 
The main idea of a heuristic approach to a problem is that, although there is exponential 
growth in the number of possible solutions to the problem, evaluating how good a solution 
is can be done in polynomial time. 
In dealing with the TSP, the most common uses of heuristic ideas work with a local search. 
Similarly to the above example, the heuristic does not try to encompass every possibility of 
the problem at hand; instead it attempts to apply common sense to shrink the problem to a 
manageable size. 
Perhaps the most-used local search heuristic that is applied to the TSP is the n-opt method 
developed by Lin and Kernighan (Andresol et al., 1997; Lin & Kernighan, 1971).  It simply 
takes a random path and replaces n edges in it until it finds the best of those paths. This is 
typically done where n is set to 2 or 3 (Lin & Kernighan, 1971). These methods were applied 
to several different problems. Notably, they were able to find the optimal solutions for a 42-
city problem 4 out of 10 times and the optimal solution to a 48-city problem 2 out of 10 times 
(Lin & Kernighan, 1971) (the 10 times in these were running concurrently so the optimum 
solution was found in each run of the program). 

2.2 Simulated annealing  

Simulated annealing is a method that is based on the cooling of a physical system (Kawabe 
et al., 2002; Szu & Hartley, 1987; Xavier et al., 2006). The general idea is that there is a 
temperature (T) and a cost function (H). In our case, the cost function is the sum of the 
weights of the edges in our circuit. In the beginning, there is a random solution to the 
problem. At each iteration, a change is proposed to this solution and that change is 
evaluated based on the cost function and the temperature.  If the cost function decreases 
then the change is accepted. If the cost function does not decrease then the change is 
accepted or rejected based on the temperature. The higher the temperature, the better the 
chance that the change will be accepted. As time progresses, the temperature decreases and 
eventually there is no possibility for a change to occur without the cost function decreasing. 
Using this method, researchers were able to get to within two units of the optimal cost for 
problems up to a size of 100 (Xavier et al., 2006). 

2.3 Neural networks  

A neural network is a massively parallel distributed processor that has a natural propensity 
for storing experiential knowledge and making it available for use (Beale & Jackson, 1990; 
Bout & Miller, 1988; Cichock & Unbehaun, 1993; Freeman & Skapura, 1991; Lin, 1965; 
Zurada, 1992). It resembles the brain in two respects. One is that knowledge is acquired by 
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the network through a learning process. Another is that interneuron connection strengths 
known as synaptic weights are used to store the knowledge. Basically, a neural network is 
made up of many independent units (neurons) and connections between them. The 
connections are given various weights based on a “learning process”. Based on the sum of 
the products of adjoining neurons and the weights of the connecting edges, each neuron 
finds a value. Additionally, if the value of one neuron changes then the values of all the 
adjoining neurons also change. This creates a ripple effect that can change the values of 
every neuron (although it could also change none of them). 
An NN can be applied to a TSP with n cities (Beale & Jackson, 1990; Bout & Miller, 1988; 
Cichock & Unbehaun, 1993; Freeman & Skapura, 1991; Lin, 1965; Zurada, 1992). This is done 
by creating n2 neurons. The output of each neuron (Vx,i) represents whether city x is visited 
as the i-th city in the sequence. It is a 1 if this is true or a 0 if it is not. Additionally, the 
amount dxy is applied to the calculations as the distance between cities x and y. 

2.4 Genetic algorithm  

A genetic algorithm (GA) is based on the same idea as the theory of evolution (Goldberg, 
1989; Mühlenbein, 1992). Basically, several random sets of parameters are applied to an 
algorithm and a fitness value is returned for each. Based on these fitness values, the best sets 
are mixed together and new sets are again applied to the algorithm until an optimal set of 
parameters is obtained. This effect is usually obtained by breaking the genetic algorithm into 
a few small parts. The main parts are the fitness function and the evolution function 
(Goldberg, 1989). 
The evolution function produces a string of inputs (often a string of bits that are encodings of 
the input parameters) then asks the fitness function for a fitness value for that string. When 
several strings have been assigned a fitness value, the evolution function takes the best strings, 
mixes them together, sometimes throws in a "mutation" to the strings and then sends the 
results back as new input strings. The biological analogy is to a human’s genes. In fact, an 
input string is often called a chromosome and the bits in the string are referred to as genes. 
The fitness function of a genetic algorithm takes in a string of inputs and runs them through 
the process that is being evaluated (Mühlenbein, 1992).  Based on the performance of the 
inputs, the function returns a fitness value. In the case of the TSP, the fitness function 
returned the total length or weight of the path found. A GA has two main parts, an 
evolution function and a fitness function. In the case of the TSP, the parameters produced by 
the evolution function might be the order of the nodes through which the path will go. The 
fitness function in that same case would return the total length of the path found. The GA 
would then compare fitness values for each input string and assign priority to the ones that 
returns lower path lengths. Genetic algorithms and their applications to the TSP are 
described by Goldberg (Goldberg, 1989). 

2.5 Memetic algorithms  

A memetic algorithm (MA) is really a combination of several different techniques (Mascato, 
1989). Generally, an MA can be thought of as an algorithm that combines local search 
heuristics with a crossover operator (the same type of mixing and matching that happens 
with a GA’s evolution function). Despite this, the difference between an MA and a GA is 
very distinct. As opposed to the fitness functions of GAs, MAs use a local search heuristic to 
determine how the parameter definitions will be modified each iteration. For example, an 
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MA might use simulated annealing to find a solution with some parameters and return that 
value to the crossover operator just like a GA would return a value from a fitness function. 
For this reason there are many other terms used to refer to MAs including hybrid genetic 
algorithms, parallel genetic algorithms, and genetic local search algorithms.  The research in 
MAs was most notably conducted by Mascato (Mascato, 1989). Researchers such as 
Mühlenbein have shown MAs to be near-optimal with sizes at least as large as a 200-city 
problem. 

2.6 Ant colony algorithms  

Ant-based algorithms are based on studies of ant colonies in nature (Dorigo et al., 1991; 
Dorigo & Gambardella, 1997).  The main idea in these algorithms is that the behavior of each 
individual ant produces an emergent behavior in the colony. When applied to the TSP, 
individual agents (“ants”) traverse the graph of the problem, leaving a chemical 
(pheromone) trail behind them. At each node it comes to, an ant must decide which edge to 
take to the next node.  This is done by checking each edge for pheromone concentration and 
applying a probability function to the decision of which edge to choose. The higher the 
concentration of pheromone, the more likely the ant is to choose that edge.  Also, to avoid 
stagnation in travel, the pheromone is given an evaporation rate so that in each iteration the 
pheromone loses a certain percentage on each edge. This method was researched originally 
by Dorigo, et al. (Dorigo et al., 1991). This method has been shown to do better than other 
algorithms on random 50-city problems as well as finding the optimum solutions for 
problems with up to 100 cities (Dorigo & Gambardella, 1997). 

3. Hopfield model for solving TSP information 

In the most general case, NNs consist of a (often very high) number of neurons, each of 
which has a number of inputs, which are mapped via a relatively simple function to its 
output (Beale & Jackson, 1990; Bout & Miller, 1988; Cichock & Unbehaun, 1993; Freeman & 
Skapura, 1991; Lin, 1965; Zurada, 1992). Networks differ in the way their neurons are 
interconnected (topology), in the way the output of a neuron determined out of its 
inputs(propagation function) and in their temporal behavior(synchronous, asynchronous or 
continuous). 
Ever since Hopfield and Tank (Hopfield & Tank, 1985) showed that the feedback neural 
network could be possibly used to solve combinatorial optimization problems such as the 
TSP, great efforts have been made to improve the performance. Most of the early work 
focused on ways to find valid solutions because of the disappointing results reported 
(Freeman & Skapura, 1991). While some researchers tried to find more appropriate 
parameters in the energy function (Aiyer et al., 1990; Baba, 1989; Biro et al., 1996; Burke, 
1994;  Gall & Zisssimopoulos, 1999; Gee & Prager, 1995; Hegde et al., 1988; Hopfield & Tank, 
1985; Huang, 2005; Sharbaro, 1994; Wilson & Pawley, 1988), others hoped to get better 
energy functions (Baba, 1989). To date, research work has been extended to every aspect of 
the Hopfield model (Aarts & Laarhoven, 1985; Abe et al., 1992; Aiyer et al., 1990; Baba, 1989; 
Biro et al., 1996; Burke, 1994; Hegde et al., 1988; Hopfield & Tank, 1985; Sharbaro, 1994; 
Wilson & Pawley, 1988), and it is now clear how to correctly map problems onto the 
network so that invalid solutions never emerge. As for the quality of obtained solutions, 
while there are indications that the Hopfield model is solely suitable for solving Euclidean 
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TSPs of small size (Wilson & Pawley, 1988), some researchers argue it is unreasonable to 
take the TSP as the benchmark to measure the optimization ability of the Hopfield model 
(Sharbaro, 1994). According to that, the applicability of the Hopfield model to solve other 
optimization problems should not be ignored. By now, the Hopfield model has been 
successfully applied to many fields. 
A key issue in the application of the Hopfield model is the choice of the weights1 in the 
energy function. Previous work addressing this problem is only concerned with the occasion 
for solving the TSP. The most successful and earliest work was conducted by Aiyer et al. 
(Aiyer et al., 1990). Using the eigenvalue analysis, they obtained values for the weights 
which make the network converge to very good solutions. Other works concerning on this 
problem include the technique of suppressing spurious states (Abe, 1993). 

3.1 Hopfield model 

Hopfield described a new way of modeling a system of neurons capable of performing 
computational tasks (Cichock & Unbehaun, 1993; Zurada, 1992). The Hopfield model 
emerged, initially as a means of exhibiting a content addressable memory (CAM). A general 
CAM must be capable of retrieving a complete item from the system’s memory when 
presented with only sufficient partial information. Hopfield showed that his model was not 
only capable of correctly yielding an entire memory from any portion of sufficient size, but 
also included some capacity for generalization, familiarity recognition, categorization, error 
correction, and time-sequence retention (Hopfield & Tank, 1985). 
The Hopfield model, as described in (Beale & Jackson, 1990; Zurada, 1992), comprises a fully 
interconnected system of n computational elements or neurons. Fig. 1 is a model of artificial 
neural network.  
 

 

Fig. 1. Model of artificial neural network 

In Fig. 1, Hopfield’s original notation has been altered where necessary for consistency. The 
strength of the connection, or weight, between neuron i and neuron j is determined by Tij, 
which may be positive or negative depending on whether the neurons act in an excitatory or 
inhibitory manner (Freeman & Skapura, 1991). The internal state of each neuron Ui is 
equivalent to the weighted sum of the external states of all connecting neurons. The external 
state of neuron i is given by Vi, with 0 ≤ Vi ≤ 1. An external input, Ii, to each neuron i is also 
incorporated. The relationship between the internal state of a neuron and its output level in 
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this continuous Hopfield model is determined by an activation function gi(Ui), which is 
bounded below by 0 and above by 1. 
Then the dynamics of each neuron can be given by a system of the differential eq. (1). 

 1,     ( )i i
ij j i i i ij

dU U
T V I U g V

dt τ
−= − + =∑  (1) 

Where  is a time constant, Ii is the external input(bias) of neuron i, and Vi and Ui are the 
output and input of neuron i. The relation gi  between the input Ui and the output Vi is 
characterized by a monotonically increasing function such as a sigmoid, or a piecewise 
linear function. 
Hopfield model is a dynamic network (Beale & Jackson, 1990; Zurada, 1992), which iterates 
to converge from an arbitrary input state. The Hopfield model works as minimizing an 
energy function. The Hopfield model is single layer network which are fully interconnected. 
It is a weighted network where the output of the network is fed back and there are weights 
to each of this link. The fully connected Hopfield model is shown in following Fig. 2. 
 

 

Fig. 2. Fully connected Hopfield model for 5-city TSP 

As long as the neuron has a sufficiently high gain, the first term in (1) can be neglected. In 
that case, the Hopfield model has the Lyapunov energy function of eq. (2) 

 
1

2
i ij j i ii j i

E VT V I V= − −∑ ∑ ∑  (2) 

And moreover we may note the following relations hold: 

  0i

i

du E dE
and

dt V dt

∂
= − ≤

∂
 (3)                          
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This means that the energy function monotonically decreases with the evolution of the 
network's state, and when the network reaches the final stable state, the energy function 
falls into a local minimum. The general method of applying the Hopfield model to solve 
optimization problems is to map the objectives and constraints involved in the problem into 
an energy function, and then obtain the neuron's dynamic equation by means of eq. (3). 

3.2 Hopfield model to solve the TSP  

The TSP is concerned with how to find a shortest closed path that travels each of n cities 
exactly once. In terms of the geometric structure of the distribution of the cities and the 
symmetry of distances between a pair of cities, the TSP can be classified into several 
categories (Aiyer et al., 1990; Baba, 1989; Biro et al., 1996; Burke, 1994; Gee & Prager, 1995; 
Hegde et al., 1988; Sharbaro, 1994; Wilson & Pawley, 1988). 
The Hopfield model for the TSP is built of n ∗ n neurons. The network consists of n rows, 
containing n neurons according to Fig. 3. 
 

 

Fig. 3. The division of the network 

All neurons have two subscripts. The first one defines the city number and the second one 
the position of the city in the tour. If a neuron in the stable state of the network, has the 
output signal Vx,i = 1, then it means that the city x should be visited in the stage i of the tour 
(Beale & Jackson, 1990; Zurada, 1992). 
The energy function for mapping the TSP proposed by Hopfield is described by eq. (4) 
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∑ ∑ ∑
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Where dx,yis the distance from city x to city y, and the scaling parameters A, B, C, D are 
positive constants. The first and second term represents the constraint that at most one 
neuron of the array V is on fire at each row and column, respectively. The third term 
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represents the constraint that the total number of neurons on fire is exactly n. The fourth 
term measures the tour length corresponding to a given tour, where the two terms inside the 
parenthesis stand for two neighboring visiting cities of Vx,i, implying the tour length is 
calculated twice. The energy function reaches a local minimum when the network is at a 
valid tour state. 
With this formulation, the Hopfield model has the connection strengths and external input 
given as eq. (5) and eq. (6) 

 { }, , . , , , 1 , 1 ,(1 ) (1 ) ( )xi yi x y i j x y i j i j i j x yT A B C D dδ δ δ δ δ δ− += − − + − + + +  (5) 

 ,x iI Cn=  (6) 

Where ,i jδ  is equal to 1 ( )i j≠ or 0 (otherwise). 

It is known that the Hopfield model formulation does not work well for the TSP since the 
network often converges to infeasible solutions. It has been widely recognized that the 
formulation is not ideal, even for problems other than the TSP. The nature of the energy 
function that the method utilizes causes infeasible solutions to occur most of the time. A 
number of penalty parameters which are an initial values of weights and neurons and the 
activation function, need to be fixed before each simulation of the network, yet the values of 
these parameters that will enable the network to generate valid solutions are unknown. The 
problem of optimally selecting these parameters is not trivial, and much work has been done 
to try to facilitate this process (Abe, 1993, 1996; Hegde et al., 1988; Lai & Coghill, 1994). Many 
other researchers believed that the Hopfield model’s energy function needed to be modified 
before any progress would be made, and considerable effort has also been spent in this area. 

4. Initial value estimation by stochastic approximation 

We consider the following problem of global unconstrained optimization: minimize the 

multiextremal function ƒ(x)∈Ri, x∈Rn, i.e. 

 min ( )
nx R

f x
∈

 (7) 

A multiextremal function can be represented as a superposition of uniextremal function(i.e., 
having just one minimum) and other multiextremal function that add some noise to the 
uniextremal function. The objective of smoothing can be visualized as filtering out the noise 
and performing minimization on the smoothed uniextremal function, in order to reach the 
global minimum. In general, since the minimum of the smoothed uniextremal function does 
not coincide with the global function minimum, a sequence of minimization runs is required 
to zero in the neighborhood of global minimum (Styblinski & Tang, 1990). The smoothing 
process is performed by averaging ƒ(x) over some region of the parameter space Rn using a 
proper weighting (or smoothing) function h^(x). 
Let us introduce a vector of random perturbations η∈Rn, and add η to x. The convolution 
function ƒ˜(x, β) is created as follows (Styblinski & Tang, 1990). 

 

~ ^( , ) ( , ) ( )
nR

x h f x df β η β η η= −∫  (8) 
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Hence:  

 
~
( , ) [ ( )]x E f xf ηβ η= −  (9)                          

Where ƒ˜(x, β) is the smoothed approximation to original function ƒ(x), and the kernel 
function h^(η, β) is the probability density function(pdf) used to sample η. β controls the 
dispersion of h^(η, β), i.e. the degree of ƒ(x), smoothing (Styblinski & Tang, 1990). 
Note that ƒ˜(x, β) can be regarded as an averaged version of ƒ(x), weighted by h^(η, β). Eη[ƒ(x-
η)] is the expectation with respect to the random variable η. 
Therefore an unbiased estimator ƒ˜(x, β) is the average: 

 
~

1

1
( , ) [ ( )]i

i

x E f x
N

f ηβ η
=

= −∑  (10) 

Where η is sampled with the pdf h^(η, β). 
The kernel function h^(η, β) should have the following properties (Styblinski & Tang, 1990): 

 ^ 1
( , ) ( )

n
h η β

β
=  (11) 

is piecewise differentiable with respect to η. 
• limβ→0 h^(η, β) = δ(η) (Dirac delta function) 
• h^(η, β) is a pdf. 
Under above the conditions, limβ→0 ƒ˜(x, β) = ∫Rn δ(η) ƒ(x - η) dη = ƒ(x - 0) = ƒ(x). Several pdfs 
fulfill above conditions, such as Gaussian, uniform, and Cauchy pdfs. 
Smoothing is able to eliminate the local minima of ƒ˜(x, β), if β is sufficiently large. If β → 0, 
then ƒ˜(x, β) → ƒ(x). This should actually happen at the end of optimization to provide 
convergence to the true function minimum (Styblinski & Tang, 1990). Formally, the 
optimization problem can be written as: 

 ~min ( , )
nx R

f x β
∈

 (12) 

with β → 0 as x → x*. Where x* is the global minimum of original function ƒ(x). One class of 
methods to solve the modified problem Eq. (12), to be called large sample(LS) stochastic 
methods, can be characterized as follows: for each new point x, a large number of points 
sampled with the pdf h^(η, β) (Eq. (11)) is used to estimate ƒ˜(x, β) and its gradient ∇xƒ˜(x, β). 
The number of samples used should be sufficiently large to give small errors of the relevant 
estimators. Optimization and averaging are separated in LS methods. This is very inefficient 
(Styblinski & Tang, 1990). 
Optimization and averaging can be combined into one iterative process, leading to much 
more efficient small-sample (SS) methods of stochastic programming. A large class of SS 
methods, called stochastic approximation, is applied to the function minimization or 
maximization (Styblinski & Tang, 1990). Their basic principle of operation is that only a 
small number of samples are used in each iteration to find the necessary estimators, but all 
the information is averaged over many steps. 
In function minimization, SA methods create stochastic equivalent to the gradient methods 
of nonlinear programming. The advanced algorithms are proposed to estimate the gradient 
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∇xƒ˜(x, β). As the algorithm progresses, β → 0, reducing the smoothing degree of the ƒ(x), 
and providing convergence to the true minimum. The SA algorithm implements a well-
defined approximation to the conjugate gradient. The value x based on the smoothed 
function ƒ˜(x, β) is updated, as following, 
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 (13) 

Where k(1,2,…,MAXITER) is the number of iterations, ξ is the gradient, S is a step size, d is 
the search direction, ρ is the gradient averaging coefficient of ƒ˜(x, β), and R(0<R<1) is a 
constant controlling the rate of change of ρk. Therefore, we can find the global minimum of 
original function by iteratively performing one cycle of the SA optimization as β → 0. This is 
called the stochastic approximation with smoothing (SAS) (Styblinski & Tang, 1990). 
Fig. 4 is the flow chart of SA algorithm. In this Fig. 4, each new value x is performed in the 
direction Sk dk, where dk is a convex combination of the previous direction dk-1 and a new 
gradient ξk. Especially R is responsible for the rate of change of ρk, that is, it modifies the 
search direction dk and provides a suitable amount of inertia of gradient direction. 
 

 

Fig. 4. Flowchart of stochastic approximation 
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Fig. 5 is the flow charts of SAS algorithm that repeatedly performs the SA algorithm 
according to a sequence: {β0, β1, ...} → 0. We can get the global minimum by using the SAS 
algorithm based on specific sequences {β} and {NMAX}. It turned out that the final solutions 
were not very sensitive to a specific choice of theses sequences based on rough heuristic 
criteria such as: low problem dimensionality requires a smaller number of function 
evaluations, β should be large at the beginning of optimization (to determine the 
approximate position of the global minimum), and small at the end of optimization (for 
precision) (Styblinski & Tang, 1990). 
We consider the function ƒ(x) = x4 – 16x2 + 5x as an example (Styblinski & Tang, 1990). This 
function is continuous and differentiable, and it has two distinct minima as shown in Fig. 6. 
The smoothed ƒ˜(x, β) is plotted to different values of β → 0({5, 4, 3, 2, 1, 0.001, 0.0}) and 
MAXITER=100 for uniform pdf. We can show that minimize the smoothed function ƒ˜(x, β) 
with β → 0 as x → x*.  
As shown in Fig. 6, the smoothed functional ƒ˜(x, β) is an uniextremal function having one 
minimum xI from β =5 to β=3. That is, smoothing is able to eliminate the local minima of 
ƒ˜(x, β), if β is sufficiently large. If β → 0, then ƒ˜(x, β) = ƒ(x). We can also find out that the 
minimum xI of uniextremal function inclines toward the global minimum x* of the original 
function ƒ(x) in Fig. 6. 
On the other hand, the simulated annealing is often explained in terms of the energy that 
particle has at any given temperature (Kwabe et al., 2002; Szu & Hartley, 1987; Xavier et al., 
2006). A similar explanation can be given to the smoothed approximation approach 
discussed. Perturbing x can be viewed as adding some random energy to a particle which x  
 

 

Fig. 5. Flowchart of stochastic approximation with smoothing 
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Fig. 6. Smoothed function ƒ˜(x, β) to β values 

represents. The larger the β, the larger the energy (i.e., the larger the temperature in the 
simulated annealing), and also the broader the range of x changes. Reducing β for the 
smoothed approximation corresponds to temperature reduction in the simulated annealing.  
Although the global minimum can be found by repeatedly applying SA according to a 
sequence: {β0, β1, ...} → 0, there are a few problems as follows: a specific sequences and a 
parameters should be determined heuristically in each iterations, and, due to its stochastic 
process, its convergence speed is rather slower than that of the deterministic algorithm and 
sometimes results in approximate solution.  
For this reason, SAS is the stochastic algorithm as the simulated annealing. The stochastic 
algorithms guarantee that converges to the global minimum, but their convergence speed is 
lower than that of the deterministic algorithms. In order to solve the limitation of 
convergence speed, we present a new optimization method that combines advantages of 
both the stochastic algorithm and the deterministic algorithm. That is, we propose a hybrid 
method of SA algorithm and gradient descent algorithm. SA algorithm is previously applied 
to estimate an initial value leading to the global minimum, and the gradient descent 
algorithm is also applied for high-speed convergence. In Fig. 6, if we utilize the minimum xI 
as an initial value of gradient descent algorithm, the global minimum of original function 
can be quickly and correctly looked for rather than that find by repeatedly applying the SA 
according to a sequences {β}. 
Fig. 7 is the flow chart of proposed method. If the other minima exist between xf (minimum 
of original function by using the gradient descent algorithm) and global minimum x*, x* can 
be find out by repeatedly applying the proposed method. 

5. Neural network optimization by the proposed method 

The basic idea in this paper is that, in applying the SA, if we initially choose a large  β, we 
can get an uniextremal smoothed function ƒ˜(x, β), the minimum value xI of which can 
approximately point out the hill side value of the global minimum well. Comparing 
optimization of functions with NNs, minimization of the function ƒ(x) to variable x are 
much the same as the minimization of energy function E(V) to neuron outputs V. 
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Fig. 7. Flowchart of the proposed method 

Accordingly, we apply the proposed method to optimize the neural network. The update 
rule of Hopfield model is used in optimization as a gradient descent algorithm and operated 
in batch mode. SA algorithm is previously applied to estimate an initial neuron outputs 
leading to the global minimum, and then the update rule of Hopfield model is also applied 
for high-speed convergence. The neural network will be quickly optimized and clearly 
guaranteed that converges to a global minimum in state space if we go about it like this. 
Therefore, the proposed hybrid algorithm using the SA and the update rule of Hopfield 
model can be detailed as follows: 
Step 1. Define the energy function E(V) for the given problems. 

 ( ) ( ) i j ij i j i  i  IE    1 / 2    T  V  V     I V= − ∑ ∑ − ∑V  (14) 

Where Tij denotes the weight value connecting the output of the j neuron with the input of 
the i neuron, Ii is the bias of i neuron, Vi and Vj are the outputs of i and j neurons, 
respectively. 
Step 2. Calculate the smoothed gradient ∇VE˜(V, β) over the E(V).  

[ ]~ 2 2

2

( , ) (1 2)( ) ( ) ( ) (1 2) ( )

                   (1 2) ( ) ( ) )

V ij i j ii j i

ij i i ij j ii j i i j i

E V E V E V T V V I

T V I T V I

β β η βη βη η η

η

∇ = + − − = − + −

⎡ ⎤= − + + +⎢ ⎥⎣ ⎦

∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑
 (15) 

Step 3. Set the randomized initial neuron outputs Vo.  
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Step 4. Estimate the neuron outputs by performing SA with a large β according to the  
gradient ∇VE˜(V, β).  

Step 5. Perform the conventional update rule of Hopfield model using the neuron outputs 
estimated in Step 4.  

Step 6. If the energy function E(V) value by the step 5 is less than a tolerance limit EPV, 
then stop. Otherwise go to step 4.  

6. Experimental results and discussions 

The proposed method has been applied to the 7- and 10-city TSPs. TSP is one of the 
combinatorial optimization problems. For an n-city tour, there are n!/2n distinct circuits to 
consider (Freeman & Skaoura, 1991). 
Pentium IV-2.8G CPU has been used in experiments. The initial values of neuron outputs 
are randomly chosen in [-0.5 ~ +0.5] by using the random seeds, the output function in 
response to the net input of neuron is sigmoid function, and then the gain is chosen in 0.5. 
The stopping rule is used in each experiment so as to terminate the calculation if all the 
outputs do not change any more or the energy function E(V) becomes less than the tolerance 
limit EPV=0.0001. The initial dispersion control parameter β0=3.0 and the smoothing 
function h(η) with uniform pdf are chosen, respectively. 
The experimental results for each example are shown in Table 1 and 4, where NHM, and NSA are 
the number of iterations of Hopfield model and SA algorithm, respectively. Et is the final 
energy value in termination. tHM and tPM are the CPU time in [sec] of Hopfield model and 
proposed algorithm, respectively. In Table 2 and 4, x~ and σ are mean and standard deviation. 
Fig. 8 shows the 7- and 10-city coordinates that are randomly generated, respectively. A (x, 
y) coordinates are the 2-dimensional city positions. 
Table 1 shows the experimental results of 7-city TSP to 10 random seeds. In case of Hopfield 
model, the constraints are satisfied at random seeds 5, 20, and 30, but the stopping rule is 
only satisfied in random seeds 5 and 20. The proposed method satisfies the stopping rule to 
 

 

Fig. 8. 7-city (a) and 10-city (b) coordinates 
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Table 1. Experimental results of 7-city TSP( # : non-convergence) 

all 10 trials. The Hopfield model shows the faster convergence than the proposed method in 
case of the random seed 5. This result shows that the deterministic rule of steepest descent 
may converge fast if the initial point is happen to be set near the global minimum. But there  
are few systematic methods that guarantee this initial point setting. The convergence rate by 
proposed method is 5 times and its convergence speed (time) is some higher than that of  
Hopfield model in case of successful convergence. We can also know that one cycle of SA 
takes more time than that of Hopfield model. Compared with the update rule of Hopfield 
model, SA is by reason of stochastic algorithm. But the SA algorithm is executed by a 
number of iteration in the proposed method. 
Table 2 represents the experimental results of 7-city TSP to 100 trials. Especially, Table 2 
shows the experimental results that satisfy the stopping rule. N, t, and Pr are the number of 
iterations, the CPU time, and convergence ratio. As seen, the convergence rate by the 
proposed method is about 2.3 times and its convergence speed (time) is about 1.2 times 
higher than that of Hopfield model, respectively. The experimental results show that the 
convergence performances of proposed method are superior to that of Hopfield model with 
randomized initial neuron outputs setting. The standard deviation of proposed method is 
lower than that of Hopfield model. It means that the proposed method is less affected by the 
initial outputs setting than Hopfield model. 
Table 3 shows the experimental results of 10-city TSP to 10 random seeds. In case of 
Hopfield model, the constraints are satisfied at random seeds 3, 5, and 30, but the stopping 
rule is only satisfied in random seed 3. The proposed method satisfies the stopping rule to 
all 10 trials as seen Table 1. The convergence rate by proposed algorithm is 10 times, and its 
convergence speed (time) is about 1.9 times higher than that of Hopfield model in case of 
successful convergence. We can also know that one cycle of SA algorithm takes more time 
than that of Hopfield model in this Table 3.  
Table 4 also represents the experimental results of 10-city TSP to 100 trials. Table 4 also 
shows the experimental results that satisfy the stopping rule. As seen, the convergence rate  
Table 1 shows the experimental results of 7-city TSP to 10 random seeds. In case of Hopfield 
model, the constraints are satisfied at random seeds 5, 20, and 30, but the stopping rule is 
only satisfied in random seeds 5 and 20. The proposed method satisfies the stopping rule to 
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Table 2. Experimental results of 7-city TSP to 100 trials 

 

 

Table 3. Experimental results of 10-city TSP(# : non-convergence) 

 

 

Table 4. Experimental results of 10-city TSP to 100 trials 

Table 1 shows the experimental results of 7-city TSP to 10 random seeds. In case of Hopfield 
model, the constraints are satisfied at random seeds 5, 20, and 30, but the stopping rule is 
only satisfied in random seeds 5 and 20. The proposed method satisfies the stopping rule to  
Compared Table 2(7-city) with Table 4(10-city), the Hopfield model is more difficult to set 
initial outputs for proving a good convergence as the problem size becomes larger. But the 
proposed method is less affected by the initial outputs setting and so gives relatively better 
results than the Hopfield model. Consequently, the convergence rate and speed by proposed 
method is higher than that of Hopfield model with randomized initial weights setting. 

7. Conclusions 

This paper proposes a global optimization of neural network by applying a hybrid method, 
which combines a stochastic approximation with a gradient descent. The approximation 
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point inclined toward a global escaping from a local minimum is estimated first by applying 
the stochastic approximation, and then the update rule of Hopfield model is applied for 
high-speed convergence. 
The proposed method is applied to the 7- and 10-city TSPs, respectively. The experimental 
results show that the proposed method has superior convergence performances to the 
conventional method that performs the update rule of Hopfield model with randomized 
initial neuron outputs setting. Especially, the proposed method is less affected by the initial 
outputs setting and so gives relatively better results than the Hopfield model as the prom 
size becomes larger. 
Our future research is to solve on a large scale combinatorial optimization problems by 
using neural networks of the proposed method. 
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