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1. Introduction     

Due to the complicated road network, the efficiency of product distribution remains on a 
lower level in Japan compared to that of the USA, which disadvantages the productivity of 
Japanese industries. This inefficiency also causes social problems and economical losses. 
Namely, we are facing the necessity of urgently reducing the volume of car exhaust gases to 
meet environmental requirement as well as curtailing transport expenses in Japan.  
There are many distribution systems that should be optimized, including the delivery of 

parcels, letters and products supply/distribution across multiple enterprises. In order to 

improve the efficiency of these distributions, it is necessary to optimize the delivery routes, 

or the delivery order of multiple delivery locations (addresses). One round delivery 

comprises more than several tens or hundreds of different locations. Thus, the optimization 

of a delivery route can be modelled as such a large-scale of Traveling Salesman Problem 

(TSP). However, TSP is a combinatorial problem that causes computational explosion due to 

n! order of combinations for n-city TSP. Therefore, to practically obtain the efficient delivery 

route of such a distribution system, a near optimal solving method of TSP is indispensable. 

Yet, the practical use of such a solving method on an actual site needs human confirmation 

(which is difficult to formulate) of the solution, since social and human conditions are 

involved. Namely, human users should check to understand that the solution is practical. 

Users sometimes should correct manually or select the alternative solution.  

Therefore, the TSP solving methods are required to ensure the response time necessary for 
the above human interaction. 
By the way, solutions generated by domain experts may have 2~3% of deviation from the 
mathematical optimal solution, but they never generate worse solutions which may cause 
practical problems. On the other hand, conventional approximate TSP solving methods 
(Lawer et al., 1985; Kolen & Pesch, 1994; Yamamoto & Kubo, 1997) may generate even 
mathematically optimal solutions in some cases but cannot ensure the amount of errors 
below 2~3%. Such errors possibly discourage user, which makes those conventional 
methods not practically useful, especially for the above-mentioned applications. 
Strict TSP solving methods, such as the branch and cut method (Grotschel & Holland, 1991) 
and Dynamic Programming (DP) (Bertsekas, 1987) or approximate solving methods using 
Simulated Annealing (SA) (Kirkpatrick et al., 1983; Ingber, 1993; Miki et al., 2003) and Tabu 
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Search (TS) (Glover, 1989; 1990; Hooker & Natraj, 1995; Fang et al., 2003), take much time for 
calculation. Therefore, they cannot guarantee the above-mentioned real-time conditions. The 
Lin-Kernighan (LK) method and its improved version (Lin & Kernighan, 1972) are also 
proposed as solving methods of the TSP. However, they cannot constantly guarantee expert-
level accuracy (Kubota et al., 1999). 
Thus, we developed a method which efficiently solves the TSP, using Genetic Algorithm 
(GA) (Onoyama et al., 2000). This method enables to guarantee the responsiveness by 
limiting the number of generations of GA and by improving genetic operations (initial 
generations, mutation, and crossover). However, in some distribution patterns, this solving 
method fell into a local minimum and could not achieve expert-level accuracy. Therefore, 
we needed further improvement of our solving method to guarantee expert-level accuracy 
for all cases. 
The chapter is organized as follows: In the next (second) section, the delivery route 
optimization problem and its technical problems are described. In the third section, the 
method for solving the problem is proposed. Then, in the fourth section, experiments to 
validate its effect and its results are shown. In the fifth section, the effectiveness of the 
solving method will be proved based on the experiments, and in the sixth section, we will 
compare it with other methods. And in the last seventh section, the results will be 
concluded. 

2. Problems in delivery route optimization 

In this section, firstly, two kinds of actual distribution systems are depicted. And, in 2.2, the 
optimization problems of these distribution systems are formally and technically described. 

2.1 Delivery route optimization problem 

A distribution network across multiple manufacturing enterprises is outlined in Fig. 1. Parts 
for production are delivered from parts makers (suppliers) to factories directly or through 
depots. Parts are not delivered to a factory or a depot independently by each parts maker, 
but a truck goes around several parts makers and collects parts. This improves the 
distribution efficiency, which contributes to the curtailment of distribution expenses and to 
the reduction of the volume of car exhaust gases. 
 

Fac㫋㫆㫉y 1

Fac㫋㫆㫉y ｍ

Pa㫉㫋㫊 Make㫉

Pa㫉㫋㫊 Make㫉

De㫇㫆㫋 1

De㫇㫆㫋 㫅

Pa㫉㫋㫊 Make㫉

 

Fig. 1. Large-scale distribution network 
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In order to optimize the above-mentioned large-scale distribution network, we need to 
grasp the total cost of distribution under various conditions by repeating the simulation 
process as shown in Fig. 2. First, the conditions have to be set up manually, concerning 
locations of more than ten factories (parts integration points for production), locations of 
dozens of depots (intermediate depositories of parts), and allocation of trucks to transport 
parts. To calculate distribution cost in each simulation, it is necessary to create delivery 
routes. However, there are several hundreds of parts makers, dozens of depots and more 
than ten factories. Therefore, there are about 1000 distributing routes on each of which a 
truck goes around dozens (max. 40) of parts makers starting from one of the depots or 
factories. Thus, in each simulation, a delivery route creation is repeated about 1000 times for 
a set of conditions manually set up, the total delivery cost is calculated, and a person in 
charge globally decides the network optimality as shown in Fig. 2. To globally evaluate 
these results, human judgment is indispensable and interactive response time (less than tens 
of seconds) is required. Thus, the system needs to create about 1000 or several hundreds of 
distribution routes within at least tens of seconds. Therefore, one route has to be created 
within tens of milliseconds. 
 

 

Fig. 2. Simulation process 

Meanwhile, as to the delivery route optimization problem for parcels and letters, a round 
delivery is carried out 1-3 times a day with a small vehicle such as a motorcycle or a small 
truck.. Delivery zone that is covered by one vehicle is different according to the region. 
Delivery locations are comparatively overcrowded in the urban area, whereas scattered in 
the rural area. Therefore, the number of locations (addresses) for delivery differs - over 
several tens or hundreds - depending on the region and time zone. It is necessary to make 
and optimize a new delivery route for each round delivery since delivery locations change 
every day and every time. Though human or social factors should be considered, this is a 
problem to search the shortest path or route, modelled as a famous “Chinese Postman 
Problem” or “Traveling Salesman Problem (TSP)”. The computer support by near optimal 
solving method is quite useful to reduce the burden and loss time of workers as well as car 
exhaust gases in such distribution networks or parcels /letters delivery. 

2.2 Technical problems 

The delivery route optimization problem of these distribution systems is formulated as 
follows:  
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The delivery network is represented by weighted complete graph G=(V,E,w). V is node set. 

A node vi Ȑi=1,…,Nȑrepresents a location (address) for delivery. N is the number of 

nodes. E is edge set. A edge eij represents a route from vi to vｊ. w is edge weight set. A edge 

weight dij represents a distance from node vi to node vｊ, dij = dji. The problem to find the 

minimal-length Hamilton path in such a graph G=(V,E,w) is called Traveling Salesman 

Problem (TSP).  
Thus, to improve the delivery efficiency of such distribution systems, it is required to obtain 

an approximate solution of a TSP within an interactive length of time (max. tens of 

milliseconds). Yet, expert-level accuracy (less than 3% of the deviation from the optimal 

solution) is always necessary, since domain experts may have such errors in their solutions 

but never generate worse solutions which may cause practical problems. 

We developed an efficient method for solving the TSP by elaborating a random restart 
method. The developed method enables to guarantee the responsiveness by limiting the 
number of repetitions and by devising component methods and heuristics (Kubota et al., 
1999). However, to meet the required guarantee of expert-level accuracy (below 3% of 
errors), it took more than 100 milliseconds to solve one TSP, which caused the time to solve 
one TSP should be significantly decreased. 
Therefore, in order to improve the real time behavior, we proposed a GA that uses heuristics 

for the crossover and the mutation, and yet whose generation number is limited (Onoyama 

et al., 2000).  

However, for some kinds of delivery location patterns, obtained solutions had more than 3% 

of errors. To overcome these weaknesses of the solving method, other heuristics were 

applied. Nevertheless, these heuristics were not effective again for some patterns, and the 

above-mentioned accuracy was still not guaranteed for all kinds of patterns (as is described 

in detail in section 5.1). 

In the next section, an intelligent approximate method to solve above-mentioned problems 
is proposed. 

3. A multi-world intelligent genetic algorithm 

As stated in the foregoing sections, the delivery routing problem in the above distribution 

systems can be formalized as a TSP. Especially a symmetrical (non-directed) Euclidean TSP 

(Lawer et al., 1985; Yamamoto & Kubo, 1997) is assumed in this chapter. 

3.1 Concept of the proposed method 

In order to solve problems mentioned above (in section 2), the following multi-world 

intelligent GA (MIGA) method is proposed. This guarantees both real-time responsiveness 

and accuracy for various kinds of delivery location patterns. At the initial phase of GA, 

groups of individuals (population) that become the candidates of the solution are generated. 

And, based on the population, new individuals (solution candidates) are generated by the 

crossover and the mutation operator, and individuals are improved by the evaluation and 

the selection. With our GA, each individual (chromosome) represents the tour, namely the 

delivery route in TSP. Each gene of the chromosome represents the node number 

(identification number of the address for delivery). A chromosome is a sequence of nodes 

whose alignment represents a round order as shown in Fig. 3.  
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Fig. 3. Chromosome 

3.1.1 Multi-world intelligent GA 

It is difficult to find an effective search method that always guarantees expert-level 
optimality as well as the required real-time behavior for various distribution location 
patterns. Heuristics, that are effective to particular patterns, are not necessarily useful to 
other patterns. Yet, the application of excessively complicate algorithms or heuristics makes 
the responsiveness worse. Therefore, a high-speed GA that mainly uses simple general 
heuristics is combined with an intelligent GA, into which knowledge for handling particular 
problems is incorporated. In this way, we could avoid local minima for various delivery 
location patterns. 
Concretely speaking, a 2opt-type mutation is used for the high-speed GA. This 2opt-type 
mutation quickly improves tours. Therefore, good solutions are usually expected to be 
obtained within a short length of time. However, it also takes risks of falling into a local 
minimum. Our experiments revealed that this high-speed GA (called 2opt-type GA) 
computes some inefficient tours for certain delivery location patterns. 
Thus, a multi-world intelligent GA method is proposed. In this method, there are two kinds 
of GA worlds; (1) an intelligent GA world (called block-type GA) holding the knowledge to 
meet the particularities of problems as well as (2) the high-speed GA world (called 2opt-type 
GA). Both kinds of worlds are independently executed. Such execution is repeated. The 
same kind of worlds can be repeated. And they are collaborated through integrating the 
results. 
In the intelligent GA world, the following rather problem-oriented knowledge about the 
neighborhood conditions or their relaxation is incorporated into operations of the block-type 
GA so that these operations can be controlled through utilizing the knowledge. 
a. Multi-step NI method 

This is particular heuristics that constructs the initial tour by using step-by-step the                       
NI (Nearest Insertion) method to globally consider adjacent delivery locations, where 
the adjacency is defined by problem-oriented knowledge as mentioned later.  

b. Block-type mutation 
This mutation selects a node randomly out of a tour, and mutates it together with   its 
neighbor nodes in order to avoid local minimum solutions. 

3.1.2 Limiting the generation number of GA 

In this method, the computation time necessary for processing the GA is calculated as 
follows. 
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Let 

• n be the the population size,  

• l be the length per individual,  

• T(X) be the computation time of X, 

• Prob(X) the probability of X, and 

• Ave(X) the average of X. 
So the computation time can be estimated as 
computation time =  
T(initialize) + number of generations * T(one generation of GA) + margin constant C 
with 

• T(initialize) = n * Cini * fini(l) 

• T(one generation of GA) =  
        T(crossover stage) + T(mutation stage) + T(evaluation) + T(selection) 

• T(crossover stage) = n * Prob(crossover) * Ave(T(crossover)) 

• Ave(T(crossover)) = Ccros * fcros(l) 

• T(mutation stage) = n * Prob(mutation) * Ave(T(mutation)) 

• Ave(T(mutation)) = Cmut * fmut(l) 

• T(evaluation) = Cfit * ffit(l, n), T(selection) = Csel * fsel(n) 
As the parameters of GA, n, l, Prob(crossover) and Prob(mutation) are given. fini(l), fcros(l), fmut(l), 

ffit(l, n) and fsel(n) are respectively computational complexity of each operation (initialization, 

crossover, mutation, fitness evaluation, and selection) that basically does not depend on 

hardware details such as the CPU architecture. These are derived through analyzing the 

algorithm. For example, since “quick sort” is used in the selection operator, fsel(n) is 

calculated as follows: 

 * *
1 0( ) (log )self n n n C n C= + +  (1) 

 

Here, C1 and C0 are the coefficients for the minor dimension to calculate the complexity of 

the quick sort algorithm. Cini, Ccros, Cmut, Cfit, Csel, are coefficients to obtain computation time 

from the complexity of each operation mentioned above. These coefficients are hardware 

dependant but can be identified using the result of experiments. More precisely, these can 

be calculated using the number of steps of each program, and identified/adjusted using the 

result of experiments to take detailed factors such as the CPU architecture into account. The 

computation time for one generation of GA changes stochastically.  

However, the estimation error can be suppressed within allowable ranges, through 
1. dividing the computation time into that of fundamental components and  
2. calculating the computation time using each component’s computational complexity 

and the experimental results to determine the coefficient. 
Furthermore, to absorb this estimation error, and to guarantee the interactive real-time 

responsiveness, a margin constant C can be set by the user as a safety margin. 

Using this computation time, the number of generations repeatable within the required 

response time can be calculated. 

3.2 Components of the proposed method 

In this method, a gene represents a (traveling) node, and an individual represents a tour. 

www.intechopen.com



 A Multi-World Intelligent Genetic Algorithmto Optimize Delivery Problem With Interactive-Time 

 

143 

3.2.1 Method for generating initial individuals 

In order to obtain a highly optimized solution by avoiding the convergence into a local 

minimum, the randomness of the initial individuals is important. However, the speed of 

convergence slows down, if totally random initial solutions are generated as is done by a 

random method. Thus, the other methods are devised as shown below. 

a. Random method 
Construct a tour by putting nodes in a random order. 

b. Random NI method 

Put nodes in a random order and insert them into a tour by using the NI method    

according to the randomized order. 

c. Multi-step NI method 

In case experts generate a tour (a traveling route), they usually determine the order of 

delivery locations, globally considering the whole route, so that the nearest location from 

the present one can always be the next location to deliver. On the model of such global 

consideration of experts, a multi-step NI method is proposed which enables to generate a 

tour similar to the tour generated by experts. 

In detail, this method constructs a tour through the following steps: 
1. Que(nodes) is a queue of nodes with their check count of each node initialized as zero. 

tourgen is the tour generated. w is a real type variable that meets the requirement 1<= w. 
Its initial value is decided by problem-oriented knowledge. For example, w is decided 
based on the position of the entire node as follows:  

  ( * ) /ave avew Dist d Distσ= +  (2) 

        Distave is an average of the distance between each node and a depot. σ is a standard   
deviation of the distance among nodes. The initial value of d is 1.0.  

2. Enqueue all nodes to Que(nodes) at random order. 
3. Dequeue a node (nodeadd) from Que(nodes). 
4. Temporally add a nodeadd to tourgen by the NI method.  
5. Evaluate Lpre and Lafter. Lpre is the length of tourgen before its addition. Lafter is the length of 

tourgen after its addition. … (*) 
6. If Lafter < (Lpre * w), then nodeadd is inserted (actually added) into tourgen and w is returned 

to an initial value. Else enqueue nodeadd to Que(nodes), with check count of nodeadd 
incremented.  

7. f the check count of the top node of Que(nodes) is not zero, then w is increased, and the 
check count of every node in Que(nodes) is initialized zero. Here, the quantity of this 
increase is also decided by problem-oriented knowledge, for example, dnew = dold + 0.5 
of the equation (2).  

8. If Que(nodes) is empty, then it ends. Else it returns to step (3) and repeat. 
* Distances between two points are calculated for all their combinations by the Dijkstra 

method beforehand. 

3.2.2 Method for crossover (NI-combined crossover) 

To inherit good features of parents by crossover and to realize the quick convergence in GA, 

a crossover operation using the NI method is proposed. This crossover operation called NI-

combined crossover comprises the following steps (Fig. 4): 
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1. tourpar1 = {x1, x2, …, xn} and tourpar2 = {y1, y2, …, yn} are parent tours and tourchi is a child 
tour. 

2. Determine a crossover point xi from tourpar1.  
3. Copy a sub-tour {x1, x2, … , xi}, representing a group of nodes located before the 

crossover point in tourpar1, to tourchi. 
4. Change the order of remaining nodes {xi+1, … , xn}, according to the order of nodes in 

tourpar2. 
5. Insert the remaining nodes into tourchi, using the NI method in the order that is 

changed in (4). When all nodes of tourpar1 are inserted to tourchi, the crossover processing 
ends. 

In this way, the generated tour is represented as a new child. Through applying this NI-
combined crossover, the order of nodes contained in parents is inherited to their children to 
increase the convergence speed. 
 

(1)Start: 13245768

Parent-1 Parent-2

16384752

Child

(2)Step1: 163847521324 5768

(3)Step2: 163847521324 5768 1324

(4)Step3: 163847526875 1324

(5)Step4: 163847526875  13624

End: 13682547

Determine the crossover point

Change the order of remaining nodes according to Parent-2's order.

Insert remaining nodes by NI method.

Copy

Insert

 

Fig. 4. NI-combined crossover 

3.2.3 Method for mutation 

Mutation of GAs often did not have much impact on the convergence of solutions without 
combining local search methods or without embedding problem-oriented knowledge. Thus, 
the following two mutation methods are proposed. 
a.     2opt-type mutation 
This method enables to improve the convergence speed by combining a 2opt-like simple 
local search heuristic method with GA’s mutation operation. This consists of the following 
steps : 
1. tourpar = {x1, x2, …, xn} is a parent tour and tourchi is a child tour. 
2. Copy the contents of tourpar to tourchi.  
3. Select a node xi randomly from tourchi.  
4. Select another node xj randomly from tourchi except {xi, xi+1}.  
5. Generate tourgen {x1,…, xi,xj, … , xi+1,xj+1,…, xn} by reversing sub-tour {xi+1, … , xj} of 

tourchi {x1,…, xi,xi+1, … , xj,xj+1,…, xn} 
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6. If Lchi < Lgen (tour length is not improved), then it ends. Else copy the contents of tourgen 
to tourchi. Until such link exchanges are all checked, return to step (4) and repeat. Lgen is 
the length of tourgen. Lchi is the length of tourchi. 

b.     Block-type mutation 
2opt-type mutation easily improves tours, and good solutions are expected to be obtained 
within a short length of time. However, it also takes risks of failing into a local minimum. To 
obtain a solution closer to the optimum, it is desirable to escape from a local minimum by 
destroying a block of a tour at a time. For this purpose, the following block-type mutation is 
proposed. This consists of the following steps: 
1. tourpar = {x1, x2, …, xn} is a parent tour. tourchi is a child tour. 
2. Select a node xi randomly from tourpar.  
3. Move the nodes, except {xi-r, … , xi+r} namely except xi and its neighbor nodes of tourpar, 

to tourchi. The size of neighborhood r is specified as problem-oriented knowledge, for 
instance, a random number from 0 to B * (the distance to the node farthest from a depot). B 
is a constant number specified as problem-oriented knowledge.  

4. Insert {xi-r, … , xi+r} into tourchi using the NI method. When all nodes have been inserted 
to tourchi, the mutation processing ends. 

3.2.4 Method for selection 
In order to get highly optimized solutions and realize quick convergence in GAs, 
individuals are selected out of the population including both parents' and children's. And, 
10% of individuals in a new generation are selected randomly from the above populations to 
give the chance of reproduction to even inferior individuals. Furthermore, to enhance the 
evolution efficiency, only one individual is selected when the same individuals are 
generated.  

3.3 Proposed solving method 
Through integrating above components, the following three kinds of GA methods are 
proposed to ensure both real-time responsiveness and accuracy for various kinds of delivery 
location patterns. 

3.3.1 2opt-type GA (high-speed GA) 
This method is shown in Fig. 5. This method makes it possible to guarantee quick 
convergence of solutions through improving initial solutions due to the random NI method 
and through applying the NI-combined crossover and the 2opt-type mutation. 
The computational complexity of the NI-combined crossover is O(n2) . On the other hand, 
the computational complexity of the 2opt-type mutation is much smaller. Indeed, the 
computational complexity of the 2opt-type mutation is O(n2) in worst cases, but it hardly 
occurs for highly optimized individuals generated in the initial population phase by the 
random NI method and improved in later phases by the NI-combined crossover.  
In more detail, the probability of improvement by link exchanges of the 2opt method is 
small, since the NI method inserts each node so that the difference, between 
1. the sum of the length of both links with both sides’ neighbors and  
2. the length of the link among both neighbors before its insertion,  

can be minimized. Thus, the computation time of the 2opt-type mutation is expected to be 
much smaller than that of operations using the NI method such as the NI-combined 
crossover. 

www.intechopen.com



 Traveling Salesman Problem, Theory and Applications 

 

146 

Generate initial individuals
by random NI method

NI-combined crossover

2opt-type mutation

Evaluate Fitness Values of individuals

Start

End

Select individuals

Yes

Terminated Generation ?

No

 

Fig. 5. 2opt-type GA 

3.3.2 Block-type GA (intelligent GA) 
This method is shown in Fig. 6. This method is expected to obtain highly optimized 
solutions through avoiding local minima. This can be attained through (1) constructing 
highly optimized initial solutions by means of the multi-step NI method, and (2) 
reconstructing a large part of a locally optimized tour by means of block-type mutation to 
avoid falling into a local minimum. 
 

Generate initial individuals
by multi-step NI method (50%)

and random method (50%)

NI-combined crossover

block-type mutation

Evaluate Fitness Values of individuals

Start

End

Select individuals

No
Yes

Terminated Generation ?

 

Fig. 6. Block-type GA 
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3.3.3 Multi-world intelligent GA 

The finally proposed method is called “Multi-world intelligent GA (MIGA)”. This comprises 
the 2opt-type GA method (world) and the block type GA method (world) that follows the 
former. MIGA selects the better one out of the solutions obtained in these two GA worlds. 
This raises the probability to have highly accurate solutions for various types of delivery 
location patterns within an interactive real-time context, because of the following reasons: 
1. As is explained in 3.3.1, though the computation time of the NI-combined crossover is 

O(n2), the computation time of the 2opt-type mutation in the 2opt-type GA method 
(world) is much smaller than the former. Furthermore, the NI method checks just links 
among neighbors but all links among neighbors in the tour to be inserted. Meanwhile, 
though not all links, the 2opt operation in the 2opt-type mutation checks links between 
nodes that are not neighbors. Thus the 2opt-type mutation in the 2opt-type GA world 
but not being in the block type GA world can have the possibility to search other 
optimal solutions than the NI method, namely the block type GA method where only 
NI method is used effectively as heuristics. 

2. On the other hands, the block type GA world can have the possibility to search other 
optimal solutions than 2opt-type GA, owing to the Multi step NI method and the 
block-type mutation, both of which exploits the power of the NI method enforced by 
problem oriented knowledge mentioned previously in (c) of 3.2.1 and in (b) of 3.2.3. 

Yet, to guarantee real-time responsiveness, both of these two GAs finish their processing 
within the limited length of time through offline calculation of the number of generations 
repeatable within the time limit (e.g. 15 milliseconds for each GA). 

4. Experiment and results 

4.1 Experiment 

In this section, the experiment to evaluate the proposed method is explained. The program 
codes are written by C language. A computer equipped with Intel Pentium II (450MHz) 
processor and 256MB memory is used for this experiment.  
As explained by the footnote in the introduction, 40 cities TSPs were used for this 
experiment. Yet, various combinations of 40 delivery locations are possible. Thus, randomly 
selected 20000 different patterns of 40 delivery locations were prepared. Then, to evaluate 
three kinds of GA methods described in 3.3, each solving method solved 20000 test patterns, 
100 times per pattern, and the probability to obtain solutions within 3% of errors was 
calculated. 
In this experiment, the population size is 100 and each crossover rate and mutation rate are 
10% respectively. These parameters were determined by the way of comparative 
experiments with many sets of parameters. 

4.2 Results 

To guarantee the real-time responsiveness, the time necessary for processing one generation 
is calculated, and based on this value, the number of generations of the GA is determined. 
Table 1 shows an example of the number of generations to respond within 30 milliseconds 
when the population size is 100. Then, the tests were repeated 100 times per pattern for 
three kinds of GAs. 
Each test used 20000 kinds of delivery location patterns. The probability to obtain solutions 
within 3% of errors compared to the optimal solutions was checked. Furthermore, the 
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probability to obtain the optimal solutions within 30 milliseconds was also checked. These 
results are shown in Table 2. 
 

# Method Generating Initial Individuals Mutation Number of Generations 

1 2opt-type Random NI 2opt-type 24 

2 Block-type Random + Multi step NI Block-type 20 

Table 1. The number of generations of each method repeatable within 30 milliseconds 

 

# Method Optimal Below 3% 

1 2opt-type GA 84.45% 99.885% 

2 Block-type GA 83.75% 99.785% 

3 MIGA 92.05% 100.0% 

Table 2. The solution optimality 

5. Evaluation 

5.1 Effect of the proposed TSP solving method 

Table 2 shows the usefulness of the proposed MIGA quite convincingly. Only MIGA 

method could solve a 40 cities TSP with less than 3% of errors with 100% of probability 

within 30 milliseconds. 
 

                  
                            (a) 2opt-type GA                                            (b) Block-type GA 
                            (Tour length:259)                                          (Tour length:249) 

Fig. 7. Difference of tour shape in a special location pattern 

5.1.1 Effect of block-type GA (intelligent GA) 
Tour shapes were examined as to solutions generated by the 2opt-type GA and leaving 
more than 3% errors. As a result, most of these shapes were like gear wheels as shown in 
Fig. 7 (a). Experts usually generate more straight routes as shown in Fig. 7 (b). If experts find 
inefficient routes such as shown in Fig. 7 (a), they reject to use the system since they consider 
it as an unreliable one.  
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In case of using a block-type GA (intelligent GA), tours similar to Fig. 7(b) were generated 
even for such delivery location patterns. The reason is why the intelligent GA has the block-
type mutation in order to avoid falling into a local minimum. 

5.1.2 Effect of multi-world intelligent GA 

According to our experiment, in case of the 2opt-type GA, 43 cases out of 20000 tests had 

more than 3% errors. In case of the block-type GA method, 23 cases had more than 3% 

errors. 

However, the multi-world intelligent GA (MIGA), namely, the 2opt-type GA subsequently 

followed by the block-type GA could generate solutions below 3% of error within 30 

milliseconds, for every case in 20000 tests. The reason is that, coping with various delivery 

location patterns, either the 2opt-type GA or the intelligent GA can avoid falling into a local 

minimum (over 3% errors). Thus, MIGA method could guarantee the responsiveness as well 

as the expert-level accuracy, namely, below 3% errors.  

5.2 Applicability of the proposed solving method 

To evaluate the applicability of our proposed solving method, we applied it to a simulation 

of a parts supply logistics network which consists of one (assembly) factory, 7 depots, and 

30 part makers (suppliers). This simulation needs to optimize the distribution area allocation 

of each truck, as well as to optimize each truck route. This simultaneous optimization of 

each truck area allocation and each truck route is classified as the Vehicle Routing Problem 

(VRP) (Laporte, 1992).  

To apply our proposed methods to the VRP, we modified the chromosome structure and the 

NI method which is used in GA operations (initial construction, mutation, and crossover). 

Namely, the chromosome structure is extended to represent multiple trucks’ routes instead 

of one truck’s route, and the extended NI method puts a new node into the best position out 

of all truck routes instead of only one truck route. 

We simulated the above-mentioned logistics network in 3 cases, which have the same 

simulation conditions except the amount of loads, as shown in table 3. The resultant number 

of trucks in table 3 is verified as optimal. Moreover, the total tour length deviation from the 

optimal solution is less than 3 %. 

Consequently, our proposed GA methods such as the multi-step NI method and the block-

type mutation are applicable not only to the TSP but also to more general problems such as 

the VRP. That is to say, these methods are effective in solving the problems defined over 

metric space such as the TSP and the VRP. Moreover, the concept of the block type mutation 

is applicable to the problems defined over topological space which does not have metric 

system but only neighborhood system. 
 

 

# 
Condition 

(number of loads) 
Number of trucks Total tour length (Deviation) 

1 700 29 1015km (2.6%) 

2 900 41 1345km (2.8%) 

3 1000 48 1612km (2.8%) 

Table 3. VRP simulation result 
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6. Comparisons 

A lot of methods to solve TSP are proposed for practical applications. In this section, our 
methods are compared with other methods.  
Three types of the proposed methods (multi-world intelligent GAs) are tested, each of which 
has different stopping condition. MIGA1 (multi-world intelligent GA type 1) stops searching 
when it stops improving the solution. The computation time of MIGA2 is one tenth of that 
of MIGA1. The computation time of MIGA3 is 30 milliseconds. Experiments were conducted 
under the following computation environment. Namely, CPU is AMD Athlon 64 X2 3800+ 
2GHz processor. It is almost the same performance as Athlon 64 3200+ 2GHz because of its 
execution on the single core mode with 1GB memory. The programs were written in C 
language, compiled by Microsoft Visual C++ .NET 2003 ver. 7.1.3091 with /O2 option 
(directing the execution speed preference), and executed on Windows XP Professional.  
Yet, since other solution methods to be compared are executed on machines with different 
performance specification, it is necessary to take the difference into account. Therefore, 
referring to the statistical results of tests using RC5-72 benchmark (JLUG, 2008) for 
measuring the arithmetic processing speed, we obtained the spec difference correction 
coefficient (SDCC). This can be obtained by dividing the resultant value of the benchmark 
test executed on the experimental environments of other solution methods, by the resultant 
value of the benchmark test on our experimental environment. Through multiplying SDCC 
to the execution time of other solution methods, we calculated an assumed execution time 
on the same specification machine as ours.  
As for the strict optimization method, Branch-and-cut and Dynamic Programming (DP) are 
proposed. These methods require long computation time though they can obtain optimal 
solutions. Some algorithms using DP can search very near-optimal solutions for the 
Euclidean TSP in polynomial time (Arora, 1998). However, even these algorithms take too 
long time for practical applications such as ours, and it seems too hard for ordinary system 
developers to modify or adjust them for coping with various particular requirements. 
As for the approximate solution technique, various techniques are proposed. LK is famous 
as the heuristics search technique for TSP. However, LK and its improving methods (Lin & 
Kernighan, 1972; Yamamoto & Kubo, 1997) also take a long computation time though the 
optimality of obtained solutions is high and these methods are often incorporated with the 
meta-heuristics search such as SA, TA and GA.  
Simulated Annealing (SA) and Tabu Search (TS) are known as the meta-heuristics search 
technique. Theoretically, SA (Kirkpatrick et al., 1983; Ingber, 1993; Miki et al., 2003) is said to 
be able to search very near-optimal solutions by decreasing the risk of falling into a local 
minimum. But practically, it is very difficult to adjust SA’s parameters such as cooling speed 
for coping with various location patterns. Furthermore, SA usually takes a long computation 
time to get above-mentioned theoretical near-optimal solutions.  
TS (Glover, 1989; 1990; Hooker & Natraj, 1995; Fang et al., 2003) usually needs a long 
computation time to get practically optimal solutions. Worse still, TS is said to be weak in 
maintaining solution diversity though it has strong capability for local search. However, TS 
is improved in these weaknesses by Kanazawa & Yasuda, 2004.  
So-called random restart methods (Yanagiura & Ibaraki, 2000), which apply local search 
such as 2-opt for improving random initial solutions, can obtain near-optimal solutions. 
These include GRASP (Feo et al., 1994) or the elaborated random restart method (Kubota et 
al., 1999) that can guarantee responsiveness by limiting the number of repetitions. However, 
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according to our experiments, the above-mentioned elaborated random restart method 
needed about 100 milliseconds to solve 40 cities TSP and to guarantee less than 3% errors 
(Kubota et al., 1999). 
As for the Genetic Algorithms (GA) to efficiently solve TSP, various techniques are 
proposed. GA applied solving methods using the edges assembly crossover (EAX) (Nagata 
& Kobayashi, 1999) and the distance-preserving crossover (DPX) (Whiteley & Starkweather, 
1989) could get highly optimized solutions in case of very-large-scale TSPs (with 1000-10000 
cities) (Tamaki et al., 1994; Baraglia et al., 2001; Tsai et al., 2004; Nguyen et al., 2007). These 
crossover methods examine characteristics of parent’s tour edge to strictly inherit to 
children. However, since these crossover operations take long computation time for 
analyzing edges, using it for not-very -large-scale TSP is often inefficient. 
In reference (Baraglia et al., 2001), two kinds of methods are compared in many cases. It 
shows that Cga-LK is advantageous to 300-10000 cities TSP, but Random-LK is 
advantageous to 198 cities TSP. Therefore, the solution that can efficiently solve TSP of 1000 
cities or more can not necessarily efficiently solve TSP of about 100 cities. As to TSP of our 
intended scale (with 10s to 100 cities), in reference (Baraglia et al., 2001), a TSP lin105 is 
solved with 1.77% average error rate in 231seconds. The performance specification of this 
experimental environment is 200-MHz PentiumPro PC running Linux 2.2.12. Since this 
SDCC is 0.048, the solving time on our experimental environment is 11.088 seconds. 
Moreover, in reference (Cheng et al., 2002), the performance comparison experiments were 
conducted using various crossover operators. Even when the best crossover operator is 
used, average error rate is 3.1% and computation time is 750 seconds by SUN SPARC Ultra-
5 10 machine. Since this SDCC is 0.065, the solving time on our environment is 48.75 
seconds. Meanwhile, our MIGA1 obtains the optimal solution within 1.11 seconds, and 
MIGA2 obtains a solution with average error rate 0.31% in 0.15 seconds.  
A GA method with the same purpose as ours (aiming to obtain high quality approximate 
solution as fast as possible for 10s - 100s cities TSPs) is proposed by Yan et al., 2007. To 
compare the proposed methods with GA by Yan and TS by Kanazawa, the proposed 
methods are tested on nine benchmark problems in TSPLIB whose number of cities ranges 
from 70 to 280. Each problem is solved 100 times.  
Table 4 presents the SDCC of each method. And Table 5 presents the experimental results 
obtained by applying MIGA to the above nine benchmark problems and results corrected by 
using SDCC. The mark “-” on the Table 5 indicates no data. The digits (e.g. 70) contained in 
the nameȐe.g. st70ȑ of TSP indicate the number of cities.  

Results of GA by Yan are compared with those of MIGA. Results for the problem st70 
indicate MIGA can obtain the solution having almost the same accuracy as GA by Yan, 
while the computation time is 20%. Results of problem eil76 indicate MIGA can obtain 
always optimal solution though the average error rate of GA by Yan is 1.184% within the 
same computation time. Specific results of problem a280 indicate MIGA can obtain solutions 
whose average error rate is 4% which is lower than that of GA by Yan and the computation 
time is 7% compared with that of GA by Yan.  
Next, results of TS by Kanazawa and MIGA are compared. Results indicate MIGA obtained 
almost the same accuracy solutions as TS by Kanazawa, while the computation time is 19% 
for the problem pr107, 63% for pr144, 45% for pr152, and 5% for pr226.  
Overall results show that MIGA is more effective than GA by Yan and TS by Kanazawa in 
solving the above mentioned nine TSP benchmark problems whose number of cities ranges 
from 70 to 280. 
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Results of MIGA3 show the average error rate is around 1% and even the worst case error is 
under 3.5%, to solve, within 30 milliseconds, eight TSP benchmark problems whose number 
of cities ranges from 70 to 226. 
 

 GA by Yan TS by Kanazawa 

Spec of computing machines 

CPU：Pentium4 

2.4GHz, 
嘂嘃リ：256MB 

CPU：Pentium4 

2.55GHz, 
嘂嘃リ：1GB (DDR266) 

Spec Difference Correction 
Coefficient (SDCC) 

0.519 0.590 

Table 4. Spec Difference Correction Coefficient (SDCC) 

 

Average error rate from optimal solution [％] 

( Average execution time [sec] ) 

MIGA3 
Name of 

TSP 
GA by Yan

TS by 
Kanazawa 

MIGA1 MIGA2 

Average Worst 

st70 
0.312 

(0.348) 
- 

0 
(0.750) 

0.370 
(0.074) 

0.400 
(0.030) 

1.333 

eil76 
1.184 

(0.602) 
- 

0 
(0.844) 

1.914 
(0.080) 

2.193 
(0.030) 

2.974 

kroA100 
0.016 

(0.877) 
- 

0 
(0.937) 

0.176 
(0.131) 

0.873 
(0.030) 

1.588 

pr 
107 

- 
0.290 

(0.826) 
0.086 

(0.985) 
0.256 

(0.156) 
0.449 

(0.030) 
0.899 

pr 
136 

0 
(3.690) 

0.190 
(4.378) 

0.624 
(2.016) 

1.067 
(0.233) 

2.460 
(0.030) 

3.481 

pr 
144 

0 
(4.136) 

0.019 
(4.685) 

0 
(2.625) 

0.149 
(0.284) 

1.665 
(0.030) 

2.896 

pr 
152 

- 
0.120 

(7.558) 
0.153 

(3.375) 
0.551 

(0.338) 
1.175 

(0.030) 
2.77 

pr 
226 

- 
0.510 

(12.685) 
0 

(3.125) 
0.515 

(0.652) 
1.854 

(0.030) 
2.566 

a280 
10.770 

(17.371) 
- 

3.180 
(10.453) 

6.572 
(1.100) 

- - 

Table 5. Results compared with related works on TSPLIB 

7. Conclusion 

In this chapter, an intelligent GA method for solving the TSP was proposed and evaluated. 
This is applicable to the optimization of various distribution systems such as the parcel and 
letter delivery as well as large-scale distribution networks that requires repetitive interactive 
simulations. This kind of application requires responsiveness as well as optimality, for 
example, solving a TSP with expert-level accuracy within 30 milliseconds. 
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In order to guarantee expert-level solutions for various kinds of delivery location patterns, 
the high-speed GA world was combined with the intelligent GA world. The high-speed GA 
world comprises the random NI method and the 2opt-type mutation. And this high-speed 
GA mainly uses simple general heuristics. The intelligent GA world includes the random 
method, the multi-step NI method, and the block-type mutation. And particular knowledge 
was incorporated in this intelligent GA to overcome the weakness of the high-speed GA. 
Namely, to cope with delivery location patterns for which the high-speed GA cannot 
guarantee expert-level solutions, this intelligent GA has rather problem-oriented 
knowledge. 
According to our experiment, in case of using the former high-speed GA, 23 test cases out of 
20000 test cases had more than 3% of errors compared to the optimal solution. However, our 
proposed multi-world intelligent GA method (which comprises the high-speed GA world 
and the intelligent GA world) could solve each of all 20000 test cases within 30 milliseconds 
at expert-level accuracy (less than 3% errors).  
Our experimental results showed that the proposed methods enable to solve TSPs with 
responsiveness and optimality necessary for a large-scale distribution network’s interactive 
simulation. 
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