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1. Introduction

Oscillating velocity vector fields are often observed in fluid flow fields. A flow field caused
by the Karman vortices is a typical example of an oscillating velocity vector field. In particle
image velocimetry (PIV), a velocity vector field is determined from an image sequence rep-
resenting a fluid flow field visualised by particles (Adrian, 1991; Raffel et al., 2007). When
we focus on an oscillating velocity vector field, we can expect that the oscillatory characteris-
tic of the field is useful for determining a high accurate velocity vector field. Thus, utilising
the oscillatory characteristic as an additional constraint is an interesting topic for the PIV ap-
proaches, such as the matching-based approach and the gradient-based one.
The matching-based approach utilises a pattern-matching procedure, which calculates a cross-
correlation function between two image templates on the two successive image frames. The
peak position of the obtained two-dimensional cross-correlation function provides a displace-
ment vector for a brightness pattern during one frame, that is, a velocity vector. Under the
low density of particles, it is possible to track a particular particle during two or more succes-
sive image frames by the pattern-matching procedure (Hassan et al., 1992). When the density
of particles is in the middle range, the pattern-matching procedure for a particle distribution
function is utilised to detect its velocity vector (Willert and Gharib, 1991).
The gradient-based approach first estimates spatio-temporal gradients on an image brightness
function, and then derives the basic constraint equation consisting of the gradients and two
velocity components (Horn and Schunck, 1981). The basic constraint equation is derived from
the correspondence of a moving image brightness pattern during a short time period. Next, it
organises the error function consisting of the basic constraint equation and additional one(s)
modelling the characteristics of a fluid flow field. Finally, minimising the error function by an
optimisation method provides the two velocity components.
There are several problems in the matching-based approach and the gradient-based one. With
the gradient-based approach, it is difficult to determine high speed flow fields. In contrast
to this, while the matching-based approach can determine such the high speed flow fields,
the sub-pixel accuracy of the approach is generally unreliable. The gradient-based approach
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provides the high resolution of velocity vector fields, namely, dense velocity vector fields.
Both the approaches have difficulty in determining high velocity gradients.
To overcome these problems in the particular approaches, several methods have been pro-
posed. The multigrid relaxation method enlarges the velocity range of the gradient-based
approach (Terzopoulos, 1986). Sub-pixel peak detection techniques for the cross-correlation
function improve the sub-pixel accuracy on determined velocity vectors in the matching-
based approach (Roesgen, 2003). The hybrid method consisting of the gradient-based ap-
proach and the matching-based one achieves the large velocity range and the reliable sub-
pixel accuracy (Sugii et al, 2000). The combination of the matching procedure on a particle
distribution and the tracking procedure on a particular particle provides the high resolution
on a velocity vector field (Cowen and Monismith, 1997). Tokumaru and Dimotakis (1995)
proposed a matching-based method that improves the accuracy of the velocity vector field
having high velocity gradients. Their method expresses a local velocity vector field with the
Taylor series including higher order velocity gradients. The method organises the error func-
tion expressing the Lagrangian invariance on a moving brightness pattern as well as a spatial
smoothness constraint on velocity. The method minimises the error function by the global
optimisation strategy utilised in the gradient-based method of Horn and Schunck (1981). Sev-
eral researchers also proposed to adaptively shift and distort image templates and a search
area for the pattern matching procedure according to previously determined velocity vector
fields, by utilising the iterative, interpolating and multigrid techniques (Westerweel et al.,
1997; Fincham and Delerce, 2000). Scarano (2002) reviewed the matching-based approach
with adaptive templates; the approach has been developed intensively as a state-of-the-art
one (Astarita, 2009; Theunissen et al., 2010). Hart (2000) and Meinhart et al. (2000) proposed
the methods utilising multiple cross-correlation functions to obtain a reliable cross-correlation
function. In particular, concerning the present topic of determination of oscillating flow fields,
the method proposed by Meinhart et al. (2000) averages multiple cross-correlation functions
obtained for a stationary or oscillatory flow field and searches the maximum peak position
from the obtained reliable cross-correlation function.
This chapter proposes two gradient-based methods which focus on temporally oscillating ve-
locity vector fields for achieving high accuracy and high spatio-temporal resolution. Previous
studies on the gradient-based approach present no methods focusing on oscillating velocity
vector fields. The two methods proposed here utilise the oscillatory characteristic as addi-
tional constraints. A fixed velocity vector field regularly appears at the time intervals of its
oscillation period. Thus, a constancy assumption on velocity is applicable to basic constraint
equations sampled at the time intervals. One of the proposed methods utilises the constancy
assumption for the sampled basic constraint equations as an additional constraint. The other
method assumes that the temporal change of a velocity vector at a fixed pixel site is approx-
imately expressed by the Fourier series. Thus, the method utilises the Fourier series as an
additional constraint. The preliminary knowledge of the oscillatory characteristic of a fluid
flow field helps to improve the accuracy and the temporal resolution of the approach.
To realise the two methods utilising the proposed constraints, it is necessary to determine the
oscillation period in advance. This chapter proposes two methods for determining the os-
cillation period. One of the methods tentatively determines velocity vectors by an ordinary
gradient-based method which requires little calculation cost, and then analyses the temporal
changes of the tentative velocity vectors by the Fourier analysis method. An obtained power
spectrum distribution provides the oscillation period. The other method first analyses spatio-
temporal sectional images by a spatio-temporal filter. The spatio-temporal sectional images
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are sliced from an original image sequence; the filter detects the direction of a short line seg-
ment representing a particle trajectory on a spatio-temporal sectional image. The outputs of
the filter are also analysed by the Fourier analysis method along a time coordinate system.
The proposed two gradient-based methods are quantitatively compared to ordinary gradient-
and matching-based methods through the analysis of synthetic image sequences. The ordi-
nary gradient-based method utilises a simple phase-averaging processing method as post-
processing; the ordinary matching-based method utilises an averaged version of the cross-
correlation function proposed by Meinhart et al. (2000). Experimental results for the synthetic
image sequences show the characteristics of the proposed methods and the ordinary ones.
Finally, we apply the proposed two gradient-based methods and the ordinary ones to a real
image sequence of the Karman vortices.

2. Background

2.1 Matching-Based Approach: Average Correlation Method

An ordinary matching-based approach determines a velocity vector by seeking the correspon-
dence of a moving brightness pattern between two successive image frames f (x, y, t) and
f (x, y, t + 1) by the use of a cross-correlation function Ct,t+1(dx, dy) (e.g., Raffel et al., 2007).
The function Ct,t+1(dx, dy) evaluates similarity between two image templates, one of which
has its centre at the pixel site (x, y) on the tth image frame and the other of which has its cen-
tre at the pixel site (x + dx, y + dy) on the (t + 1)th image frame. Both the templates have the

(2Lx + 1)× (2Ly + 1) (pixels2) rectangular domains surrounding their centre pixel sites.
For the determination of oscillating flow fields or stationary ones with high accuracy, Meinhart
et al. (2000) proposed to utilise the averaged version of the cross-correlation function in the
matching-based approach. Their method calculates the averaged cross-correlation function
Ca(dx, dy) from cross-correlation functions obtained at the time intervals of the oscillation
period T, that is, at t, t + [T], t + [2T], · · · t + [(K − 1)T] (frame), and/or within the temporal
local domain (2Lt + 1) (frames),

Ca(dx, dy) =
1

K × (2Lt + 1)

K−1

∑
k=0

t+[kT]+Lt

∑
t0=t+[kT]−Lt

Ct0,t0+1(dx, dy), (1)

where the symbol [·] refers to the Gauss’ notation. By changing the discrete displacement pa-
rameters dx and dy in the ranges of −Wx ≤ dx ≤ Wx and −Wy ≤ dy ≤ Wy (pixels), we obtain
the averaged cross-correlation function Ca defined within the rectangular domain consisting
of (2Wx + 1)× (2Wy + 1) (pixels2). The peak position of the averaged cross-correlation func-
tion provides the discrete displacement vector (dx0 , dy0 ) at the position (x, y) and at the tth
frame. The method utilising the averaged version of Eq. (1) is called the "Average Correlation
Method (ACM)".
For sub-pixel accuracy on a velocity vector, an ordinary matching-based method fits the Gaus-
sian function to the cross-correlation function around its peak position (dx0 , dy0 ). Let us utilise
the peak position and its neighbouring four discrete positions (dx0 − 1, dy0 ), (dx0 + 1, dy0 ),
(dx0 , dy0 − 1) and (dx0 , dy0 + 1). Then, we fit the five points and their corresponding averaged
cross-correlation values,

Ca, = Ca(dx0 , dy0 ), Ca−, = Ca(dx0 − 1, dy0 ), Ca+, = Ca(dx0 + 1, dy0 ),

Ca,− = Ca(dx0 , dy0 − 1), Ca,+ = Ca(dx0 , dy0 + 1),

www.intechopen.com



Engineering the Future66

to the following two-dimensional Gaussian function having the peak value Cm, the sub-pixel
peak position (d∗x0

, d∗y0
) and the variances (k2

x, k2
y),

Ca(dx, dy) = Cm exp

(

−
(dx − d∗x0

)2

k2
x

−
(dy − d∗y0

)2

k2
y

)

. (2)

Finally, we obtain the two velocity components with the sub-pixel accuracy,

u(x, y, t)=d∗x0
= dx0 + (ln Ca−, − ln Ca+, )/(2 ln Ca−, − 4 ln Ca, + 2 ln Ca+, ),

v(x, y, t)=d∗y0
= dy0 + (ln Ca,− − ln Ca,+ )/(2 ln Ca,− − 4 ln Ca, + 2 ln Ca,+ ), (3)

as well as the other parameters of,

k2
x = {2(d∗x0

− dx0 ) + 1}/(ln Ca, − ln Ca−, ), k2
y = {2(d∗y0

− dy0 ) + 1}/(ln Ca, − ln Ca,− ), (4)

and

Cm = Ca, exp

(

(d∗x0
− dx0 )

2

k2
x

+
(d∗y0

− dy0 )
2

k2
y

)

. (5)

2.2 Gradient-Based Approach: Local Optimisation Method

The gradient-based approach utilises the following basic constraint equation,

fxu + fyv + ft = 0 (6)

where fx, fy, ft are spatio-temporal gradients on the brightness distribution function f (x, y, t)
of an image sequence, and �v = (u, v) is the set of two velocity components to be determined.
Equation (6) is derived from a correspondence relation on a moving rigid brightness pattern
during a short time period (Horn and Schunck, 1981). The spatio-temporal gradients are
numerically estimated for the brightness distribution function.
It is not able to determine the set of the two unknown components (u, v) with one constraint
of Eq. (6) at a particular pixel site (x, y, t). One more additional constraint is necessary for the
determination of the velocity components. A very simple assumption that two neighbouring
pixel sites, such as (x, y, t) and (x, y, t + 1), have the same velocity (u, v), brings the following
two basic constraint equations sharing the two unknowns (u, v).

fx(x, y, t)u + fy(x, y, t)v + ft(x, y, t)=0

fx(x, y, t + 1)u + fy(x, y, t + 1)v + ft(x, y, t + 1)=0 (7)

Solving the set of the two equations for the two unknown parameters (u, v) provides the
velocity vector.
For obtaining more stable solution, which is robust to the random noise component contained
in realistic image sequences, Kearney et al. (1987) proposed a constancy assumption on a
velocity vector field within a spatial local domain as an additional constraint. We proposed
a temporal constancy assumption on a velocity vector field during a temporal local domain
(Nomura et al., 1991). More generally, we can assume that a velocity vector field is constant
within a spatio-temporal local domain δS × δT.

�v(x, y, t) is constant in δS × δT. (8)

www.intechopen.com



Gradient-based approach for determination of oscillating low ields in PIV 67

Equation (8) assumes that the basic constraint equations derived within the local domain δS×
δT share the same velocity components. Thus, we organise the following error function with
the basic constraint equations derived within the domain δS × δT; the error function defines
the sum of the departure values of the basic constraint equations from zero under the spatio-
temporal constancy assumption of Eq. (8) (Nakajima et al., 1997),

E(u, v) =
1

2 ∑
δS×δT

(

fxu + fyv + ft
)2

→ minimum, (9)

where the gradients fx, fy, ft are estimated at a particular pixel site (x, y, t) within the spatio-

temporal domain δS × δT consisting of (2Lx + 1)× (2Ly + 1) (pixels2) and (2Lt + 1) (frames).
By minimising the error function of Eq. (9) with ∂E/∂u = 0 and with ∂E/∂v = 0, we obtain
the next set of linear equations,

(

∑ f 2
x ∑ fx fy

∑ fx fy ∑ f 2
y

)(

u
v

)

= −

(

∑ fx ft

∑ fy ft

)

, (10)

where the symbol ∑ refers to the summation within the domain δS × δT. This method assum-
ing the spatio-temporal local constancy on a velocity vector field is called the "Local Optimi-
sation Method (LOM)" (Kearney et al., 1987).
Many other additional constraints have been proposed. Horn and Schunck (1981) proposed
a spatial smoothness constraint on a velocity vector field. Nakajima et al. (2003) proposed
the additional constraints consisting of the continuity equation and the Navier-Stokes ones
for determining a fluid flow field. Corpetti et al. (2002) proposed an additional constraint
designed for preserving a rotational field and a divergent one on a fluid flow field.
The basic constraint Eq. (6) requires the estimation of spatio-temporal gradients fx, fy, ft. For
example, the gradient fx(x, y, t) is approximately estimated by the forward difference method
at a point (x + 1/2, y + 1/2, t + 1/2) as follows.

fx(x, y, t)≃
1

4
{ f (x + 1, y, t)− f (x, y, t) + f (x + 1, y + 1, t)− f (x, y + 1, t)

+ f (x + 1, y, t + 1)− f (x, y, t + 1) + f (x + 1, y + 1, t + 1)− f (x, y + 1, t + 1)} (11)

The above Eq. (11) estimates the gradient fx averaged for the four pairs of the forward dif-
ferences within 2 × 2 (pixels2) and 2 (frames). In addition, by averaging the gradient fx over
more global spatial domain consisting of (2La + 1) × (2La + 1) (pixels2), we can expect the
reliable gradient fx.

fx(x, y, t) ≃
1

(2La + 1)2

y+La

∑
y0=y−La

x+La

∑
x0=x−La

fx(x0, y0, t) (12)

The other gradients fy and ft are also estimated in the same way.

3. Proposed Method in the Gradient-Based Approach

3.1 Additional constraints for oscillating flow fields

We propose two additional constraints to determine an oscillating velocity vector field. Let
us fix an observation point at a pixel site (x, y) on an image plane, and observe the temporal
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change of a velocity vector field. When the velocity vector field is oscillating with time t, a
fixed velocity vector �v = (u, v) regularly appears at the intervals of its oscillation period T,

�v(x, y, t + kT) is constant for k = 0, 1, · · · , K − 1, (13)

where the oscillation period T is constant from the time t to t+ (K − 1)T at the pixel site (x, y).
The parameter K refers to the number of multiple periods contained in the frame number
St = KT (frames). (In general, the parameter ’K’ refers to the wave number of 1/T, that
is, the number of multiple periods per unit time. However, in this chapter, the parameter K
refers to the number of multiple periods contained in the whole image frames or the temporal
length St of an image sequence utilised for velocity determination.) Equation (13) is the first
additional constraint proposed in this chapter. Basic constraint equations sampled at the time
intervals of T share the same velocity vector �v = (u, v). Thus, if we preliminarily know the
parameter T and if we also assume the spatio-temporal local constancy on the velocity vector
field within the spatio-temporal domain δS × δT, we can determine two velocity components
by minimising the next error function,

E(u, v) =
1

2

K−1

∑
k=0

∑
δS×δT

(

fxu + fyv + ft
)2

→ minimum, (14)

where the gradients fx, fy, ft are estimated at (x, y, t + kT); the pixel site (x, y, t) is in δS × δT

consisting of (2Lx + 1)× (2Ly + 1) (pixels2) and (2Lt + 1) (frames). In computing Eq. (14), the
gradients are estimated at the nearest pixel site, that is, at (x, y, t + [kT + 1/2]). By minimising
the error function of Eq. (14), we obtain the set of linear equations similar to Eq. (10). We can
recognise that the additional constraint of Eq. (13) works as a kind of phase-averaging in the
method of Eq. (14). Later, we propose two methods to determine the oscillation period T and
the number of multiple periods K from an image sequence.
The second additional constraint proposed here assumes that the oscillating velocity compo-
nents can be expanded into the Fourier series with the Mth highest harmonics as follows,

u=u0 +
M

∑
m=1

(

am sin
2πmt

T
+ bm cos

2πmt

T

)

, (15)

v=v0 +
M

∑
m=1

(

cm sin
2πmt

T
+ dm cos

2πmt

T

)

, (16)

where the parameters u0 and v0 are the direct components of the velocity vector along a time
coordinate system t; the parameters am, bm, cm, dm are the amplitude coefficients of the mth
harmonics. We define the next error function and substitute the additional constraint of Eqs.
(15) and (16) for the two velocity components u and v of the next error function,

E(u0, am, bm, v0, cm, dm) =
1

2

St−1

∑
t=0

∑
δS

(

fxu + fyv + ft
)2

→ minimum, (17)

where the parameters u0, v0, am, bm, cm, dm for m = 1, 2, · · · , M are constants in the spatial local
domain δS and during the whole image frames St; the gradients fx, fy, ft are estimated at a
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particular pixel site within the spatial local domain δS and during the whole image frames St.
By minimising the error function of Eq. (17), we obtain the following set of linear equations,

∂E

∂u0
=

St−1

∑
t=0

∑
δS

Ed fx = 0,
∂E

∂v0
=

St−1

∑
t=0

∑
δS

Ed fy = 0,

∂E

∂an
=

St−1

∑
t=0

∑
δS

Ed fx sin
2πnt

T
= 0,

∂E

∂bn
=

St−1

∑
t=0

∑
δS

Ed fx cos
2πnt

T
= 0,

∂E

∂cn
=

St−1

∑
t=0

∑
δS

Ed fy sin
2πnt

T
= 0,

∂E

∂dn
=

St−1

∑
t=0

∑
δS

Ed fy cos
2πnt

T
= 0, (18)

where n = 1, 2, · · · , M and Ed refers to the departure value of the basic constraint Eq. (6)
combined with the additional constraint of Eqs. (15) and (16) from zero as follows,

Ed = ft + fx

{

u0 +
M

∑
m=1

(

am sin
2πmt

T
+ bm cos

2πmt

T

)

}

+ fy

{

v0 +
M

∑
m=1

(

cm sin
2πmt

T
+ dm cos

2πmt

T

)

}

. (19)

Note that the number of unknown parameters is (2 + 4M). Thus, the number of pixel sites
(2Lx + 1)× (2Ly + 1)× St utilised for velocity determination should be larger than (2 + 4M).
The singular value decomposition is applied to the coefficient matrix of the set of linear equa-
tions derived from Eqs. (18) and (19). A singular value obtained by the decomposition is
referred as Si for the subscript index i = 0, 1, 2, · · · , (2 + 4M)− 1. When a singular value Si

is smaller than β maxi(Si), the singular value is rejected and the inverse 1/Si is replaced with
zero in solving the set of linear equations (Press et al., 1988). The parameter β refers to the
ratio between the maximum singular value and the threshold one; the parameter is usually
set to a quite small value 0 < β ≪ 1. The singular value decomposition provides the set of
solutions (u0, a1, b1, · · · , aM, bM, v0, c1, d1, · · · , cM, dM).

3.2 Determining an oscillation period and the number of multiple periods

The above proposed additional constraints require the oscillation period T and the number of
multiple periods K to organise the error functions of Eq. (14) and Eq. (17). Several approaches
are possible for determining T and K. One of the approaches first determines tentative time-
varying velocity vector fields by a simple ordinary gradient-based method solving Eq. (7) or
Eq. (10), and then analyses temporal changes of the tentatively determined velocity vectors by
the Fourier analysis method. The maximum peak position of the power spectrum distribution
function obtained by the Fourier analysis method provides the oscillation period T and the
number K.
Another method for determining the oscillation period T and the number K utilises a spatio-
temporal sectional image. Let us assume that the vertical component v of a velocity vector is
oscillating with time t, and that the other horizontal component u is zero. A particle moves at
an oscillating velocity vector. A spatio-temporal sectional image with a y − t plane contains
the trajectory of the moving particle; the trajectory becomes a sinusoidal pattern [Fig. 1(a)]. A
filter that detects the direction of a short line segment on the spatio-temporal sectional image
provides a one-dimensional oscillatory signal along the time coordinate system. Figure 1(b)
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Fig. 1. Oscillation of a visualisation particle. (a) Spatio-temporal sectional image sliced from
an image sequence, which contains an oscillating particle on a y − t plane. The trajectory of
the particle illustrates a sinusoidal pattern on the spatio-temporal sectional image. (b) Spatio-
temporal filter detecting the direction of a short line segment. The variance value evaluated
along the direction θm on brightness becomes the minimum for those evaluated along all of
the directions. Thus, by finding the minimum variance value, the filter detects the direction
θm of the particle trajectory. The variance value is evaluated in a circular local domain; the
parameter L refers to its radius.

shows the spatio-temporal y − t sectional image having a moving particle at the direction
θm in a spatio-temporal circular domain. When we evaluate the variance sI(θ) on brightness
along the direction θ, we obtain the minimum value of sI at the direction θm,

sI(θ) =
1

2L + 1

L

∑
l=−L

{I(l, θ)− Ī}
2

for 0 ≤ θ < π, (20)

where L refers to the discrete radius of the circular domain, I(l, θ) refers to the spatio-temporal
image brightness function having the polar coordinate system, and Ī does to the averaged
brightness level along the direction θ,

Ī =
1

2L + 1

L

∑
l=−L

I(l, θ). (21)

Thus, we can determine the direction θm by finding the minimum variance of sI(θ). Since the
flow velocity is oscillating along the time coordinate system t, the direction θm(t) is also os-
cillating. (Note that the direction of a short line segment refers to a one-dimensional velocity
component.) Analysing the temporal change of the direction θm(t) by the one-dimensional
Fourier analysis method, we can determine the oscillation period T and the number of mul-
tiple periods K. In realistic situations that have many moving particles in fluid, many short
line segments that represent the trajectories of the many particles exist on a spatio-temporal
sectional image. When the velocity component u is not zero, the trajectory due to a particu-
lar particle is not clearly observed. However, a set of the many trajectories due to the many
particles provides the oscillation period of temporally oscillating signals.
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4. Experimental Results

4.1 Generating synthetic image sequences

We assumed the brightness distribution of a particle locating at a pixel site (x0, y0) to be the
following function B(x, y) (Raffel, 1998),

B(x, y) = B0 exp

(

−
(x − x0)

2 + (y − y0)
2

R2/8

)

(22)

where B0 refers to the maximum brightness level of the particle and R refers to its diameter.
In the present experiments, the parameter B0 was randomly distributed from 150 to 255 in 256
brightness levels; the background brightness level was fixed at 20.
We generated temporally oscillating flow fields at the fundamental oscillation period T = 25.6
(frames). The flow fields have translational, rotational and shear components as described by
the following equations,

u(x, y, t)=U0 + U(t)− ω(t)(y − yc) + σ(t)(x − xc),

v(x, y, t)=V0 + V(t) + ω(t)(x − xc)− σ(t)(y − yc), (23)

where,

U(t) = U1

H

∑
h=1

1

h
cos

(

2πht

T
+ φuh

)

, V(t) = V1

H

∑
h=1

1

h
cos

(

2πht

T
+ φvh

)

,

ω(t) =
P

Sx

H

∑
h=1

1

h
cos

(

2πht

T
+ φωh

)

, σ(t) =
P

Sx

H

∑
h=1

1

h
cos

(

2πht

T
+ φσh

)

. (24)

The parameter H refers to the number of harmonics contained in a particular oscillation; the
parameter varied as H = 0, 1, 2, 3. Each amplitude coefficient of the harmonics decreases with
1/h. The parameters φuh

, φvh
, φωh

, φσh
refer to the phase shifts of the hth harmonics. The pa-

rameters U0 and V0 refer to the horizontal and vertical direct components of the oscillating
velocity vector field; they were fixed at (U0, V0) = (0.1,−0.2) (pixels/frame). The param-
eters (U1, V1) refer to the amplitude coefficients of the first harmonics in the translational
component; they were fixed at (U1, V1) = (0.3,−0.5) (pixels/frame) except the assessment
of dynamic ranges. The set of the parameters (Sx, Sy) refers to the spatial size of an image
plane; all of the synthetic image sequences have Sx = Sy = 256 (pixels). In generating flow

fields, we partitioned an image plane into rectangular domains, the number of which is P2.
The particular domains have the spatial size of (Sx/P)× (Sy/P) (pixels2). Equations (23) and
(24) describe a flow field in a particular domain; a pixel site denoted by (xc, yc) refers to the
centre position of the particular domain. Several different values of the discrete parameter
P = 1, 2, 3, 4, 5 generate flow fields with different velocity gradients. The parameter P controls
the maximum velocity gradient within a particular domain. As the parameter P increases, the
velocity gradient also increases. Figure 2 shows a typical velocity vector field generated by
Eqs. (23) and (24), and the temporal changes of two velocity components observed at a pixel
site.
Image sequences utilised in the present experiments have the flow fields generated above;
particles having the brightness function of Eq. (22) visualise the flow fields. To confirm the
error dependence of the proposed methods on the density of particles dp, we changed the
diameter of Eq. (22) as R = 2, 4, 6, 8, 10 (pixels), and the number of particles as Np = 100, 200,

www.intechopen.com



Engineering the Future72

Parameter values
Method Model equations For synthetic image For real image

LOM+PA Eq. (6) + Eq. (8) Lx = Ly = 3 (pixels) Lx = Ly = 5 (pixels)
+ Phase averaging Lt = 1 (frame) Lt = 5 (frames)

La = 0 (pixel) La = 2 (pixels)

PM1 Eq. (6) + Eq. (8) Lx = Ly = 3 (pixels) Lx = Ly = 5 (pixels)
+ Eq. (13) Lt = 1 (frame) Lt = 5 (frames)

La = 0 (pixel) La = 2 (pixels)

PM2 Eq. (6) + Eq. (15) Lx = Ly = 3 (pixels) Lx = Ly = 5 (pixels)
+ Eq. (16) M = 3, La = 0 (pixel) M = 5, La = 2 (pixels)

β = 1.0 × 10−6 β = 1.0 × 10−3

ACM Eq. (1)+Eq. (2) Lx = Ly = 3 (pixels) Lx = Ly = 5 (pixels)
Lt = 1 (frame) Lt = 5 (frames)

Wx = Wy = 2 (pixels) Wx = Wy = 2 (pixels)

Table 1. Parameter values of the gradient-based methods (LOM+PA, PM1 and PM2) and the
matching-based one (ACM) applied to synthetic and real image sequences. When the param-
eter values are not explicitly stated in the particular figures showing experimental results, the
parameter values stated in this table were utilised. In LOM+PA, the phase-averaging process-
ing was applied to velocity vectors having |�v| < 2.0 (pixels/frame) as post-processing except
Fig. 6. Refer to Eqs. (11) and (12) for the estimation of spatio-temporal gradients on an image
brightness distribution function required in the gradient-based methods. The frame num-
ber utilised for the analysis of the synthetic image sequences was St = 128 (frames) except
Figs. 5(b) and 5(c).

300, 400, 500, 1000, 2000, 3000, 4000, 5000. Figure 3 shows snapshots of the synthetic image
sequences. The density of particles dp refers to the ratio of the number of the pixel sites having
brightness levels higher than the background level to the number of the whole pixel sites.

4.2 Accuracy assessment

To confirm the performance of the two proposed methods, we applied the proposed methods
and two ordinary ones to the synthetic image sequences generated above. We call the pro-
posed method utilising the phase constancy assumption of Eq. (13) and the error function of
Eq. (14) "PM1", and the other proposed method utilising the Fourier series of Eqs. (15) and
(16) and the error function of Eq. (17) "PM2". We realised the local optimisation method as
the ordinary gradient-based method. The method utilises the spatio-temporal local constancy
assumption of Eq. (8) and the error function of Eq. (9). In addition, the method utilises a
phase-averaging processing as post-processing. We call this ordinary gradient-based method
"LOM+PA". We also realised the average correlation method "ACM" proposed by Meinhart
et al. (2000) as the ordinary matching-based method. The method evaluates a reliable cross-
correlation function by averaging cross-correlation functions obtained within a temporal local
domain and/or at the time intervals of an oscillation period, as described in Section 2.1. These
four methods LOM+PA, PM1, PM2 and ACM have several parameters. Table 1 shows the pa-
rameter values chosen for the four methods in the most of the following experiments.
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(a)

Fig. 2. Typical synthetic flow field and its temporal velocity change. (a) A flow filed at
t = 0 (frame). (b) The temporal changes of the velocity components (u, v) observed at
(x, y) = (32, 32) (pixel). The spatial size of the flow field is Sx × Sy = 256 × 256 (pixels2).
The flow field was generated by Eqs. (23) and (24) with (U0 = 0.1, V0 = −0.2) (pixels/frame),
(U1 = 0.3, V1 = −0.5) (pixels/frame) and P = 1. The number of harmonics was H = 3, the
fundamental oscillation period was T = 25.6 (frames), and the phase shifts φuh

, φvh
, φωh

, φσh

of the hth harmonics were generated with random numbers.

Np=1000, R=4 (pixels) Np=5000, R=4 (pixels)

0 127 255
Brightness

Np=1000, R=8 (pixels) Np=5000, R=8 (pixels)

dp=19.5 (%) dp=57.5 (%) dp=65.0 (%) dp=97.3 (%)

Fig. 3. Snapshots of synthetic image sequences. All of the sequences consist of the spatial
size Sx × Sy = 256 × 256 (pixels2). Image brightness was quantised into 256 levels. Refer to
Eq. (22) for the brightness distribution function of a particle; B0 was set to a random number
in the range of 150 ≤ B0 ≤ 255. Particular images have Np = 1000, 5000 particles with the
diameter of R = 4, 8 (pixels). The parameter dp (%) refers to the density of particles, which is
the ratio of the number of the pixel sites having brightness levels higher than the background
brightness level B = 20 to the spatial size Sx × Sy.

The next root-mean-square (RMS) error measure Er evaluates the accuracy of an obtained
time-varying velocity vector field,

Er =

√

√

√

√

1

N

N

∑
i=1

∣

∣�vdi
−�vti

∣

∣

2
(25)
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Fig. 4. Dependence of the RMS error measures Er on the density of particles dp. Image se-
quences were analysed by (a) LOM+PA, (b) PM1, (c) PM2 and (d) ACM; the sequences have
the oscillating flow field with H = 3 and P = 1 (Fig. 2) and Np = 100, 200, 300, 400, 500, 1000,
2000, 3000, 4000, 5000 particles with the diameter of R = 2, 4, 6, 8, 10 (pixels) (Fig. 3). Refer to
Table 1 for the parameter values of the four methods and Eq. (25) for the RMS error measure.

where N refers to the number of all obtained velocity vectors, �vdi
(x, y, t) = (udi

, vdi
) refers

to the ith obtained velocity vector (components) determined at the pixel site (x, y, t) and
�vti

(x, y, t) = (uti
, vti

) refers to its corresponding true vector. Since ACM restricts the search
area to ±2 (pixels) with Wx = Wy = 2 (pixels) in computing a cross-correlation function (see
Table 1), we discarded the velocity vectors having the absolute speed larger than 2.0 (pix-
els/frame) in computing the RMS error measure except the assessment of dynamic ranges.
First, we assessed the dependence of the RMS error measures on the density of particles dp

for the image sequences having the different diameters of R and the different numbers of par-
ticles Np. Figure 4 shows the obtained dependence. As the density of particles dp increases
in its rather smaller range, the RMS error measures decrease for the gradient-based meth-
ods LOM+PA, PM1 and PM2. However, when dp becomes large, the error measures again
increase as dp increases. In particular, the dependence obtained for PM2 show this trend of
increasing error measures in the range of about dp > 70 (%) for R = 8, 10 (pixels). The high
density due to a large particle diameter and the large number of particles causes occluding
boundaries among several particles. Along the occluding boundaries, it is difficult to estimate
accurate gradients on a brightness pattern. In the gradient-based methods, erroneous gradi-
ents caused by the occluding boundaries bring erroneous velocity vectors. After the density of
particles reaches at a saturated value such as dp = 90 (%) with R = 10 (pixels), the occluding
boundaries occupies most of an image sequence. Thus, the error measures highly increase as
dp increases under the saturated density. The dependence obtained for ACM differs from that
for the gradient-based methods. The RMS error measures for ACM monotonically decrease as
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the density of particles increases. The matching-based approach does not utilise gradients, but
does a cross-correlation function between two successive image frames. The spatial arrange-
ment of particles is important for computing a high reliable correlation function. When the
density of particles is low, there are many candidates of pattern correspondences between two
image frames. Thus, the correlation function obtained under such the low density has uncer-
tainty in finding the peak position of the function. The high density of randomly distributed
particles reduces the uncertainty in finding the peak position. The dependence obtained here
shows that PM2 has the best accuracy among the four methods. In particular, the large size
of the diameter such as R = 8, 10 (pixels) brings the best accuracy in the middle range of the
density such as about 60 < dp < 80 (%). In addition, by comparing LOM+PA and PM1, we
can recognise that PM1 is somewhat superior to LOM+PA in the low density of particles.
Figure 5(a) shows the dependence of the RMS error measures on the parameter P, which
controls spatial velocity gradients. The four methods assume that a brightness pattern remains
during its motion and that a flow field is locally uniform. As the parameter P increases, these
assumptions on a rigid pattern and a uniform flow field become to be unmatched to the image
sequences. The dependence obtained by the four methods shows similar trends that the RMS
error measures become large as the parameter P increases.
The four methods assume that the oscillation period T is constant during the number of mul-
tiple periods K, namely, during St = KT. The ideal situation for the methods is that the
oscillation period is constant during a huge number of image frames, and that all of these
image frames are provided to determine velocity vector fields by the methods. In practical sit-
uations, we can utilise only a limited number of image frames. Figures 5(b) and 5(c) show the
dependence of the RMS error measures on the frame number St = KT for the image sequences
having the number of particles Np = 1000 and Np = 5000. When the number of particles con-
tained in an image sequence is small, such as, Np = 1000, the error measures on the four
methods decrease as the frame number St increases. When the number of particles is large,
such as, Np = 5000, the error measures on the methods except ACM do not decrease as the
frame number increases. For the large number of particles, we can observe spatio-temporal
brightness changes all over the image plane and during whole image frames. Therefore, the
small number of image frames is enough for high accurate velocity determination. This result
shows that increasing the frame number is effective when an image sequence has the small
number of particles. When an image sequence has the large number of particles, increasing
the frame number is not so effective for the accuracy improvement of the gradient-based ap-
proach. Furthermore, we compare the two gradient-based methods PM1 and PM2. When St is
less than 64 (frames) in the result obtained for Np = 1000 [Fig. 5(b)], PM1 is superior to PM2.
The model utilised in PM2 has more unknown parameters, such as am, bm, cm, dm than that
in PM1. In order to estimate accurately many unknown parameters, it is necessary to have a
huge number of data points. Thus, when St is small, there are not enough image frames, that
is, not enough data points to achieve the accurate determination of the unknown parameters
in PM2. When we determine an oscillating flow field with the slightly varying oscillation pe-
riod and when the number of particles is small, we are not able to utilise many image frames.
In this case, we can utilise PM1 to achieve better accuracy.
When the oscillation period T is enough large, or when a velocity vector field is stationary,
we can expect more accuracy of the methods LOM+PA, PM1 and ACM by increasing the size
Lt on the temporal constancy assumption. We confirmed the dependence of the RMS error
measures on the parameter Lt for the several image sequences generated with the different
values of H = 0, 1, 2, 3. Figures 5(d) and 5(e) show the obtained dependence. The parameter
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Fig. 5. Dependence of the RMS error measures Er on several parameter values. Figure (a)
shows the dependence on the parameter P of velocity gradients. The dependence was evalu-
ated for LOM+PA, PM1, PM2 and ACM with the image sequences of H = 3 and Np = 5000.
Figures (b) and (c) shows the dependence on the frame number St = KT (frames). The depen-
dence was evaluated for LOM+PA, PM1, PM2 and ACM with the image sequences of H = 3,
P = 1, and (b) Np = 1000 and (c) Np = 5000. Figures (d) and (e) shows the dependence on the
parameter of the temporal local domain Lt. The dependence was evaluated for (d) PM1 and
(e) ACM with the image sequences of H = 0, 1, 2, 3, P = 1, and Np = 3000. Figure (f) shows
the dependence on the density of particles dp for the spatial size La = 0, 2, 4 (pixels) and the
particle diameter R = 4, 8 (pixels). The dependence was evaluated for PM2 with the image
sequences of H = 3, P = 1 and Np = 100, 200, 300, 400, 500, 1000, 2000, 3000, 4000, 5000. We
fixed a particle diameter of the image sequences utilised for the evaluation at R = 4 (pixels)
except for (f). Refer to Table 1 for the parameter values of the four methods, Fig. 2 and Eqs. (23)
and (24) for synthetic flow fields, Fig. 3 for synthetic images, and Eq. (25) for the RMS error
measure.

H refers to the number of harmonics contained in the temporal change of an oscillating flow
field [see Eq. (24)]. Thus, increasing the parameter H brings the shorter oscillation period.
A flow field with H = 0 is stationary; a flow field with H ≥ 1 has the harmonics with the
oscillation period T/H (frames). On the dependence of PM1, as the parameter Lt increases, the
error measures also increase monotonically except the dependence of H = 0. The dependence
of ACM has the minimum RMS error measures at Lt = 1 or 2 (frames) for H = 1 and at
Lt = 1 (frame) for H = 2, 3. From the dependence, we can increase the size Lt of ACM
more than that of PM1. In addition, on the dependence of H = 0, we can highly increase the
accuracy of ACM by increasing the size Lt, as compared with PM1.
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In the above experiments, the gradient-based methods LOM+PA, PM1 and PM2 estimated
the spatio-temporal gradients fx, fy, ft by the forward difference method, which utilised the

spatio-temporal domain consisting of 2× 2 (pixels2) and 2 (frames) and averaged the four val-
ues of the forward differences [see Eq. (11)]. We confirmed the dependence of the RMS error
measures on the spatial size of the rectangular domain (2La + 1)× (2La + 1) (pixels2), which
were utilised for averaging the gradients [see Eq. (12)]. Figure 5(f) shows the dependence of
the RMS error measures on the parameter La. The obtained dependence shows that we can
improve the accuracy of PM2 by increasing the spatial size La. In particular, we can highly
improve the accuracy with La = 2 (pixels), compared to that with La = 0 (pixel).

4.3 Assessment of dynamic ranges

The dynamic ranges of the four methods were assessed for synthetic image sequences having
oscillating flow fields. The flow fields were generated with the parameter values of U1 =
0.3× Q (pixels/frame) and V1 = −0.7× Q (pixels/frame) for Q = 1, 2, · · · , 10 in Eqs. (23) and
(24). As the parameter Q increases, the difference between the maximum absolute velocity and
the minimum one contained in a generated flow field also increases. The other parameters of
Eqs. (23) and (24) have the same values as those of Fig. 2. The synthetic image sequences have
Np=5000 particles with the diameter of R = 10 (pixels).
The next equation evaluates the dynamic range D of a method,

D = (vtmax − vtmin )/Er, (26)

where vtmax = maxi |�vti | and vtmin = mini |�vti | respectively refer to the maximum absolute flow
velocity and the minimum one of all the true velocity vectors �vti

for i = 1, 2, · · · , N, and Er

refers to the RMS error measure of Eq. (25) evaluated for the determined velocity vectors of
|�vd| < 10 (pixels/frame).
Figure 6 shows the dependence of the dynamic ranges on the parameter Q for the four meth-
ods. The gradient-based methods LOM+PA, PM1 and PM2 show the similar trends that the
dynamic ranges D rapidly decrease around Q = 2, 3, 4 as the parameter Q increases. The dy-
namic ranges of the gradient-based methods finally reach the very small constant value about
D ≃ 1.3. Since the gradient-based methods have difficulty on determining a large velocity
vector, the RMS error measures become quite large for the large values of Q. In comparison
to the dependence of the gradient-based methods, the matching-based method ACM shows
the different dependence that the dynamic range D increases in the range of about Q < 4 and
it reaches the almost constant large value about D = 50 ∼ 60 in the range of about Q > 5.
In determining large velocity, the matching-based approach is essentially much more suitable
than the gradient-based one.
By comparing the dynamic ranges of the four methods, we confirmed that the dynamic range
of the matching-based method is larger than those of the gradient-based ones. However,
when focusing on low flow speed (Q = 1), we confirmed that the dynamic ranges of the
gradient-based methods are larger than the matching-based one. When we analyse a real im-
age sequence without preliminary knowledge on a velocity vector field, the matching-based
approach is better than the gradient-based one, since the maximum flow velocity is prelim-
inary unknown in practical situations. However, when we furthermore require dense and
accurate analysis for low flow speed, we can utilise the gradient-based approach having the
larger dynamic range for the low flow speed. By combining the matching-based approach
with the gradient-based one according to the proposal of Sugii et al. (2000), we can expect to
realise the new method having the large dynamic range for the large range of flow speed.
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Fig. 6. Dependence of the dynamic range D [Eq. (26)] on the parameter Q. Image sequences
utilised here have the oscillating flow fields generated with H = 3, P = 1, (U0 = 0.1, V0 =
−0.2) (pixels/frame), T = 25.6 (frames) and (U1 = 0.3 × Q, V1 = −0.7 × Q) (pixels/frame)
for Q = 1, 2, 3, · · · , 10. The size of the image sequences is Sx × Sy = 256 × 256 (pixels2)
and St = 128 (frames). The image sequences have Np = 5000 particles with the diameter of
R = 10 (pixels). The four methods LOM+PA, PM1, PM2 and ACM were applied to the image
sequences. The parameter values of the four methods were as follows: Lx = Ly = 10 (pixels),
Lt = 0 (frame) for all of the methods, La = 0 (pixel) for the gradient-based methods LOM+PA,
PM1 and PM2, M = 3 and β = 1.0 × 10−6 for PM2 and Wx = Wy = 10 (pixels) for ACM.
Determined velocity vectors having |�vd| < 10 (pixels/frame) were utilised for the evaluation
of a dynamic range.

4.4 Stability of the proposed method PM2 on the number of harmonics

The method PM2 has the parameter M that refers to the number of harmonics contained in a
temporal velocity change. The parameter M is unknown in practical situations. Figure 7(a)
shows the dependence of the RMS error measures on the parameter M for three experimental
conditions [Figs. 7(a-1), 7(a-2) and 7(a-3)], and two additional ones [Figs. 7(a-4) and 7(a-5)].
The image sequences analysed here have the oscillating flow field with H = 3. Thus, accord-
ing to the value H = 3, the parameter M of PM2 should be larger than 3. The method PM2
also has the parameter β, which refers to the ratio between the maximum singular value and
the threshold one for the singular value decomposition. The dependence of Figs. 7(a-1), 7(a-2)
and 7(a-3) was obtained with β = 1.0 × 10−6; that of Figs. 7(a-4) and 7(a-5) was obtained with
β = 1.0 × 10−3.
Figure 7(a-1) shows the dependence obtained for the experimental condition of Np = 5000
and Lx = Ly = 3 (pixels). The dependence is almost flat in the range of M ≥ 3. Figure 7(a-
2) shows the dependence obtained for the experimental condition of Np = 1000 and Lx =
Ly = 3 (pixels). The dependence shows the similar trend to that of Fig. 7(a-1). However,
the error measure slightly increases as the parameter M increases, in particular, in the range
of M ≥ 12. In comparison to the dependence of Figs. 7(a-1) and 7(a-2), the dependence of
Fig. 7(a-3) obtained for the experimental condition of Np = 5000 and Lx = Ly = 0 (pixel)
shows that the error measure more rapidly increases as the parameter M increases in the
range of M > 3. When the number of particles Np is small, and/or when the spatial sizes of
Lx and Ly are small, there is little brightness change utilised for velocity determination. Thus,
the dependence of Figs. 7(a-1), 7(a-2) and 7(a-3) shows that the small number of particles
and/or the small spatial sizes of Lx and Ly cause error in particular for the larger number

of M. The proposed method PM2 with the parameter value of β = 1.0 × 10−3 provided the
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Fig. 7. Performance of the proposed method PM2 and its instability on the parameter M re-
ferring to the number of harmonics. (a) The dependence of the RMS error measures Er on the
parameter M. The image sequence analysed in (a-1), (a-3) and (a-5) has Np = 5000 particles
with the diameter of R = 4 (pixels); the sequence done in (a-2) and (a-4) has Np = 1000 par-
ticles with the same diameter. The parameters Lx and Ly were Lx = Ly = 3 (pixels) in (a-1),

(a-2) and (a-4) and Lx = Ly = 0 (pixel) in (a-3) and (a-5). The parameter β was β = 1.0 × 10−6

in (a-1), (a-2) and (a-3) and β = 1.0 × 10−3 in (a-4) and (a-5). (b) The two sets of singular val-
ues Si obtained by the singular value decomposition. One of the two sets was obtained at the
pixel site (x = 128, y = 128) (pixel) and the other one was done at (x = 137, y = 198) (pixel).
The parameter values utilised here were Lx = Ly = 0 (pixel) and M = 10. The horizon-
tal coordinate refers to the subscript index i in the range of 0 ≤ i < (2 + 4M) and the
vertical one does to the ith singular value Si. (c) Temporal brightness changes observed
at the two pixel sites (x = 128, y = 128) (pixel) and (x = 137, y = 198) (pixel). Bright-
ness was averaged within the spatial local domain consisting of 7 × 7 (pixels2) at a particu-
lar frame. (d) The temporal changes of two velocity components (ud, vd) determined at the
pixel site (x = 128, y = 128) (pixel) and those of their corresponding true ones (ut, vt). The
parameter values utilised here were Lx = Ly = 0 (pixel), M = 10 and β = 1.0 × 10−6.
(e) The temporal changes of two velocity components (ud, vd) determined at the pixel site
(x = 137, y = 198) (pixel) and those of their corresponding true ones (ut, vt). The parameter
values utilised here were the same as (d) except β = 1.0 × 10−3. (f) The temporal changes
of two velocity components (ud, vd) determined at the same pixel site as (e) and their corre-
sponding true ones (ut, vt). The parameter values utilised here were the same as (d). The
image sequence utilised in (b) ∼ (f) has Np = 1000 particles with the diameter of R = 4 (pix-
els) (Fig. 3). All of the image sequences have the oscillating flow field with H = 3 and P = 1
(see Fig. 2). Refer to Table 1 for the other parameter values of PM2 and Eq. (25) for the RMS
error measure.
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better dependence as shown in Figs. 7(a-4) and 7(a-5) in the larger number of M. Note that
the experimental conditions and the parameter values were the same between Figs. 7(a-2) and
7(a-4) and between Figs. 7(a-3) and 7(a-5), except the parameter value of β.
Let us focus on the difference between the dependence of Fig. 7(a-2) and that of Fig. 7(a-
4). With the parameter value of M = 10, the RMS error measure with β = 1.0 × 10−3 in
Fig. 7(a-4) is smaller than that with β = 1.0 × 10−6 in Fig. 7(a-2). Figures 7(b) ∼ 7(f) show
numerical situations that caused error in the velocity determination with β = 1.0 × 10−6, and
that avoided the error with β = 1.0 × 10−3. Figure 7(b) shows the two sets of singular values
obtained by the singular value decomposition at the two pixel sites (x = 128, y = 128) (pixel)
and (x = 137, y = 198) (pixel). Since the method PM2 solves the set of linear equations
Eq. (18) by utilising the singular value decomposition, the method provides a set of singular
values at a particular pixel site.
There is a large difference between the two sets of singular values. On the one hand, all of the
singular values obtained at (x = 128, y = 128) (pixel) are almost similar in their magnitude.
The ratio mini(Si)/ maxi(Si) between the minimum singular value and the maximum one
is larger than 0.1. On the other hand, the ratio computed for the singular values obtained
at (x = 137, y = 198) is quite small [mini(Si)/ maxi(Si) ≃ 10−16]. Singular values much
smaller than the maximum one are numerically meaningless and harmful in solving the set of
linear equations (Press et all., 1988). (This situation is so-called "ill-condition".) The value of
β maxi(Si) refers to the threshold value for the rejection of much smaller singular values. The
appropriate parameter value of β for the singular value decomposition can suppress the error
due to little brightness change and can avoid the instability of PM2.
Figure 7(c) shows clear difference between the temporal brightness changes observed at the
two pixel sites (x = 128, y = 128) (pixel) and (x = 137, y = 198) (pixel), where brightness was
averaged within the spatial local domain consisting of 7 × 7 (pixels2) at a particular frame.
The temporal brightness change observed at (x = 137, y = 198) (pixel) has little brightness
change, compared to that observed at the pixel site (x = 128, y = 128) (pixel). The brightness
change is insufficient for velocity determination at the pixel site (x = 137, y = 198). This is the
reason why some of the singular values obtained at the pixel site (x = 137, y = 198) (pixel)
are very small compared to other singular values.
At the pixel site (x = 128, y = 128) (pixel) having much brightness change, PM2 determined
an accurate velocity vector with either β = 1.0 × 10−3 or β = 1.0 × 10−6. Figure 7(d) shows
the temporal changes of the two velocity components ud and vd obtained at the pixel site and
their corresponding true ones ut and vt. The obtained velocity components are quite similar
to the true ones. The two velocity components ud and vd were obtained with β = 1.0 × 10−6.
Therefore, we can restate that the much brightness change does not cause the instability of
PM2. In this case, we do not have to mention the choice of the parameter value β.
At the pixel site (x = 137, y = 198) (pixel) having little brightness change, the temporal
changes of the two velocity components ud and vd obtained with β = 1.0× 10−3 [see Fig. 7(e)]
differ from those obtained with β = 1.0× 10−6 [see Fig. 7(f)]. The temporal changes of Fig. 7(e)
are much better than those of Fig. 7(f). The comparison between the two figures of Figs. 7(e)
and 7(f) shows that the singular value decomposition with the appropriate parameter β sup-
presses error in the determination of a velocity vector field and avoids the instability of PM2.
However, the method automatically choosing an appropriate parameter β is still the problem.
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Fig. 8. Performance of the two proposed methods determining the number of multiple peri-
ods. The horizontal coordinates refer to the density of particles dp and the vertical ones do to
the determined number of multiple periods K. The height of a particular impulse shows the
determined number K. The true number is Kt = 5.0. Both the figures omitted impulses being
out of the range 3.0 ≤ K ≤ 7.0. Figure (a) was obtained by the proposed method analysing
the temporal changes of velocity vectors by the Fourier analysis method; the velocity vectors
were tentatively determined by the ordinary gradient-based method of Eq. (7). Figure (b)
was obtained by the proposed method analysing spatio-temporal sectional images by also the
Fourier analysis method. Both the figures were obtained from the synthetic image sequences
having the oscillating flow field with H = 3 and P = 1 (Fig. 2) and Np = 100, 200, 300, 400,
500, 1000, 2000, 3000, 4000, 5000 particles with the diameter of R = 2, 4, 6, 8, 10 (pixels) (Fig. 3).
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Fig. 9. Spatio-temporal sectional image and its direction distribution map utilised in the de-
termination of an oscillation period and the number of multiple periods. The spatio-temporal
sectional image (a) was sliced from a synthetic image sequence at x = 64 (pixel) within the
y − t plane. The sequence has the oscillating flow field with H = 3 and P = 1 (Fig. 2)
and Np = 5000 particles with the diameter of R = 4 (pixels). The size of the sequence is

Sx × Sy = 256 × 256 (pixels2) and St = 128 (frames). The direction distribution map (b) was
obtained from the image (a) by the spatio-temporal filter detecting the direction of a short line
segment. The parameter L of the filter in Eq. (20) was set to 3 (pixels) [see also Fig. 1(b)].

4.5 Performance of the methods determining the number of multiple periods

We investigated the performance of the two methods determining the number of multiple
periods K from an image sequence. As described in the section 3.2, one of the two methods
analyses tentatively determined velocity vectors by the Fourier analysis method; the other
one analyses the temporal changes of pattern directions on spatio-temporal sectional images
by also the Fourier analysis method.
Figure 8 shows the number of multiple periods K determined by the two methods from syn-
thetic image sequences. The number K determined by the former proposed method analysing
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tentatively determined velocity vectors is almost correct for most of the synthetic image se-
quences. The latter proposed method analysing spatio-temporal sectional images provided
several erroneous results under the condition of about dp < 30 (%). Under the low density of
dp, the latter method provided several abnormal results having huge error, compared to the
former method.
Figure 9 shows a spatio-temporal sectional image sliced from a synthetic image sequence and
its direction distribution map obtained by the direction detection filter. Since the latter pro-
posed method analyses brightness patterns on a spatio-temporal sectional image, its perfor-
mance directly depends on the density of particles. Furthermore, the latter proposed method
assumes that particles are oscillating on a spatio-temporal sectional image of a y − t image
plane or a x − t image plane (Fig. 1). However, the assumption is not satisfactory for the
synthetic image sequence.
By comparing the results obtained by the two methods, we can conclude that the former
proposed method is better than the latter one in particular under the low density of particles.
Under the high density of particles, such as dp > 50 (%), both the methods work well.

4.6 Analysis of a real image sequence

We present the experimental results obtained when applying the methods LOM+PA, PM1,
PM2 and ACM to a real image sequence. The sequence was captured through a camera for
the Karman vortices flow field visualised by particles with the sampling frequency of 30 (Hz)
[Fig. 10(a)]. We obtained a frequency distribution on brightness from the real image sequence
as shown in Fig. 10(b). We estimated the threshold level segmenting the particle region, which
has higher brightness levels, from the background region. The estimated threshold level was
100 in 256 brightness levels. By counting the number of pixel sites which had brightness levels
larger than the threshold one, we estimated the density of particles to be dp = 47.3 (%).
To confirm the maximum flow speed contained in the real image sequence, we determined a
time-varying velocity vector field by an ordinary matching-based method. While the matching-
based approach is appropriate for a high flow speed, the gradient-based approach is not ap-
propriate for a high flow speed of more than 1.0 (pixel/frame). We applied the ordinary
matching-based method to a real image sequence re-sampled from the original real image
sequence. The sampling frequency of the re-sampled image sequence was 15 (Hz). The or-
dinary matching-based method has the template consisting of the 7 × 7 (pixels2) rectangular
domain [Lx = Ly = 3 (pixels)]; the search area is the 11 × 11 (pixels2) rectangular domain
[Wx = Wy = 5 (pixels)]. Figure 10(c) shows a frequency distribution on determined abso-
lute speed. The distribution shows that most of the pixel sites (98 %) have an absolute speed
of less than 2.0 (pixels/frame), which corresponds to 1.0 (pixel/frame) in the original real
image sequence. Thus, most of the velocity vectors are appropriate for the gradient-based ap-
proach. This result allowed us to apply the gradient-based methods to the original real image
sequence.
We determined the number of multiple periods K and the oscillation period T from the real
image sequence. First, we determined the parameters K and T by the proposed method
analysing the temporal change of a tentatively determined velocity vector field. Figure 11(a)
shows the temporal changes of the two velocity components tentatively determined by the
ordinary gradient-based method with the local optimisation. The application of the Fourier
analysis method to the temporal velocity changes provided power spectrum distribution func-
tions. Figure 11(b) shows the sum of the functions obtained at all of the pixel sites for both
the velocity components. The maximum peak position in the averaged power spectrum dis-
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Fig. 10. Real image sequence of the Karman vortices flow field visualised by particles. (a) A
snapshot of the image sequence. The size of the sequence is Sx × Sy = 80 × 56 (pixels2) and
St = 1856 (frames). Image brightness was quantised into 256 levels. The sampling frequency
was 30 (Hz). The main stream was directed from right to left. A cylinder was located at the
right side. (b) Frequency distribution on brightness. The threshold brightness level segment-
ing the foreground expressing particles from the background was estimated to be 100 in 256
brightness levels. The density of particles was estimated as dp = 47.3 (%). (c) Frequency
distribution on absolute speed determined by an ordinary matching-based method with a
sub-pixel approximation method. The matching-based method was applied to an image se-
quence re-sampled from the original real image sequence (a) with the sampling frequency of
15 (Hz).
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Fig. 11. Determination of the number of multiple periods K from the real image sequence of
Fig. 10. (a) The temporal changes of the two velocity components u and v determined at the
centre of the image plane by the local optimisation method. The spatio-temporal local domain
δS × δT for the constancy assumption consists of 3 × 3 (pixels2) and 3 (frames) [Lx = Ly =
1 (pixel) and Lt = 1 (frame)]. (b) Power spectrum distribution function obtained by the one-
dimensional temporal Fourier analysis method from the temporal changes of both the velocity
components. The maximum peak position in the distribution function provides the number
of multiple periods K = 11.019 and the oscillation period T = 168.4 (frames).

tribution function provided K = 11.019 and T = 168.4 (frames). Next, we applied the other
proposed method analysing spatio-temporal sectional images to the real image sequence. Fig-
ure 12(a) shows a spatio-temporal sectional image on the y − t plane sliced at the centre pixel
site of the image plane. The filter detecting the direction of a short line segment provides
the direction distribution map of Fig. 12(b). The application of the temporal Fourier analysis
method to the direction distribution maps obtained at all of the pixel sites provided power
spectrum distribution functions. Figure 12(c) shows the sum of the power spectrum distri-
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Fig. 12. Determination of the number of multiple periods K from the real image sequence of
Fig. 10. (a) Spatio-temporal sectional image sliced at the centre of the image plane within the
y − t plane. (b) Direction distribution map obtained by the spatio-temporal filter detecting the
direction of a short line segment from the spatio-temporal sectional image. The parameter L

referring to the size of the circular local domain of the filter was set to 3 (pixels) [Fig. 1(b)].
(c) Power spectrum distribution function obtained by the one-dimensional temporal Fourier
analysis method from the direction distribution map. The maximum peak position provides
K = 11.012 and the oscillation period T = 168.5 (frames).

bution functions. The maximum peak position of the function provided K = 11.012 and
T = 168.5 (frames). Since we can clearly distinguish the peak positions in both the power
spectrum distribution functions Figs. 11(b) and 12(c), we can expect that both the determined
oscillation periods are reliable. However, the previous results obtained for the synthetic im-
age sequences (see Section 4.5) show that the former method analysing tentatively determined
velocity vectors works better than the other latter one. Thus, we utilise K = 11.019 and
T = 168.4 (frames) in the following analysis. In addition, the power spectrum distribution
function [Fig. 11(b)] obtained by the former method shows that there exists at least the third
harmonics in the temporal change of the flow field. This result implies that the parameter M

for PM2 should be larger than 3.
We determined velocity vector fields from the real image sequence by LOM+PA, PM1, PM2
and ACM with the above parameters K = 11.019 and T = 168.4 (frames). Table 1 shows the
parameter values utilised in the four methods. Figure 13(a) shows the temporal changes of
velocity vectors determined at the centre of the image plane. The horizontal components u de-
termined by the four methods show very similar temporal changes. The vertical components
v determined by the gradient-based methods LOM+PA, PM1 and PM2 are smaller than that
of the matching-based method ACM in their amplitude. To confirm the validity of the verti-
cal components, we roughly determined the vertical velocity component v around the centre
of the image plane, by tracking a distinguishable particle with the naked eyes during t =
86 ∼ 128 (frame). The result of the rough determination was about v = −0.35 ∼ −0.40 (pix-
els/frame). Thus, by comparing this result with Fig. 13(a), we confirm that the result of ACM
is more consistent with that of the naked eyes than those of the gradient-based methods on
the vertical velocity component.

www.intechopen.com



Gradient-based approach for determination of oscillating low ields in PIV 85



 



  
  



¬

     

¬

¬





 

Velocity(pixels/frame)

t (frame)

(a) LOM+PA:u      v
PM1:u      v
PM2:u      v

ACM:u      v

-0.4

-0.2

 0.2

 0.4

0  40  80  120  160

 0.0

|div(v)| (1/frame)

t (frame)

(b)

0.00

 0.01

 0.02

0 40 80 120 160

LOM+PA PM1

PM2

ACM

rot(v) (1/frame)

t (frame)

(c)

-0.06

-0.04

-0.02

0.00

 0.02

 0.04

 0.06

0  40  80  120  160

LOM+PA

PM1

PM2

ACM

Fig. 13. Comparison among the velocity vector fields determined by LOM+PA, PM1, PM2
and ACM from the real image sequence of Fig. 10. (a) The temporal changes of the velocity
components (u, v) determined at the centre of the image plane. (b) The temporal changes of

the divergence measures |div(�v)| averaged over an image plane at a particular frame. (c) The
temporal changes of the rotation values rot(�v) obtained at the centre of the image plane. Refer
to Table 1 for the parameter values of the four methods.
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(b)(a)

Fig. 14. Velocity vector fields determined by (a) PM2 and (b) ACM from the real image se-
quence of Fig. 10. Both the fields were obtained at t = 120 (frame). Refer to Table 1 for the
parameter values of PM2 and ACM.

We measured the average of the absolute divergence |div(�v)| for each of the determined ve-
locity vector fields at a particular frame. Since the divergence measure is expected to be zero
for a non-compressible fluid flow field, it becomes a good measure to show accuracy on a
determined velocity vector field. Figure 13(b) shows the temporal changes of the divergence
measures; the measures of LOM+PA, PM1 and PM2 are much smaller than that of ACM.
Furthermore, we also measured the rotation value rot(�v) for each of the determined veloc-
ity vector fields. Figure 13(c) shows the temporal changes of the rotation measures at the
centre of the image plane. These temporal changes show similar signals. However, the tem-
poral change of ACM has the several unusual values of rot(�v) at about t = 40, 70, 120 (frame).
Figures 14(a) and 14(b) respectively show the velocity vector fields determined by PM2 and
ACM at t = 120 (frame). The velocity vector field determined by ACM lacks some vectors
around its centre. (Such the regions lacking vectors suddenly appear and disappear.) We do
not clearly understand the mechanism causing the unusual values of rot(�v) and the lack of
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Fig. 15. Temporal changes of two velocity components (u, v) and the sets of singular values
obtained by the proposed method PM2 from the real image sequence (Fig. 10). The temporal
changes were obtained with the parameter values of (a) M = 1, 3, 5 and (b) M = 10, 20, 50.
(c) The sets of the singular values Si were obtained with M = 1, 3, 5, 10, 20, 50. All of the results
were obtained at the centre of the image plane. The horizontal coordinate in (c) refers to the
subscript index i in the range of 0 ≤ i < (2 + 4M) and the vertical one does to the ith singular
value Si. Refer to Table 1 for the other parameter values of PM2.

velocity vectors. Figure 13(c) shows that the unusual values appear at the frames having high
rotational values. In addition, Fig. 14(b) shows that the region lacking vectors exists around
the high rotational field. Thus, the unusual changes and the regions lacking vectors seem to
be caused by high rotational fields. We expect that the combination of ACM and the higher
order matching-based approach (e.g. Scarano, 2002) solves this problem.
Finally, we analysed the real image sequence by PM2 with several different parameters of M.
Figure 15 shows the temporal changes of velocity vectors obtained with M = 1, 3, 5, 10, 20, 50
at the centre of the image plane. The parameter value M = 1 is too small to express the tempo-
ral change of the velocity vector. In particular, the temporal change of the horizontal compo-
nent u determined with M = 1 clearly differs from those with M = 3, 5 as shown in Fig. 15(a).
The parameter value M = 50 is too large; we obtained the noisy components as shown in
Fig. 15(b). Figure 15(c) shows the sets of singular values obtained by the singular value de-
composition at the centre of the image plane. The ratio of the minimum singular value to the
maximum one is about 1/10 for all of the parameter values M = 1, 3, 5, 10, 20, 50. Since all
of the singular values Si were larger than the threshold value β maxi(Si) for β = 1.0 × 10−3,
all of them were utilised in solving the set of linear equations. The previous result for the
synthetic image sequences (Fig. 7) shows that the singular value decomposition can avoid er-
roneous results due to the high harmonics with the appropriate parameter β. However, the
real experimental result shows that the proposed method PM2 also requires further develop-
ment on choosing the appropriate parameters M and β. The combination of the singular value
decomposition and the methods automatically choosing the appropriate parameters M and β
is expected to improve the accuracy and the stability of the proposed method PM2.

5. Conclusion

We proposed two methods for determining oscillating velocity vector fields in the gradient-
based approach. One of the methods utilises a phase-constancy assumption on velocity; the
other one does the Fourier series expressing a temporal velocity change. Both the proposed
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methods take account of the oscillation characteristic in their error functions. The proposed
two methods preliminarily require the parameters of an oscillation period and the number of
multiple periods. Thus, we have also proposed two methods for determining the parameters
in advance. One of the methods analyses the temporal changes of velocity vectors tenta-
tively determined by an ordinary gradient-based method; the other method analyses spatio-
temporal sectional images sliced from an original image sequence. Both the methods utilise
the one-dimensional Fourier analysis method; the maximum peak position of an obtained
power spectrum distribution provides the parameters.
The proposed gradient-based methods were compared to ordinary gradient- and matching-
based methods through the analysis of synthetic and real image sequences. Results for the
synthetic image sequences show that the proposed method utilising the Fourier series achieves
the best accuracy for the image sequences having huge image frames, low flow speed and
the middle density of particles. When the flow speed is high, the ordinary matching-based
method is better. When the number of image frames utilised for analysis is small, the pro-
posed method utilising the phase-constancy assumption as an additional constraint is better
than the other proposed method. In addition, we confirmed performance of the proposed
two methods determining an oscillation period and the number of multiple periods for the
synthetic image sequences. Both the methods work well under the high density of particles.
The method analysing tentatively determined velocity vectors works better than the other one
analysing a spatio-temporal sectional images under the low density.
There are three future research topics. The first one is on the instability of the proposed
method utilising the Fourier series. The method becomes unstable, when the number of har-
monics becomes large. The singular value decomposition can partially avoid the instability by
the choice of an appropriate threshold value utilised for the rejection of obtained small singu-
lar values. However, the proposed method still requires an additional method automatically
choosing the appropriate threshold value as well as the appropriate number of harmonics.
The second one is on a dynamic range. The gradient-based approach is generally inappro-
priate to high flow speed, in comparison to the matching-based method. Oscillating veloc-
ity vector generally ranges from low flow speed to high flow speed. Thus, a wide dynamic
range is required for oscillating flow fields in PIV. The combination of the proposed gradient-
based methods with the ordinary matching-based one is expected to achieve the wide dy-
namic range. The last one is on the constancy assumption of the oscillation period. Since
the proposed methods assume the oscillation period to be constant, they are not applicable
to image sequences with time-varying oscillation period. We need to solve the limitation of
assuming the constant oscillation period for more realistic situations.

6. References

Adrian, R. J. (1991). Particle-imaging techniques for experimental fluid mechanics, Annual
Review of Fluid Mechanics Vol. 23: 261–304.

Astarita, T. (2009). Adaptive space resolution for PIV, Experiments in Fluids Vol. 46 (No. 6):
1115–1123.

Corpetti, T., Mémin, É. & Pérez, P. (2002). Dense estimation of fluid flows, IEEE Transactions
on Pattern Analysis and Machine Intelligence Vol. 24 (No. 3): 365–380.

Cowen, E. A. & Monismith, S. G. (1997). A hybrid digital particle tracking velocimetry tech-
nique, Experiments in Fluids Vol. 22 (No. 3): 199–211.

Fincham, A. & Delerce, G. (2000). Advanced optimization of correlation imaging velocimetry
algorithms, Experiments in Fluids Vol. 29 (Supplement 1): S13–S22.

www.intechopen.com



Engineering the Future88

Hart, D. P. (2000). PIV error correction, Experiments in Fluids Vol. 29 (No. 1): 13–22.
Hassan, Y. A., Blanchat, T. K. & Seeley, C. H. (1992). PIV flow visualisation using particle

tracking techniques, Measurement Science and Technology Vol. 3 (No. 7): 633–642.
Horn, B. K. P. & Schunck, B. G. (1981). Determining optical flow, Artificial Intelligence Vol. 17

(No. 1–3): 185–203.
Kearney, J. K., Thompson, W. B. & Boley, D. L. (1987). Optical flow estimation: an error anal-

ysis of gradient-based methods with local optimization, IEEE Transactions on Pattern
Analysis and Machine Intelligence Vol. PAMI–9 (No. 2): 229–244.

Meinhart, C. D., Wereley, S. T. & Santiago, J. G. (2000). A PIV algorithm for estimating time-
averaged velocity fields, Journal of Fluids Engineering Vol. 122 (No. 2): 285–289.

Nakajima, K., Osa, A., Maekawa, T. & Miike, H. (1997). Evaluation of body motion by optical
flow analysis, Japanese Journal of Applied Physics Vol. 36 (No. 5A): 2929–2937.

Nakajima, Y., Inomata, H., Nogawa, H., Sato, Y., Tamura, S., Okazaki, K. & Torii, S. (2003).
Physics-based flow estimation of fluids, Pattern Recognition Vol. 36 (No. 5): 1203–
1212.

Nomura, A., Miike, H. & Koga, K. (1991). Field theory approach for determining optical flow,
Pattern Recognition Letters Vol. 12 (No. 3): 183–190.

Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. (1988). Numerical Recipes in C:
The Art of Scientific Computing, Cambridge University Press, Cambridge, England.

Raffel, M., Willert, C. E., Wereley, S. T. & Kompenhans, J. (2007). Particle Image Velocimetry: A
Practical Guide, Springer-Verlag, Berlin, Germany.

Roesgen, T. (2003). Optimal subpixel interpolation in particle image velocimetry, Experiments
in Fluids Vol. 35 (No. 3): 252–256.

Scarano, F. (2002). Iterative image deformation methods in PIV, Measurement Science and Tech-
nology Vol. 13 (No. 1): R1–R19.

Sugii, Y., Nishio, S., Okuno T. & Okamoto, K. (2000). A highly accurate iterative PIV technique
using a gradient method, Measurement Science and Technology Vol. 11 (No. 12): 1666–
1673.

Terzopoulos, D. (1986). Image analysis using multigrid relaxation methods, IEEE Transactions
on Pattern Analysis and Machine Intelligence Vol. PAMI–8 (No. 2): 129–139.

Theunissen, R., Scarano, F. & Riethmuller, M. L. (2010). Spatially adaptive PIV interrogation
based on data ensemble, Experiments in Fluids Vol. 48 (No. 5): 875–887.

Tokumaru, P. T. & Dimotakis, P. E. (1995). Image correlation velocimetry, Experiments in Fluids
Vol. 19 (No. 1): 1–15.

Westerweel, J., Dabiri, D. & Gharib, M. (1997). The effect of a discrete window offset on the
accuracy of cross-correlation analysis of digital PIV recordings, Experiments in Fluids
Vol. 23 (No. 1): 20–28.

Willert, C. E. & Gharib, M. (1991). Digital particle image velocimetry, Experiments in Fluids
Vol. 10 (No. 4): 181–193.

www.intechopen.com



Engineering the Future

Edited by Laszlo Dudas

ISBN 978-953-307-210-4

Hard cover, 414 pages

Publisher Sciyo

Published online 02, November, 2010

Published in print edition November, 2010

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

This book pilots the reader into the future. The first three chapters introduce new materials and material

processing methods. Then five chapters present innovative new design directions and solutions. The main

section of the book contains ten chapters organized around problems and methods of manufacturing and

technology, from cutting process optimisation through maintenance and control to the Digital Factory. The last

two chapters deal with information and energy, as the foundations of a prospering economy.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Atsushi Nomura, Koichi Okada, Hidetoshi Miike and Hidemi Yamada (2010). Gradient-based Approach for

Determination of Oscillating Flow Fields in PIV, Engineering the Future, Laszlo Dudas (Ed.), ISBN: 978-953-

307-210-4, InTech, Available from: http://www.intechopen.com/books/engineering-the-future/gradient-based-

approach-for-determination-of-oscillating-flow-fields-in-piv



© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


